Skip to main content

Research Repository

Advanced Search

Windage power losses from spiral bevel gears with varying oil flows and shroud configurations

Johnson, Graham; Chandra, Budi; Foord, Colin; Simmons, Kathy

Authors

Graham Johnson

Profile image of Budi Chandra

Budi Chandra Budi.Chandra@uwe.ac.uk
Associate Director (Mobility Technologies)

Colin Foord

Kathy Simmons



Abstract

In many aero-engines, the power to drive accessories is transmitted through high speed bevel gears in a chamber in the center of the engine. The windage power loss (WPL) associated with these gears makes a significant contribution to the overall heat generation within the chamber. Shrouding the gears provides an effective method of reducing this WPL and managing the flow of lubricating oil. Experimental and computational programs at the University of Nottingham Technology Centre in Gas Turbine Transmission Systems are providing an improved understanding of shroud performance and design. This paper presents the results from a pair of shrouded meshing gears run at representative speeds and oil flow in a rig with speed and torque measurement. A previously published study of a single bevel gear operating in air (Johnson et al., 2007, "Experimental Investigation Into Windage Power Loss From a Shrouded Spiral Bevel Gear" ASME Paper No. GT2007-27885) found a reduction in torque of up to 70% from shrouding. In this work, the addition of oil and the pinion gear did not lead to high torque due to the buildup of oil under the shrouds, but the reduction in torque due to fitting the shrouds is significantly less than was found for the same gear in air alone. In order to isolate the various parameters, further testing with a single gear was carried out. A fully (360 deg) shrouded gear shows a big improvement over an unshrouded gear when running in air alone, but much of this benefit disappears as soon as a very small amount of oil is introduced under the shroud. This implies that the oil is recirculating under the shroud. Increasing the oil flow beyond this initial level increases the torque by the amount required to accelerate the oil mass flow up to the peripheral speed of the gear. Providing a full width slot in the shroud downstream of the oil jet allows the oil to escape without any recirculation and restores much of the benefit of the shroud. Further insight into the oil behavior is obtained from torque measurements and observations through a transparent shroud and with various slot configurations. Video observation shows evidence of a vortex flow under the shroud that carries some of the oil toward the inner diameter of the gear. The three main windage contributors, air alone, recirculation of oil under the shroud, and acceleration of the feed oil, are quantified and methods for achieving the optimum design are discussed. © 2009 by ASME.

Journal Article Type Article
Acceptance Date Jul 13, 2009
Publication Date Oct 1, 2009
Journal Journal of Turbomachinery
Print ISSN 0889-504X
Electronic ISSN 1528-8900
Publisher American Society of Mechanical Engineers
Peer Reviewed Peer Reviewed
Volume 131
Issue 4
Pages 1-7
DOI https://doi.org/10.1115/1.3072519
Keywords gear windage, gas turbine, multiphase flow, internal gear box
Public URL https://uwe-repository.worktribe.com/output/994382
Publisher URL http://dx.doi.org/10.1115/1.3072519