Chao Zeng
Multifingered robot hand compliant manipulation based on vision-based demonstration and adaptive force control
Zeng, Chao; Li, Shuang; Chen, Zhaopeng; Yang, Chenguang; Sun, Fuchun; Zhang, Jianwei
Authors
Shuang Li
Zhaopeng Chen
Charlie Yang Charlie.Yang@uwe.ac.uk
Professor in Robotics
Fuchun Sun
Jianwei Zhang
Abstract
Multifingered hand dexterous manipulation is quite challenging in the domain of robotics. One remaining issue is how to achieve compliant behaviors. In this work, we propose a human-in-the-loop learning-control approach for acquiring compliant grasping and manipulation skills of a multifinger robot hand. This approach takes the depth image of the human hand as input and generates the desired force commands for the robot. The markerless vision-based teleoperation system is used for the task demonstration, and an end-to-end neural network model (i.e., TeachNet) is trained to map the pose of the human hand to the joint angles of the robot hand in real-time. To endow the robot hand with compliant human-like behaviors, an adaptive force control strategy is designed to predict the desired force control commands based on the pose difference between the robot hand and the human hand during the demonstration. The force controller is derived from a computational model of the biomimetic control strategy in human motor learning, which allows adapting the control variables (impedance and feedforward force) online during the execution of the reference joint angles. The simultaneous adaptation of the impedance and feedforward profiles enables the robot to interact with the environment compliantly. Our approach has been verified in both simulation and real-world task scenarios based on a multifingered robot hand, that is, the Shadow Hand, and has shown more reliable performances than the current widely used position control mode for obtaining compliant grasping and manipulation behaviors.
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 12, 2022 |
Online Publication Date | Jun 29, 2022 |
Deposit Date | Jul 22, 2022 |
Publicly Available Date | Jul 26, 2022 |
Journal | IEEE Transactions on Neural Networks and Learning Systems |
Print ISSN | 2162-237X |
Electronic ISSN | 2162-2388 |
Publisher | Institute of Electrical and Electronics Engineers |
Peer Reviewed | Peer Reviewed |
Pages | 1-12 |
DOI | https://doi.org/10.1109/tnnls.2022.3184258 |
Keywords | Artificial Intelligence, Computer Networks and Communications, Computer Science Applications, Software, Robot compliant manipulation; Adaptive impedance/force control; Neural network model; Vision-based teleoperation |
Public URL | https://uwe-repository.worktribe.com/output/9703774 |
Publisher URL | https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5962385 |
Files
Multifingered robot hand compliant manipulation based on vision-based demonstration and adaptive force control
(13.8 Mb)
PDF
Licence
http://www.rioxx.net/licenses/all-rights-reserved
Publisher Licence URL
http://www.rioxx.net/licenses/all-rights-reserved
Copyright Statement
This is the author’s accepted manuscript. The final published version is available here: https://ieeexplore.ieee.org/document/9810841/keywords#keywords
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
See https://www.ieee.org/publications/rights/index.html for more information.
You might also like
Head-raising of snake robots based on a predefined spiral curve method
(2018)
Journal Article
Enhanced teleoperation performance using hybrid control and virtual fixture
(2019)
Journal Article
Efficient 3D object recognition via geometric information preservation
(2019)
Journal Article
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search