Skip to main content

Research Repository

Advanced Search

Adapting scientific workflow structures using multi-objective optimization strategies

Habib, Irfan; Anjum, Ashiq; McClatchey, Richard; Rana, Omer

Authors

Irfan Habib

Ashiq Anjum

Omer Rana



Abstract

Scientific workflows have become the primary mechanism for conducting analyses on distributed computing infrastructures such as grids and clouds. In recent years, the focus of optimization within scientific workflows has primarily been on computational tasks and workflow makespan. However, as workflow-based analysis becomes ever more data intensive, data optimization is becoming a prime concern. Moreover, scientific workflows can scale along several dimensions: (i) number of computational tasks, (ii) heterogeneity of computational resources, and the (iii) size and type (static versus streamed) of data involved. Adapting workflow structure in response to these scalability challenges remains an important research objective. Understanding how a workflow graph can be restructured in an automated manner (through task merge, for instance), to address constraints of a particular execution environment is explored in this work, using a multi-objective evolutionary approach. Our approach attempts to adapt the workflow structure to achieve both compute and data optimization. The question of when to terminate the evolutionary search in order to conserve computations is tackled with a novel termination criterion. The results presented in this article demonstrate the feasibility of the termination criterion and demonstrate that significant optimization can be achieved with a multi-objective approach. © 2013 ACM.

Journal Article Type Article
Publication Date Apr 1, 2013
Journal ACM Transactions on Autonomous and Adaptive Systems
Print ISSN 1556-4665
Electronic ISSN 1556-4703
Publisher Association for Computing Machinery (ACM)
Peer Reviewed Peer Reviewed
Volume 8
Issue 1
DOI https://doi.org/10.1145/2451248.2451252
Keywords multi-objective optimisation, evolutionary computing, scientific workflows, termination criteria, hypervolume, workflow planning
Public URL https://uwe-repository.worktribe.com/output/929811
Publisher URL http://dx.doi.org/10.1145/2451248.2451252