Skip to main content

Research Repository

Advanced Search

Reintroduced large wood modifies fine sediment transport and storage in a lowland river channel

Harvey, Gemma L.; Henshaw, Alexander J.; Sayer, Carl D.; Parker, Chris


Gemma L. Harvey

Alexander J. Henshaw

Carl D. Sayer

Chris Parker
Senior Lecturer in Physical Geography


Copyright © 2017 John Wiley & Sons, Ltd. This paper explores changes in suspended sediment transport and fine sediment storage at the reach and patch scale associated with the reintroduction of partial large wood (LW) jams in an artificially over-widened lowland river. The field site incorporates two adjacent reaches: a downstream section where LW jams were reintroduced in 2010 and a reach immediately upstream where no LW was introduced. LW pieces were organized into ‘partial’ jams incorporating several ‘key pieces’ which were later colonized by substantial stands of aquatic and wetland plants. Reach-scale suspended sediment transport was investigated using arrays of time-integrated suspended sediment samplers. Patch-scale suspended sediment transport was explored experimentally using turbidity sensors to track the magnitude and velocity of artificially generated sediment plumes. Fine sediment storage was quantified at both reach and patch scales by repeat surveys of fine sediment depth. The results show that partial LW jams influence fine sediment dynamics at both the patch and reach scale. At the patch-scale, introduction of LW led to a reduction in the concentration and increase in the time lag of released sediment plumes within the LW, indicating increased diffusion of plumes. This contrasted with higher concentrations and lower time lags in areas adjacent to the LW; indicating more effective advection processes. This led to increased fine sediment storage within the LW compared with areas adjacent to the LW. At the reach-scale there was a greater increase in fine sediment storage through time within the restored reach relative to the unrestored reach, although the changes in sediment transport responsible for this were not evident from time-integrated suspended sediment data. The results of the study have been used to develop a conceptual model which may inform restoration design. Copyright © 2017 John Wiley & Sons, Ltd.


Sayer, C. D., Harvey, G. L., Henshaw, A. J., Parker, C., Henshaw, A., Harvey, G., & Sayer, C. (2017). Reintroduced large wood modifies fine sediment transport and storage in a lowland river channel. Earth Surface Processes and Landforms, 42(11), 1693-1703.

Journal Article Type Article
Acceptance Date Jan 11, 2017
Online Publication Date Jan 31, 2017
Publication Date Sep 15, 2017
Journal Earth Surface Processes and Landforms
Print ISSN 0197-9337
Electronic ISSN 1096-9837
Publisher Wiley
Peer Reviewed Peer Reviewed
Volume 42
Issue 11
Pages 1693-1703
Keywords large wood, organic debris, suspended sediment, fine sediment, river restoration, sediment transport, sediment storage
Public URL
Publisher URL


You might also like

Downloadable Citations