Skip to main content

Research Repository

Advanced Search

Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: A review and synthesis

DeBeer, Chris M.; Wheater, Howard S.; Carey, Sean K.; Chun, Kwok P.

Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: A review and synthesis Thumbnail


Authors

Chris M. DeBeer

Howard S. Wheater

Sean K. Carey

Profile Image

Dr Kwok Chun Kwok.Chun@uwe.ac.uk
Lecturer in Environmental Managment



Abstract

It is well established that the Earth's climate system has warmed significantly over the past several decades, and in association there have been widespread changes in various other Earth system components. This has been especially prevalent in the cold regions of the northern mid- to high latitudes. Examples of these changes can be found within the western and northern interior of Canada, a region that exemplifies the scientific and societal issues faced in many other similar parts of the world, and where impacts have global-scale consequences. This region has been the geographic focus of a large amount of previous research on changing climatic, cryospheric, and hydrological regimes in recent decades, while current initiatives such as the Changing Cold Regions Network (CCRN) introduced in this review seek to further develop the understanding and diagnosis of this change and hence improve the capacity to predict future change. This paper provides a comprehensive review of the observed changes in various Earth system components and a concise and up-to-date regional picture of some of the temporal trends over the interior of western Canada since the mid- or late 20th century. The focus is on air temperature, precipitation, seasonal snow cover, mountain glaciers, permafrost, freshwater ice cover, and river discharge. Important long-term observational networks and data sets are described, and qualitative linkages among the changing components are highlighted. Increases in air temperature are the most notable changes within the domain, rising on average 2°C throughout the western interior since 1950. This increase in air temperature is associated with hydrologically important changes to precipitation regimes and unambiguous declines in snow cover depth, persistence, and spatial extent. Consequences of warming air temperatures have caused mountain glaciers to recede at all latitudes, permafrost to thaw at its southern limit, and active layers over permafrost to thicken. Despite these changes, integrated effects on stream flow are complex and often offsetting. Following a review of the current literature, we provide insight from a network of northern research catchments and other sites detailing how climate change confounds hydrological responses at smaller scales, and we recommend several priority research areas that will be a focus of continued work in CCRN. Given the complex interactions and process responses to climate change, it is argued that further conceptual understanding and quantitative diagnosis of the mechanisms of change over a range of scales is required before projections of future change can be made with confidence.

Citation

DeBeer, C. M., Wheater, H. S., Carey, S. K., & Chun, K. P. (2016). Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: A review and synthesis. Hydrology and Earth System Sciences, 20(4), 1573-1598. https://doi.org/10.5194/hess-20-1573-2016

Journal Article Type Review
Acceptance Date Apr 3, 2016
Online Publication Date Apr 25, 2016
Publication Date Apr 25, 2016
Deposit Date Jan 25, 2022
Publicly Available Date Jan 25, 2022
Journal Hydrology and Earth System Sciences
Print ISSN 1027-5606
Electronic ISSN 1607-7938
Publisher European Geosciences Union
Peer Reviewed Peer Reviewed
Volume 20
Issue 4
Pages 1573-1598
DOI https://doi.org/10.5194/hess-20-1573-2016
Public URL https://uwe-repository.worktribe.com/output/8545346

Files





You might also like



Downloadable Citations