Hemma Philamore
Cast and 3D printed ion exchange membranes for monolithic microbial fuel cell fabrication
Philamore, Hemma; Philamorea, Hemma; Rossiter, Jonathan; Walters, Peter; Winfield, Jonathan; Ieropoulos, Ioannis
Authors
Hemma Philamorea
Jonathan Rossiter
Peter Walters
Jonathan Winfield Jonathan.Winfield@uwe.ac.uk
School Director (Learning & Teaching)
Yannis Ieropoulos Ioannis2.Ieropoulos@uwe.ac.uk
Professor in Bioenergy & Director of B-B
Abstract
© 2015 Elsevier B.V. All rights reserved. We present novel solutions to a key challenge in microbial fuel cell (MFC) technology; greater power density through increased relative surface area of the ion exchange membrane that separates the anode and cathode electrodes. The first use of a 3D printed polymer and a cast latex membrane are compared to a conventionally used cation exchange membrane. These new techniques significantly expand the geometric versatility available to ion exchange membranes in MFCs, which may be instrumental in answering challenges in the design of MFCs including miniaturisation, cost and ease of fabrication. Under electrical load conditions selected for optimal power transfer, peak power production (mean 10 batch feeds) was 11.39 μW (CEM), 10.51 μW (latex) and 0.92 μW (Tangoplus). Change in conductivity and pH of anolyte were correlated with MFC power production. Digital and environmental scanning electron microscopy show structural changes to and biological precipitation on membrane materials following long term use in an MFC. The cost of the novel membranes was lower than the conventional CEM. The efficacy of two novel membranes for ion exchange indicates that further characterisation of these materials and their fabrication techniques, shows great potential to significantly increase the range and type of MFCs that can be produced.
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 17, 2015 |
Online Publication Date | May 18, 2015 |
Publication Date | Sep 1, 2015 |
Deposit Date | Aug 11, 2015 |
Publicly Available Date | Mar 14, 2016 |
Journal | Journal of Power Sources |
Print ISSN | 0378-7753 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 289 |
Pages | 91-99 |
DOI | https://doi.org/10.1016/j.jpowsour.2015.04.113 |
Keywords | microbial fuel cell, 3D printing, ion-exchange membrane, oxygen-diffusion cathodes |
Public URL | https://uwe-repository.worktribe.com/output/828742 |
Publisher URL | http://dx.doi.org/10.1016/j.jpowsour.2015.04.113 |
Contract Date | Mar 14, 2016 |
Files
Hemma paper.pdf
(1.7 Mb)
PDF
You might also like
Towards disposable microbial fuel cells: Natural rubber glove membranes
(2014)
Journal Article
Fade to Green: A Biodegradable Stack of Microbial Fuel Cells
(2015)
Journal Article
Towards fully biodegradable microbial fuel cells
(2014)
Book Chapter
The power of glove: Soft microbial fuel cell for low-power electronics
(2013)
Journal Article
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search