Skip to main content

Research Repository

Advanced Search

Negative updating applied to the best-of-n problem with noisy qualities

Lee, Chanelle; Lawry, Jonathan; Winfield, Alan F.T.

Authors

Chanelle Lee

Jonathan Lawry



Abstract

The ability to perform well in the presence of noise is an important consideration when evaluating the effectiveness of a collective decision-making framework. Any system deployed for real-world applications will have to perform well in complex and uncertain environments, and a component of this is the limited reliability and accuracy of evidence sources. In particular, in swarm robotics there is an emphasis on small and inexpensive robots which are often equipped with low-cost sensors more prone to suffer from noisy readings. This paper presents an exploratory investigation into the robustness of a negative updating approach to the best-of-n problem which utilises negative feedback from direct pairwise comparison of options and opinion pooling. A site selection task is conducted with a small-scale swarm of five e-puck robots choosing between n= 7 options in a semi-virtual environment with varying levels of sensor noise. Simulation experiments are then used to investigate the scalability of the approach. We now vary the swarm size and observe the behaviour as the number of options n increases for different error levels with different pooling regimes. Preliminary results suggest that the approach is robust to noise in the form of noisy sensor readings for even small populations by supporting self-correction within the population.

Journal Article Type Article
Acceptance Date Apr 10, 2021
Online Publication Date May 25, 2021
Publication Date May 25, 2021
Deposit Date Jun 27, 2021
Publicly Available Date Aug 27, 2021
Journal Swarm Intelligence
Print ISSN 1935-3812
Electronic ISSN 1935-3820
Publisher Springer Verlag
Peer Reviewed Peer Reviewed
Volume 15
Pages 111-143
DOI https://doi.org/10.1007/s11721-021-00188-4
Public URL https://uwe-repository.worktribe.com/output/7494917

Files





You might also like



Downloadable Citations