Skip to main content

Research Repository

Advanced Search

Role of G protein-coupled receptor kinases 2 and 3 in μ-opioid receptor desensitization and internalization

Lowe, Janet D.; Sanderson, Helen S.; Cooke, Alexandra E.; Ostovar, Mehrnoosh; Tsisanova, Elena; Withey, Sarah L.; Chavkin, Charles; Husbands, Stephen M.; Kelly, Eamonn; Henderson, Graeme; Bailey, Chris P.

Authors

Janet D. Lowe

Helen S. Sanderson

Alexandra E. Cooke

Mehrnoosh Ostovar

Elena Tsisanova

Sarah L. Withey

Charles Chavkin

Stephen M. Husbands

Eamonn Kelly

Graeme Henderson

Chris P. Bailey



Abstract

There is ongoing debate about the role of G protein-coupled receptor kinases (GRKs) in agonist-induced desensitization of the μ-opioid receptor (MOPr) in brain neurons. In the present paper, we have used a novel membrane-permeable, small-molecule inhibitor of GRK2 and GRK3, Takeda compound 101 (Cmpd101; 3-[[[4-methyl-5-(4-pyridyl)-4H-1,2,4-triazole-3-yl] methyl] amino]-N-[2-(trifuoromethyl) benzyl] benzamidehydrochloride), to study the involvement of GRK2/3 in acute agonist-induced MOPr desensitization. We observed that Cmpd101 inhibits the desensitization of the G protein-activated inwardly-rectifying potassium current evoked by receptor-saturating concentrations of methionine-enkephalin (Met-Enk), [D-Ala2, N-MePhe4, Gly-ol5]-enkephalin (DAMGO), endomorphin-2, and morphine in rat and mouse locus coeruleus (LC) neurons. In LC neurons from GRK3 knockout mice, Met-Enk-induced desensitization was unaffected, implying a role for GRK2 in MOPr desensitization. Quantitative analysis of the loss of functional MOPrs following acute agonist exposure revealed that Cmpd101 only partially reversed MOPr desensitization. Inhibition of extracellular signal-regulated kinase 1/2, protein kinase C, c-Jun N-terminal kinase, or GRK5 did not inhibit the Cmpd101-insensitive component of desensitization. In HEK 293 cells, Cmpd101 produced almost complete inhibition of DAMGO-induced MOPr phosphorylation at Ser375, arrestin translocation, and MOPr internalization. Our data demonstrate a role for GRK2 (and potentially also GRK3) in agonist-induced MOPr desensitization in the LC, but leave open the possibility that another, as yet unidentified, mechanism of desensitization also exists.

Journal Article Type Article
Acceptance Date Feb 2, 2015
Online Publication Date May 26, 2015
Publication Date Aug 1, 2015
Deposit Date Jun 22, 2021
Journal Molecular Pharmacology
Print ISSN 0026-895X
Electronic ISSN 1521-0111
Publisher American Society for Pharmacology and Experimental Therapeutics
Peer Reviewed Peer Reviewed
Volume 88
Issue 2
Pages 347-356
DOI https://doi.org/10.1124/mol.115.098293
Public URL https://uwe-repository.worktribe.com/output/7483584



Downloadable Citations