Skip to main content

Research Repository

Advanced Search

Aerodynamic and aeroacoustic analysis of a harmonically morphing airfoil using dynamic meshing

Abdessemed, Chawki; Bouferrouk, Abdessalem; yao, yufeng

Aerodynamic and aeroacoustic analysis of a harmonically morphing airfoil using dynamic meshing Thumbnail


Authors

Chawki Abdessemed

Yufeng Yao Yufeng.Yao@uwe.ac.uk
Professor in Aerospace Engineering



Abstract

This work explores the aerodynamic and aeroacoustic responses of an airfoil fitted with a harmonically morphing Trailing Edge Flap (TEF). An unsteady parametrization method adapted for harmonic morphing is introduced, and then coupled with dynamic meshing to drive the morphing process. The turbulence characteristics are calculated using the hybrid Stress Blended Eddy Simulation (SBES) RANS-LES model. The far-field tonal noise is predicted using the Ffowcs-Williams and Hawkings (FW-H) acoustic analogy method with corrections to account for spanwise effects using a correlation length of half the airfoil chord. At various morphing frequencies and amplitudes, the 2D aeroacoustic tonal noise spectra are obtained for a NACA 0012 airfoil at a low angle of attack (AoA = 4°), a Reynolds number of 0.62 × 106, and a Mach number of 0.115, respectively, and the dominant tonal frequencies are predicted correctly. The aerodynamic coefficients of the un-morphed configuration show good agreement with published experimental and 3D LES data. For the harmonically morphing TEF case, results show that it is possible to achieve up to a 3% increase in aerodynamic efficiency (L/D). Furthermore, the morphing slightly shifts the predominant tonal peak to higher frequencies, possibly due to the morphing TEF causing a breakup of large-scale shed vortices into smaller, higher frequency turbulent eddies. It appears that larger morphing amplitudes induce higher sound pressure levels (SPLs), and that all the morphing cases induce the shift in the main tonal peak to a higher frequency, with a maximum 1.5 dB reduction in predicted SPL. The proposed dynamic meshing approach incorporating an SBES model provides a reasonable estimation of the NACA 0012 far-field tonal noise at an affordable computational cost. Thus, it can be used as an efficient numerical tool to predict the emitted far-field tonal noise from a morphing wing at the design stage.

Citation

Abdessemed, C., Bouferrouk, A., & yao, Y. (2021). Aerodynamic and aeroacoustic analysis of a harmonically morphing airfoil using dynamic meshing. Acoustics, 3(1), 177-200. https://doi.org/10.3390/acoustics3010013

Journal Article Type Article
Acceptance Date Mar 2, 2021
Online Publication Date Mar 6, 2021
Publication Date Mar 6, 2021
Deposit Date Mar 7, 2021
Publicly Available Date Mar 10, 2021
Journal Acoustics (MDPI)
Publisher MDPI
Peer Reviewed Peer Reviewed
Volume 3
Issue 1
Pages 177-200
DOI https://doi.org/10.3390/acoustics3010013
Keywords harmonically morphing; active flow control; dynamic meshing; tonal noise; RANS-LES; SBES
Public URL https://uwe-repository.worktribe.com/output/7190179
Publisher URL https://www.mdpi.com/

Files







You might also like



Downloadable Citations