Charafeddine Mokhtara
Design optimization of grid-connected PV-Hydrogen for energy prosumers considering sector-coupling paradigm: Case study of a university building in Algeria
Mokhtara, Charafeddine; Negrou, Belkhir; Settou, Noureddine; Bouferrouk, Abdessalem; Yao, Yufeng
Authors
Belkhir Negrou
Noureddine Settou
Abdesselam Bouferrouk Abdessalem.Bouferrouk@uwe.ac.uk
Senior Lecturer in Engineering
Yufeng Yao Yufeng.Yao@uwe.ac.uk
Professor in Aerospace Engineering
Abstract
Integrating sector coupling technologies into Hydrogen (H2) based hybrid renewable energy systems (HRES) is becoming a promising way to create energy prosumers, despite the very little research work being done in this largely unexplored field. In this paper, a sector coupling strategy (building and transportation) is developed and applied to a grid-connected PV/battery/H2 HRES, to maximise self-sufficiency for a University campus and to produce power and H2 for driving electric tram in Ouargla, Algeria. A multi-objective size optimization problem is solved as a single objective problem using the ε-constraint method, in which the cost of energy (COE) is defined as the main objective function to be minimized, while both loss of power supply probability (LPSP) and non-renewable usage (NRU) are defined as constraints. Particle swarm optimization and HOMER software are then employed for simulation and optimization purposes. Prior to the two scenarios investigated, a sensitivity study is performed to determine the effects of H2 demand by tram and NRU on the techno-economic feasibility of the proposed system, followed by a new reliability factor introduced in the optimization, namely loss of H2 supply probability (LHSP). The results of the first scenario show that by setting NRUmax = 100%, the system without H2 provides the best solution with COE of 0.016 $/kWh that reaches grid parity and has 13% NRU. However, by setting NRUmax = 1% in the second scenario, an optimized configuration consisting of grid/PV/Electrolyzer/Fuel cell/Storage tank is obtained, which has 0% NRU and COE of 0.1 $/kWh. In the second scenario, it is also observed that an increased number of trams (i.e. increased H2 demands) causes a significant reduction in LHSP, COE, NRU and CO2 emissions. It is thus concluded that the grid/PV combination is the optimal choice for the studied system when considering economic aspects. However, taking into account the growing requirements of future energy systems, grid-connected PV with H2 will be the best solution.
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 9, 2020 |
Online Publication Date | Oct 31, 2020 |
Publication Date | Oct 29, 2021 |
Deposit Date | Nov 3, 2020 |
Publicly Available Date | Nov 1, 2021 |
Journal | International Journal of Hydrogen Energy |
Print ISSN | 0360-3199 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 46 |
Issue | 75 |
Pages | 37564-37582 |
DOI | https://doi.org/10.1016/j.ijhydene.2020.10.069 |
Keywords | Fuel Technology; Renewable Energy, Sustainability and the Environment; Energy Engineering and Power Technology; Condensed Matter Physics |
Public URL | https://uwe-repository.worktribe.com/output/6825763 |
Files
Design optimization of grid-connected PV-Hydrogen for energy prosumers considering sector-coupling paradigm: Case study of a university building in Algeria
(2.2 Mb)
PDF
Licence
http://creativecommons.org/licenses/by-nc-nd/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
This is the author's accepted manuscript. The final published version is available here: https://doi.org/10.1016/j.ijhydene.2020.10.069
You might also like
On the applicability of trapped vortices to ground vehicles
(2014)
Presentation / Conference Contribution
Morphing airfoils analysis using dynamic meshing
(2018)
Journal Article
Further development of a variable camber morphing mechanism using the direct control airfoil geometry concept
(2018)
Presentation / Conference Contribution
Design, manufacture and test of a camber morphing wing using MFC actuated smart rib
(2017)
Presentation / Conference Contribution
Unsteady parametrization of a morphing wing design for improved aerodynamic performance
(2017)
Presentation / Conference Contribution
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search