Charafeddine Mokhtara
Integrated supply–demand energy management for optimal design of off-grid hybrid renewable energy systems for residential electrification in arid climates
Mokhtara, Charafeddine; Negrou, Belkhir; Bouferrouk, Abdessalem; Yao, Yufeng; Settou, Noureddine; Ramadan, Mohamad
Authors
Belkhir Negrou
Abdesselam Bouferrouk Abdessalem.Bouferrouk@uwe.ac.uk
Senior Lecturer in Engineering
Yufeng Yao Yufeng.Yao@uwe.ac.uk
Professor in Aerospace Engineering
Noureddine Settou
Mohamad Ramadan
Abstract
The growing research interest in hybrid renewable energy systems (HRESs) has been regarded as a natural and yet critical response to address the challenge of rural electrification. Based on a Bibliometric analysis performed by authors, it was concluded that most studies simply adopted supply-side management techniques to perform the design optimization of such a renewable energy system. To further advance those studies, this paper presents a novel approach by integrating demand-supply management (DSM) with particle swarm optimization and applying it to optimally design an off-grid hybrid PV-solar-diesel-battery system for the electrification of residential buildings in arid environments, using a typical dwelling in Adrar, Algeria, as a case study. The proposed HRES is first modelled by an in-house MATLAB code based on a multi-agent system concept and then optimized by minimizing the total net present cost (TNPC), subject to reliability level and renewable energy penetration. After validation against the HOMER software, further techno-economic analyses including sensitivity study are undertaken, considering different battery technologies. By integrating the proposed DSM, the results have shown the following improvements: with RF = 100%, the energy demand and TNPC are reduced by 7% and 18%, respectively, compared to the case of using solely supply-side management. It is found that PV-Li-ion represents the best configuration, with TNPC of $23,427 and cost of energy (COE) of 0.23 $/kWh. However, with lower RF values, the following reductions are achieved: energy consumption (19%) and fuel consumption or CO 2 emission (57%), respectively. In contrast, the RF is raised from 15% (without DSM) to 63% (with DSM). It is clear that the optimal configuration consists of wind-diesel, with COE of 0.21 $/kWh, smaller than that obtained with a stand-alone diesel generator system. The outcomes of this work can provide valuable insights into the successful design and deployment of HRES in Algeria and surrounding regions.
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 6, 2020 |
Online Publication Date | Jul 18, 2020 |
Publication Date | Oct 1, 2020 |
Deposit Date | Jul 21, 2020 |
Publicly Available Date | Jul 19, 2021 |
Journal | Energy Conversion and Management |
Print ISSN | 0196-8904 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 221 |
Article Number | 113192 |
DOI | https://doi.org/10.1016/j.enconman.2020.113192 |
Keywords | Fuel technology; Renewable energy, Sustainability and the environment; Energy engineering and power technology; Nuclear energy and engineering; Hybrid renewable energy system; Energy management; Optimal design; Rural electrification; Building energy consu |
Public URL | https://uwe-repository.worktribe.com/output/6257799 |
Files
Manuscript EC M Dated 12-06-2020 Yy And AB Cmt Mokh Final
(2.2 Mb)
PDF
Licence
http://creativecommons.org/licenses/by-nc-nd/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
On the applicability of trapped vortices to ground vehicles
(2014)
Presentation / Conference Contribution
Morphing airfoils analysis using dynamic meshing
(2018)
Journal Article
Further development of a variable camber morphing mechanism using the direct control airfoil geometry concept
(2018)
Presentation / Conference Contribution
Design, manufacture and test of a camber morphing wing using MFC actuated smart rib
(2017)
Presentation / Conference Contribution
Unsteady parametrization of a morphing wing design for improved aerodynamic performance
(2017)
Presentation / Conference Contribution
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search