Mohammad Nazmul Karim
Towards UV-curable inkjet printing of biodegradable poly (lactic acid) fabrics
Karim, Mohammad Nazmul; Afroj, Shaila; Rigout, Muriel; Yeates, Stephen G.; Carr, Chris
Authors
Shaila Afroj
Muriel Rigout
Stephen G. Yeates
Chris Carr
Abstract
There has been growing interest in using poly (lactic acid) (PLA) fibres because of its natural-based origin and good biodegradability; however, its adoption within the textile industry has been limited to lower temperature wet and dry processing, because of its relatively lower glass transition temperature (Tg) and melting point (Tm). Here we report for the first time inkjet printing of heat-sensitive PLA fabrics using ambient temperature UV-curable inks as a way of overcoming the potential degradation at higher temperature. The UV cured inkjet printed PLA fabrics exhibited good performance characteristics such as acceptable colour fastness, relatively high colour strength, K/S, and comparable colour difference, ΔE, after washing to the thermally cured ink system, without affecting the physical and mechanical properties of the fabrics. In contrast thermally cured inkjet printed PLA fabrics exhibited significantly reduced bursting strength and stiffer handle attributed to the thermal degradation and lower fibre flexibility imparted at the higher temperature. Investigation of the radiation-cured printing approach indicates UV-curable inkjet printing may be considered as an alternative to conventional thermally cured pigment printing of heat-sensitive biodegradable PLA-based fabrics.
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 1, 2015 |
Online Publication Date | Apr 11, 2015 |
Publication Date | 2015-07 |
Deposit Date | Aug 27, 2021 |
Journal | Journal of Materials Science |
Print ISSN | 0022-2461 |
Electronic ISSN | 1573-4803 |
Publisher | Springer Verlag |
Peer Reviewed | Peer Reviewed |
Volume | 50 |
Issue | 13 |
Pages | 4576-4585 |
DOI | https://doi.org/10.1007/s10853-015-9006-0 |
Public URL | https://uwe-repository.worktribe.com/output/6003708 |
You might also like
Ultrahigh Performance of Nanoengineered Graphene-Based Natural Jute Fiber Composites
(2019)
Journal Article
High-Performance Graphene-Based Natural Fiber Composites
(2018)
Journal Article
Graphene-based surface heater for de-icing applications
(2018)
Journal Article
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search