Rohit Sharma
A systematic literature review on machine learning applications for sustainable agriculture supply chain performance
Sharma, Rohit; Kamble, Sachin S.; Gunasekaran, Angappa; Kumar, Vikas; Kumar, Anil
Authors
Sachin S. Kamble
Angappa Gunasekaran
Professor Vikas Kumar Vikas.Kumar@uwe.ac.uk
Professor in Operations and Supply Chain Management
Anil Kumar
Abstract
Agriculture plays an important role in sustaining all human activities. Major challenges such as overpopulation, competition for resources poses a threat to the food security of the planet. In order to tackle the ever-increasing complex problems in agricultural production systems, advancements in smart farming and precision agriculture offers important tools to address agricultural sustainability challenges. Data analytics hold the key to ensure future food security, food safety, and ecological sustainability. Disruptive information and communication technologies such as machine learning, big data analytics, cloud computing, and blockchain can address several problems such as productivity and yield improvement, water conservation, ensuring soil and plant health, and enhance environmental stewardship. The current study presents a systematic review of machine learning (ML) applications in agricultural supply chains (ASCs). Ninety three research papers were reviewed based on the applications of different ML algorithms in different phases of the ASCs. The study highlights how ASCs can benefit from ML techniques and lead to ASC sustainability. Based on the study findings an ML applications framework for sustainable ASC is proposed. The framework identifies the role of ML algorithms in providing real-time analytic insights for pro-active data-driven decision-making in the ASCs and provides the researchers, practitioners, and policymakers with guidelines on the successful management of ASCs for improved agricultural productivity and sustainability.
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 17, 2020 |
Online Publication Date | Feb 24, 2020 |
Publication Date | Jul 1, 2020 |
Deposit Date | Feb 18, 2020 |
Publicly Available Date | Aug 25, 2021 |
Journal | Computers and Operations Research |
Print ISSN | 0305-0548 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 119 |
Article Number | 104926 |
DOI | https://doi.org/10.1016/j.cor.2020.104926 |
Public URL | https://uwe-repository.worktribe.com/output/5430248 |
Publisher URL | https://www.journals.elsevier.com/computers-and-operations-research |
Files
COR Revised 271219
(970 Kb)
PDF
Licence
http://creativecommons.org/licenses/by-nc-nd/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
The role of the state for managing voluntary food sustainability standards democratically
(2023)
Journal Article
Guest editorial: Modelling the business and societal decisions under the impact of COVID-19
(2023)
Journal Article
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search