Skip to main content

Research Repository

Advanced Search

Toward navigating complex terrains using a biomimetic whisker sensor array

Salman, Mohammed


Mohammed Salman


This thesis proposes a parsimonious approach to localization, mapping and object recog- nition for a pseudo-mobile robot equipped with a biomimetic array of tactile whiskers to autonomously interact, explore and represent a real-world environment. Tactile whisker sensors enable the robotic platform to perceive unique environmental properties and can operate in extreme conditions that preclude the use of conventional sensors, however, such sensors are disadvantaged by their limited range and sample sparsity. To address the sparsity, the information contained in each contact should be fully exploited, whilst the limited range of the array can be addressed through appropriate movement and placement of the whiskers and the array.
An existing Simultaneous Localization and Mapping (SLAM) algorithm called Rat- SLAM was adopted as the basis for the inference of location and demonstrated as suitable for correcting odometry errors using whisker tactile sensing. The adoption of a closed loop contact induced whisker placement strategy, directly inspired by rat whisking be- havior, improved the performance of the algorithm in further reducing odometry error. The fidelity of object shape reconstruction through the forward kinematic projection of whisker contact locations was analyzed and a number of machine learning approaches compared to assess their ecacy at discerning radial distance to contact and thus im- prove object shape reconstruction. A support vector regression technique was found to reliably improve estimates of radial distance to contact along the whisker shaft following natural, unconstrained whisker contacts. A framework for combining the 3D pose esti- mation from RatSLAM with a 6D pose estimation system suitable for object recognition is proposed with the 6D system implemented and demonstrated correctly identifying household objects through tactile whisker exploration. The adoption of whisker array placement strategies inspired by cutaneous-tactile research improved the robustness of object identification and two regional search strategies were investigated for the purpose of reducing the time taken to correctly classify objects.


Salman, M. Toward navigating complex terrains using a biomimetic whisker sensor array. (Thesis). University of Bristol. Retrieved from

Thesis Type Thesis
Deposit Date Feb 1, 2020
Keywords biomimetics, Robot sensing systems , Visualization, mobile robots , path planning, pose estimation, robot vision, sensor arrays, SLAM, tactile sensors
Public URL
Publisher URL

This file is under embargo due to copyright reasons.

Contact to request a copy for personal use.

You might also like

Downloadable Citations