Firas Hassan Saeed
A comprehensive review of retrofitted reinforced concrete members utilizing ultra-high-performance fiber-reinforced concrete
Saeed, Firas Hassan; Hejazi, Farzad
Authors
Farzad Hejazi
Abstract
Strengthening reinforced concrete (RC) buildings is a critical challenge in the construction industry, pushed by the necessity to address aging infrastructure, environmental degradation, and growing use requirements. Ultra-high-performance fiber-reinforced concrete (UHPFRC) is one of the advanced materials that present a viable solution owing to its exceptional durability and mechanical characteristics, which encompass higher compressive and tensile strengths, low permeability, and resilience against intense environmental as chloride ingress, cycles of freeze–thaw, and chemical assaults. This literature review comprehensively examines UHPFRC as a rehabilitation or strengthening mix material for the RC slabs and beams. Experimental key subjects include the influence of bonding techniques, strengthening configurations, steel fiber ratios, UHPFRC thickness, and reinforcing steel within the UHPFRC layer. In addition, the existing numerical and analytical approaches for forecasting the flexural or shear capability of reinforcing concrete structures retrofitted with UHPFRC were examined and critically assessed. Despite the improvements in the RC structures achieved through experiments utilizing UHPFRC as a reinforcement layer, this study highlights some deficiencies in the existing knowledge, such as the absence of effective ways to address debonding, insufficient research on cyclic loading, and the necessity for economical and sustainable strengthening techniques. This review establishes a basis for future research, intending to create an innovative UHPFRC-based strengthening system that mitigates current limits and improves the overall efficacy, performance, and durability of RC structures.
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 19, 2025 |
Online Publication Date | Feb 21, 2025 |
Publication Date | Feb 21, 2025 |
Deposit Date | Mar 22, 2025 |
Publicly Available Date | Mar 25, 2025 |
Journal | Materials |
Print ISSN | 1996-1944 |
Electronic ISSN | 1996-1944 |
Publisher | MDPI |
Peer Reviewed | Peer Reviewed |
Volume | 18 |
Issue | 5 |
Article Number | 945 |
DOI | https://doi.org/10.3390/ma18050945 |
Public URL | https://uwe-repository.worktribe.com/output/13925166 |
Files
A comprehensive review of retrofitted reinforced concrete members utilizing ultra-high-performance fiber-reinforced concrete
(11.3 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
Fracture mechanics modeling of reinforced concrete joints strengthened by CFRP sheets
(2022)
Journal Article
Enhancing the performance of knee beam–column joint using hybrid fibers reinforced concrete
(2021)
Journal Article
Rubber bearing isolator with granular and polymer filler core and application on a building
(2022)
Journal Article
Development of floating rubber-concrete isolation slab system for 3D vibrations
(2022)
Journal Article