Hamidullah Muslih
Cache sharing in UAV-enabled cellular network: A deep reinforcement learning-based approach
Muslih, Hamidullah; Kazmi, S. M. Ahsan; Mazzara, Manuel; Baye, Gaspard
Authors
Abstract
Caching content at base stations has proven effective at reducing transmission delays. This paper investigates the caching problem in a network of highly dynamic cache-enabled Unmanned Aerial Vehicles (UAVs), which serve ground users as aerial base stations. In this scenario, UAVs share their caches to minimize total transmission delays for requested content while simultaneously adjusting their locations. To address this challenge, we formulate a non-convex optimization problem that jointly controls UAV mobility, user association, and content caching to minimize transmission delay time. Considering the highly dynamic environment where traditional optimization approaches fall short, we propose a deep reinforcement learning (RL)-based algorithm. Specifically, we employ the actor-critic-based Deep Deterministic Policy Gradient (DDPG) algorithm to solve the optimization problem effectively. We conducted extensive simulations with respect to different cache sizes and the number of associated users with their home UAVs and compared our proposed algorithm with two baselines. Our proposed solution has demonstrated noteworthy enhancements over the two baseline approaches across various scenarios, including diverse cache sizes and varying numbers of users associated with their respective home UAVs.
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 15, 2024 |
Online Publication Date | Mar 19, 2024 |
Publication Date | Mar 19, 2024 |
Deposit Date | May 21, 2024 |
Publicly Available Date | May 21, 2024 |
Journal | IEEE Access |
Electronic ISSN | 2169-3536 |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
Peer Reviewed | Peer Reviewed |
Volume | 12 |
Pages | 43422-43435 |
DOI | https://doi.org/10.1109/ACCESS.2024.3379323 |
Public URL | https://uwe-repository.worktribe.com/output/12004203 |
Files
Cache sharing in UAV-enabled cellular network: A deep reinforcement learning-based approach
(2.1 Mb)
PDF
Licence
http://creativecommons.org/licenses/by-nc-nd/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Multiple adversarial domains adaptation approach for mitigating adversarial attacks effects
(2022)
Journal Article
PbCP: A profit-based cache placement scheme for next-generation IoT-based ICN networks
(2022)
Journal Article
Computing on wheels: A deep reinforcement learning-based approach
(2022)
Journal Article
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search