Skip to main content

Research Repository

Advanced Search

Identification of volatiles generated by potato tubers (Solanum tuberosum CV: Maris piper) infected by Erwinia carotovora, Bacillus polymyxa and Arthrobacter sp.

De Lacy Costello, B. P.J.; Ewen, R. J.; Ratcliffe, N. M.; Spencer-Phillips, P. T.N.; de Lacy Costello, Ben; Ewen, Richard. J.; Ratcliffe, Norman M.; Evans, P.; Spencer-Phillips, Peter T.N.; Gunson, H. E.

Authors

B. P.J. De Lacy Costello

R. J. Ewen

N. M. Ratcliffe

P. T.N. Spencer-Phillips

Richard. J. Ewen

Norman Ratcliffe Norman.Ratcliffe@uwe.ac.uk
Professor in Materials & Sensors Science

P. Evans

H. E. Gunson



Abstract

Bacteria were isolated from internal tissues of surface sterilized healthy tubers of Solanum tuberosum cv. Maris Piper (8 different isolates) and from tubers inoculated with Erwinia carotovora ssp. carotovora showing soft-rot symptoms (3 different isolates), and identified by fatty acid profiling. Bacillus polymyxa and an Arthrobacter sp. were isolated from both sources, E. carotovora only from the soft-rotted tubers. The volatile organic compounds (VOCs) generated by tubers inoculated with E. carotovora, B. polymyxa and the Arthrobacter sp. were identified. Inoculated tubers of cv. Maris Piper were incubated under controlled humidity (95% relative humidity) and temperature (10°C) to simulate typical storage conditions. B. polymyxa and Arthrobacter sp. did not cause symptoms, whilst E. carotovora caused limited soft-rot infections after 4weeks at the low temperatures typically associated with potatoes in storage. The VOCs released to the headspace around these tubers were collected using an adsorbent system and analysed by Gas Chromatography-Mass Spectrometry (GC-MS). Twenty-two volatiles unique to E. carotovora infection of potato tubers were found, including 10 alkanes, four alkenes, two aldehydes, one sulphide, one ketone, one alcohol, one aromatic, one acid and one heterocyclic compound. B. polymyxa generated three unique volatiles: N,N-dimethylformamide, 1-pentadecene and 1-hexadecane. Only one volatile, 2,3-dihydrofuran, was unique to the Arthrobacter infection. Production of volatile nitrogen species from E. carotovora-infected tubers increased with time, whereas none were detected in the headspace above uninfected tubers. Further analysis using a modified GC-MS method established that ammonia, trimethylamine and several volatile sulphides were evolved from tubers infected by E. carotovora. No specific volatile was useful as a marker associated with any of the three bacterial species but in the case of E. carotovora-infected potato tubers a significant increase in the volume of compounds evolved was clearly observed. The results are discussed in relation to the use of sensors to detect VOCs evolved from infected tubers in order to provide an early warning system for the control of soft rot in potato stores.

Journal Article Type Article
Publication Date Jun 1, 1999
Journal Plant Pathology
Print ISSN 0032-0862
Publisher Wiley
Peer Reviewed Peer Reviewed
Volume 48
Issue 3
Pages 345-351
DOI https://doi.org/10.1046/j.1365-3059.1999.00357.x
Keywords Erwinia, gas chromatography–mass spectrometry, potato tubers, soft rot, volatiles
Public URL https://uwe-repository.worktribe.com/output/1099019
Publisher URL http://dx.doi.org/10.1046/j.1365-3059.1999.00357.x