Skip to main content

Research Repository

Advanced Search

Atmospheric circulations and drought conditions in British catchments: Highlighting the role of the East Atlantic pattern

West, Harry; Quinn, Nevil; Horswel, Michael

Atmospheric circulations and drought conditions in British catchments: Highlighting the role of the East Atlantic pattern Thumbnail


Authors

Profile image of Harry West

Dr Harry West Harry.West@uwe.ac.uk
Senior Lecturer in Geography & Environmental Management

Michael Horswell Michael.Horswell@uwe.ac.uk
Senior Lecturer in GIS & Spatial Analysis



Abstract

Drought events are influenced by a combination of both climatic and local catchment characteristics. In Great Britain the North Atlantic Oscillation (NAO) has long been recognised as the leading mode of climate variability, and studies have also noted the role of the East Atlantic Pattern (EA) as a secondary mode. This study aimed to develop an understanding of the combined influence of the NAO and EA on rainfall distribution and magnitude and the variable nature of meteorological to hydrological drought propagation. Initially, this study explores correlations between teleconnection indices and standardised precipitation and streamflow indices for 291 catchments across Great Britain, before focusing on nine case study catchments for further analysis. For each case study catchment, we use quantile regression and an analysis of drought frequency to explore the combined influence of the NAO and EA on drought conditions.

Through a convergence of evidence from these analyses we make three observations. Firstly, in the winter months both the NAO and EA exert an influence on drought conditions, however there is spatial variability in the relative influence of the NAO and EA; the NAO has a stronger influence in the north-west, whilst the EA has a stronger influence in the southern and central regions. Secondly, in the summer months, less distinctive spatial differences were found, with higher probability of drought conditions under NAO+ phases, which however can be enhanced or moderated by the EA. Finally, as a result of catchment characteristics there is spatio-temporal variability in the propagation of meteorological to hydrological drought. Our findings suggest that by considering the NAO and EA in combination, we can better describe climate and drought variability. We conclude by noting the potential implications our study has on the role of monthly teleconnection forecasts in water management decision making in Great Britain, and acknowledge the current limitations associated with incorporating such understanding.

Presentation Conference Type Conference Paper (unpublished)
Conference Name European Geosciences Union General Assembly, 2023
Start Date Apr 24, 2023
End Date Apr 28, 2023
Deposit Date May 2, 2023
Publicly Available Date May 2, 2023
Keywords Atmospheric circulations; drought conditions
Public URL https://uwe-repository.worktribe.com/output/10732571
Related Public URLs https://egu23.eu/

Files





You might also like



Downloadable Citations