Igor Zverovich
Locally well-dominated and locally independent well-dominated graphs
Zverovich, Igor; Zverovich, Vadim
Abstract
In this article we present characterizations of locally well-dominated graphs and locally independent well-dominated graphs, and a sufficient condition for a graph to be k-locally independent well-dominated. Using these results we show that the irredundance number, the domination number and the independent domination number can be computed in polynomial time within several classes of graphs, e.g., the class of locally well-dominated graphs.
Journal Article Type | Article |
---|---|
Publication Date | Jun 1, 2003 |
Journal | Graphs and Combinatorics |
Print ISSN | 0911-0119 |
Electronic ISSN | 1435-5914 |
Publisher | Springer Verlag |
Peer Reviewed | Peer Reviewed |
Volume | 19 |
Issue | 2 |
Pages | 279-288 |
DOI | https://doi.org/10.1007/s00373-002-0507-7 |
Keywords | locally well-dominated graphs, irredundance number, domination number, independent domination number |
Public URL | https://uwe-repository.worktribe.com/output/1069922 |
Publisher URL | http://dx.doi.org/10.1007/s00373-002-0507-7 |
You might also like
Methods of Graph Decompositions
(2024)
Book
Modern Applications of Graph Theory
(2021)
Book
The likelihood of Braess' paradox in traffic networks
(2018)
Book Chapter
Extending indoor open street mapping environments to navigable 3D citygml building models: Emergency response assessment
(2018)
Presentation / Conference Contribution
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search