Skip to main content

Research Repository

Advanced Search

A generalised upper bound for the k-tuple domination number

Gagarin, Andrei; Zverovich, Vadim

A generalised upper bound for the k-tuple domination number Thumbnail


Authors

Andrei Gagarin



Abstract

In this paper, we provide an upper bound for the k-tuple domination number that generalises known upper bounds for the double and triple domination numbers. We prove that for any graph G,γ× k (G) ≤ frac(ln (δ - k + 2) + ln (∑m = 1k - 1 (k - m) over(d, ^)m + ε{lunate}) + 1, δ - k + 2) n,where γ× k (G) is the k-tuple domination number; δ is the minimal degree; over(d, ^)m is the m-degree of G; ε{lunate} = 1 if k = 1 or 2 and ε{lunate} = - d if k ≥ 3; d is the average degree. © 2007 Elsevier B.V. All rights reserved.

Journal Article Type Article
Publication Date Mar 28, 2008
Deposit Date Nov 12, 2010
Publicly Available Date Nov 15, 2016
Journal Discrete Mathematics
Print ISSN 0012-365X
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 308
Issue 5-6
Pages 880-885
DOI https://doi.org/10.1016/j.disc.2007.07.033
Keywords graph, domination
Public URL https://uwe-repository.worktribe.com/output/1018614
Publisher URL http://dx.doi.org/10.1016/j.disc.2007.07.033
Contract Date Nov 15, 2016

Files

A_Generalised_Upper_Bound_for_the_k-Tuple_Domination_Number_-_Revised.pdf (117 Kb)
PDF






You might also like



Downloadable Citations