Skip to main content

Research Repository

Advanced Search

Outputs (26)

Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications (2020)
Journal Article

Graphene‐based textiles show promise for next‐generation wearable electronic applications due to their advantages over metal‐based technologies. However, current reduced graphene oxide (rGO)‐based electronic textiles (e‐textiles) suffer from poor ele... Read More about Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications.

Screen-printed graphite nanoplate conductive ink for machine learning enabled wireless radiofrequency-identification sensors (2019)
Journal Article

In this study, we demonstrate sustainable conductive screen printing ink containing graphite nanoplates (GNPs) prepared by means of combining shear and ultrasonication exfoliation processes with the aid of mixed-solvent strategy of isopropanol (IPA)-... Read More about Screen-printed graphite nanoplate conductive ink for machine learning enabled wireless radiofrequency-identification sensors.

All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications (2019)
Journal Article

© 2019, The Author(s). Inkjet-printed wearable electronic textiles (e-textiles) are considered to be very promising due to excellent processing and environmental benefits offered by digital fabrication technique. Inkjet-printing of conductive metalli... Read More about All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications.

Engineering Graphene Flakes for Wearable Textile Sensors via Highly Scalable and Ultrafast Yarn Dyeing Technique (2019)
Journal Article

© 2019 American Chemical Society. Multifunctional wearable e-textiles have been a focus of much attention due to their great potential for healthcare, sportswear, fitness, space, and military applications. Among them, electroconductive textile yarn s... Read More about Engineering Graphene Flakes for Wearable Textile Sensors via Highly Scalable and Ultrafast Yarn Dyeing Technique.