Skip to main content

Research Repository

Advanced Search

All Outputs (19)

Highly sensitive and extremely durable wearable e-textiles of graphene/carbon nanotube hybrid for cardiorespiratory monitoring (2023)
Journal Article
Tan, S., Afroj, S., Li, D., Islam, M. R., Wu, J., Cai, G., …Zhao, Z. (2023). Highly sensitive and extremely durable wearable e-textiles of graphene/carbon nanotube hybrid for cardiorespiratory monitoring. iScience, 26(4), 106403. https://doi.org/10.1016/j.isci.2023.106403

Electroconductive textile yarns are of particular interest for their use as flexible and wearable sensors without compromising the properties and comfort of usual textiles. However, the detection of fine actions of the human body is quite challenging... Read More about Highly sensitive and extremely durable wearable e-textiles of graphene/carbon nanotube hybrid for cardiorespiratory monitoring.

Toward sustainable wearable electronic textiles (2022)
Journal Article
Dulal, M., Afroj, S., Ahn, J., Cho, Y., Carr, C., Kim, I. D., & Karim, N. (2023). Toward sustainable wearable electronic textiles. ACS Nano, 16(12), 19755–19788. https://doi.org/10.1021/acsnano.2c07723

Smart wearable electronic textiles (e-textiles) that can detect and differentiate multiple stimuli, while also collecting and storing the diverse array of data signals using highly innovative, multifunctional, and intelligent garments, are of great v... Read More about Toward sustainable wearable electronic textiles.

Highly scalable, sensitive and ultraflexible graphene‐based wearable e‐textiles sensor for bio‐signal detection (2022)
Journal Article
Tan, S., Islam, M. R., Li, H., Fernando, A., Afroj, S., & Karim, N. (2022). Highly scalable, sensitive and ultraflexible graphene‐based wearable e‐textiles sensor for bio‐signal detection. Advanced Sensor Research, 1(1), Article 2200010. https://doi.org/10.1002/adsr.202200010

Abstract: Graphene‐based wearable electronic textiles (e‐textiles) show promise for next‐generation personalized healthcare applications due to their non‐invasive nature. However, the poor performance, less comfort, and higher material cost limit the... Read More about Highly scalable, sensitive and ultraflexible graphene‐based wearable e‐textiles sensor for bio‐signal detection.

Mechanical and thermal properties of Graphene nanoplatelets-reinforced recycled polycarbonate composites (2022)
Journal Article
Wijerathne, D., Gong, Y., Afroj, S., Karim, N., & Abeykoon, C. (2023). Mechanical and thermal properties of Graphene nanoplatelets-reinforced recycled polycarbonate composites. International Journal of Lightweight Materials and Manufacture, 6(1), 117-128. https://doi.org/10.1016/j.ijlmm.2022.09.001

Nanocomposites have received significant interest in recent years, as they offer improved properties compared to conventional materials for various applications. Among many available nanofillers, graphene nanoplatelets (GNP) have shown promising resu... Read More about Mechanical and thermal properties of Graphene nanoplatelets-reinforced recycled polycarbonate composites.

Fully printed and multifunctional graphene-based wearable e-textiles for personalized healthcare applications (2022)
Journal Article
Islam, M. R., Afroj, S., Beach, C., Islam, M. H., Parraman, C., Abdelkader, A., …Karim, N. (2022). Fully printed and multifunctional graphene-based wearable e-textiles for personalized healthcare applications. iScience, 25(3), Article 103945. https://doi.org/10.1016/j.isci.2022.103945

Wearable e-textiles have gained huge tractions due to their potential for non-invasive health monitoring. However, manufacturing of multifunctional wearable e-textiles remains challenging, due to poor performance, comfortability, scalability, and cos... Read More about Fully printed and multifunctional graphene-based wearable e-textiles for personalized healthcare applications.

Graphene‐based technologies for tackling COVID‐19 and future pandemics (2021)
Journal Article
Afroj, S., Britnell, L., Hasan, T., Andreeva, D. V., Novoselov, K. S., & Karim, N. (2021). Graphene‐based technologies for tackling COVID‐19 and future pandemics. Advanced Functional Materials, 31(52), Article 2107407. https://doi.org/10.1002/adfm.202107407

The COVID-19 pandemic highlighted the need for rapid tools and technologies to combat highly infectious viruses. The excellent electrical, mechanical and other functional properties of graphene and graphene-like 2D materials (2DM) can be utilized to... Read More about Graphene‐based technologies for tackling COVID‐19 and future pandemics.

Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications (2020)
Journal Article

Graphene‐based textiles show promise for next‐generation wearable electronic applications due to their advantages over metal‐based technologies. However, current reduced graphene oxide (rGO)‐based electronic textiles (e‐textiles) suffer from poor ele... Read More about Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications.

Screen-printed graphite nanoplate conductive ink for machine learning enabled wireless radiofrequency-identification sensors (2019)
Journal Article

In this study, we demonstrate sustainable conductive screen printing ink containing graphite nanoplates (GNPs) prepared by means of combining shear and ultrasonication exfoliation processes with the aid of mixed-solvent strategy of isopropanol (IPA)-... Read More about Screen-printed graphite nanoplate conductive ink for machine learning enabled wireless radiofrequency-identification sensors.

All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications (2019)
Journal Article

© 2019, The Author(s). Inkjet-printed wearable electronic textiles (e-textiles) are considered to be very promising due to excellent processing and environmental benefits offered by digital fabrication technique. Inkjet-printing of conductive metalli... Read More about All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications.

Engineering Graphene Flakes for Wearable Textile Sensors via Highly Scalable and Ultrafast Yarn Dyeing Technique (2019)
Journal Article

© 2019 American Chemical Society. Multifunctional wearable e-textiles have been a focus of much attention due to their great potential for healthcare, sportswear, fitness, space, and military applications. Among them, electroconductive textile yarn s... Read More about Engineering Graphene Flakes for Wearable Textile Sensors via Highly Scalable and Ultrafast Yarn Dyeing Technique.

Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications (2017)
Journal Article

© 2017 IOP Publishing Ltd Printed graphene supercapacitors have the potential to empower tomorrow’s wearable electronics. We report a solid-state flexible supercapacitor device printed on textiles using graphene oxide ink and a screen-printing techni... Read More about Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications.