Skip to main content

Research Repository

Advanced Search

Vortex waves in a rotating superfluid

Barenghi, C. F.; Henderson, K. L.


C. F. Barenghi

K. L. Henderson


In a recent experiment, Finne et al. discovered an intrinsic condition for the onset of quantum turbulence in 3He-B, that q = α/(1 - αα) < 1.3, where α and αα are mutual friction parameters. The authors put forward a qualitative argument that q is the ratio of dissipative and inertial forces on the superfluid, so for q < 1 inertial forces should overcome the dissipative forces and cause turbulence. Thus 1/q would play, for a quantum fluid, the same role played in classical fluid dynamics by the Reynolds number (the ratio of inertial forces and dissipative forces in the Navier-Stokes equation). The aim of this work is to supplement this qualitative condition q = 1 with a quantitative calculation. By analysing both axisymmetric and non-axisymmetric modes of a continuum of vortices in a rotating superfluid, we find that in the long axial wavelength limit the condition q = 1 is the crossover between damped and propagating Kelvin waves; thus, for q > 1, perturbations on the vortices are unlikely to cause vortex reconnections and turbulence. Besides the relevance to the experiment of Finne et al., the spectrum of oscillations which we find is relevant to the study of torsional oscillations of a rotating superfluid and generalises to three dimensions the spectrum of Kelvin waves on an isolated vortex line.


Henderson, K. L., & Barenghi, C. F. (2004). Vortex waves in a rotating superfluid. EPL, 67(1), 56-62.

Journal Article Type Article
Publication Date Jul 1, 2004
Journal Europhysics Letters
Print ISSN 0295-5075
Publisher EPL Association
Peer Reviewed Not Peer Reviewed
Volume 67
Issue 1
Pages 56-62
Keywords vortex waves, rotating superfluid
Public URL
Publisher URL

Downloadable Citations