Skip to main content

Research Repository

Advanced Search

All Outputs (24)

3D printed components of microbial fuel cells: Towards monolithic microbial fuel cell fabrication using additive layer manufacturing (2016)
Journal Article

© 2016 The Authors For practical applications of the MFC technology, the design as well as the processes of manufacturing and assembly, should be optimised for the specific target use. Another burgeoning technology, additive manufacturing (3D printin... Read More about 3D printed components of microbial fuel cells: Towards monolithic microbial fuel cell fabrication using additive layer manufacturing.

The dawn of biodegradable robots (2016)
Journal Article
Winfield, J., Rossiter, J., & Ieropoulos, I. (2016). The dawn of biodegradable robots

Robotics is a field that is not normally associated with green technology or sustainability. Robots are generally constructed using materials that are non-biodegradable, toxic and expensive. These factors can limit the potential uses that an artifici... Read More about The dawn of biodegradable robots.

An iTRAQ characterisation of the role of TolC during electron transfer from Shewanella oneidensis MR-1 (2016)
Journal Article
Fowler, G. J., Pereira-Medrano, A. G., Jaffe, S., Pasternak, G., Pham, T. K., Ledezma, P., …Wright, P. C. (2016). An iTRAQ characterisation of the role of TolC during electron transfer from Shewanella oneidensis MR-1. Proteomics, 16(21), 2764-2775. https://doi.org/10.1002/pmic.201500538

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Anodophilic bacteria have the ability to generate electricity in microbial fuel cells (MFCs) by extracellular electron transfer to the anode. We investigated the anode-specific responses of Shewanel... Read More about An iTRAQ characterisation of the role of TolC during electron transfer from Shewanella oneidensis MR-1.

Carbon-based air-breathing cathodes for microbial fuel cells (2016)
Journal Article
Merino-Jimenez, I., Santoro, C., Rojas-Carbonell, S., Greenman, J., Ieropoulos, I., & Atanassov, P. (2016). Carbon-based air-breathing cathodes for microbial fuel cells. Catalysts, 6(9), 127. https://doi.org/10.3390/catal6090127

© 2016 by the authors; licensee MDPI, Basel, Switzerland. A comparison between different carbon-based gas-diffusion air-breathing cathodes for microbial fuel cells (MFCs) is presented in this work. A micro-porous layer (MPL) based on carbon black (CB... Read More about Carbon-based air-breathing cathodes for microbial fuel cells.

A review into the use of ceramics in microbial fuel cells (2016)
Journal Article
Winfield, J., Gajda, I., Greenman, J., & Ieropoulos, I. (2016). A review into the use of ceramics in microbial fuel cells. Bioresource Technology, 215, 296-303. https://doi.org/10.1016/j.biortech.2016.03.135

© 2016 The Authors. Microbial fuel cells (MFCs) offer great promise as a technology that can produce electricity whilst at the same time treat wastewater. Although significant progress has been made in recent years, the requirement for cheaper materi... Read More about A review into the use of ceramics in microbial fuel cells.

Microbial fuel cell – A novel self-powered wastewater electrolyser for electrocoagulation of heavy metals (2016)
Journal Article

© 2016 The Authors This paper describes the suitability of the Microbial Fuel Cell (MFC) for generation of electrical power with a simultaneous synthesis of active catholyte in the form of caustic solution. The active solution formed inside a terraco... Read More about Microbial fuel cell – A novel self-powered wastewater electrolyser for electrocoagulation of heavy metals.

Microalgae as substrate in low cost terracotta-based microbial fuel cells: Novel application of the catholyte produced (2016)
Journal Article

© 2016 Elsevier Ltd. In this work, the by-product generated during the operation of cylindrical MFCs, made out of terracotta material, is investigated as a feasible means of degrading live microalgae for the first time. In addition to the low cost ma... Read More about Microalgae as substrate in low cost terracotta-based microbial fuel cells: Novel application of the catholyte produced.

Electricity and disinfectant production from wastewater: Microbial Fuel Cell as a self-powered electrolyser (2016)
Journal Article

This study presents a simple and sustainable Microbial Fuel Cell as a standalone, self-powered reactor for in situ wastewater electrolysis, recovering nitrogen from wastewater. A process is proposed whereby the MFC electrical performance drives the e... Read More about Electricity and disinfectant production from wastewater: Microbial Fuel Cell as a self-powered electrolyser.

On hybrid circuits exploiting thermistive properties of slime mould (2016)
Journal Article
Walter, X. A., Horsfield, I., Mayne, R., Ieropoulos, I. A., & Adamatzky, A. (2016). On hybrid circuits exploiting thermistive properties of slime mould. Scientific Reports, 6(23924), https://doi.org/10.1038/srep23924

Slime mould Physarum polycephalum is a single cell visible by the unaided eye. Let the slime mould span two electrodes with a single protoplasmic tube: if the tube is heated to approximately ≈40 °C, the electrical resistance of the protoplasmic tube... Read More about On hybrid circuits exploiting thermistive properties of slime mould.

Microbial Fuel Cell-driven caustic potash production from wastewater for carbon sequestration (2016)
Journal Article
Gajda, I., Greenman, J., Melhuish, C., Santoro, C., & Ieropoulos, I. (2016). Microbial Fuel Cell-driven caustic potash production from wastewater for carbon sequestration. Bioresource Technology, 215, 285-289. https://doi.org/10.1016/j.biortech.2016.04.004

© 2016 The Authors. This work reports on the novel formation of caustic potash (KOH) directly on the MFC cathode locking carbon dioxide into potassium bicarbonate salt (kalicinite) while producing, instead of consuming electrical power. Using potassi... Read More about Microbial Fuel Cell-driven caustic potash production from wastewater for carbon sequestration.

From single MFC to cascade configuration: The relationship between size, hydraulic retention time and power density (2016)
Journal Article

© 2016 The Authors. Achieving useful electrical power production with the MFC technology requires a plurality of units. Therefore, the main objective of much of the MFC research is to increase the power density of each unit. Collectives of MFCs will... Read More about From single MFC to cascade configuration: The relationship between size, hydraulic retention time and power density.