P. J. Mason
On reynolds number and scaling effects in microchannel flows
Mason, P. J.; Yao, Jun; Yao, Yufeng; Patel, Mayur. K.
Authors
Dr Jun Yao Jun.Yao@uwe.ac.uk
Senior Lecturer Aerospace Themofluids
Yufeng Yao Yufeng.Yao@uwe.ac.uk
Professor in Aerospace Engineering
Mayur. K. Patel
Abstract
This paper presents a numerical study of the Reynolds number and scaling effects in microchannel flows. The configuration includes a rectangular, high-aspect ratio microchannel with heat sinks, similar to an experimental setup. Water at ambient temperature is used as a coolant fluid and the source of heating is introduced via electronic cartridges in the solids. Two channel heights, measuring 0.3 mm and 1 mm are considered at first. The Reynolds number varies in a range of 500-2200, based on the hydraulic diameter. Simulations are focused on the Reynolds number and channel height effects on the Nusselt number. It is found that the Reynolds number has noticeable influences on the local Nusselt number distributions, which are in agreement with other studies. The numerical predictions of the dimensionless temperature of the fluid agree fairly well with experimental measurements; however the dimensionless temperature of the solid does exhibit a significant discrepancy near the channel exit, similar to those reported by other researchers. The present study demonstrates that there is a significant scaling effect at small channel height, typically ≤0.3 mm, in agreement with experimental observations. This scaling effect has been confirmed by three additional simulations being carried out at channel heights of 0.24 mm, 0.14 mm and 0.1 mm, respectively. A correlation between the channel height and the normalized Nusselt number is thus proposed, which agrees well with results presented.
Journal Article Type | Article |
---|---|
Publication Date | Feb 1, 2007 |
Journal | EPJ Applied Physics |
Print ISSN | 1286-0042 |
Electronic ISSN | 1286-0050 |
Publisher | EDP Sciences |
Peer Reviewed | Peer Reviewed |
Volume | 37 |
Issue | 2 |
Pages | 229-235 |
DOI | https://doi.org/10.1051/epjap%3A2007010 |
Keywords | Reynolds number, scaling, microchannel, flows |
Public URL | https://uwe-repository.worktribe.com/output/1030084 |
Publisher URL | http://dx.doi.org/10.1051/epjap:2007010 |
You might also like
Drag reduction of lift-type vertical axis wind turbine with slit modified gurney flap
(2024)
Journal Article
Unsteady flow oscillations in a 3-D ventilated model room with convective heat transfer
(2022)
Journal Article
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search