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Glossary

Autonomy In robotics autonomy conventionally refers to the degree to which a robot is able to
make its own decisions about which actions to take next. Thus a fully autonomous robot would
be capable of carrying out its entire mission or function without human control or intervention.
A semi-autonomous robot would have a degree of autonomy but require some human supervision.

Behaviour-based control Behaviour-based control describes a class of robot control systems
characterised by a set of conceptually independent task achieving modules, or behaviours. All
task achieving modules are able to access the robot’s sensors and when a particular module
becomes active it is able to temporarily take control of the robot’s actuators [2].

Braitenburg vehicle In robotics a Braitenburg vehicle is a conceptual mobile robot in which
simple sensors are connected directly to drive wheels. Thus if, for instance, a front-left-side sensor
is connected to the right-side drive wheel and vice-versa, then if the sensors are light sensitive
the robot will automatically steer towards a light source [11].

Finite State Machine In the context of this article a finite state machine (FSM) is a model
of robot behaviour which has a fixed number of states. Each state represents a particular set of
actions or behaviours. The robot can be in only one of these states at any given instant in time
and transitions between states may be triggered by either external or internal events.
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Odometry Odometry refers to the technique of self-localisation in which a robot measures how
far it has travelled by, for instance, counting the revolutions of its wheels. Odometry suffers the
problem that wheel-slip leads to cumulative errors so odometric position estimates are generally
inaccurate and of limited value unless combined with other localisation techniques.

Robot In this article the terms robot and mobile robot are used interchangeably. A mobile
robot is a man-made device or vehicle capable of (1) sensing its environment and (2) purposefully
moving through and acting upon or within that environment. A robot may be fully autonomous,
semi-autonomous or tele-operated.

Swarm Intelligence The term swarm intelligence describes the purposeful collective be-
haviours observed in nature, most dramatically in social insects. Swarm intelligence is the study
of those collective behaviours, in both natural and artificial systems of multiple agents, and how
they emerge from the local interactions of the agents with each other and with their environment
[8, 19].

Tele-operation A robot is said to be tele-operated if it is remotely controlled by a human
operator.

1 Definition

Foraging robots are mobile robots capable of searching for and, when found, transporting objects
to one or more collection points. Foraging robots may be single robots operating individually, or
multiple robots operating collectively. Single foraging robots may be remotely tele-operated or
semi-autonomous; multiple foraging robots are more likely to be fully autonomous systems. In
robotics foraging is important for several reasons: firstly, it is a metaphor for a broad class of prob-
lems integrating exploration, navigation and object identification, manipulation and transport;
secondly, in multi-robot systems foraging is a canonical problem for the study of robot-robot co-
operation, and thirdly, many actual or potential real-world applications for robotics are instances
of foraging robots, for instance cleaning, harvesting, search and rescue, land-mine clearance or
planetary exploration.

2 Introduction

Foraging is a benchmark problem for robotics, especially for multi-robot systems. It is a powerful
benchmark problem for several reasons: (1) sophisticated foraging observed in social insects, re-
cently becoming well understood, provides both inspiration and system level models for artificial
systems. (2) Foraging is a complex task involving the coordination of several - each also difficult -
tasks including efficient exploration (searching) for food or prey, physical collection (harvesting)
of food or prey almost certainly requiring physical manipulation, transport of the food or prey,
homing or navigation whilst carrying the food or prey back to a nest site, and deposition of the
food item in the nest before returning to foraging. (3) Effective foraging requires cooperation
between individuals involving either communication to signal to others where food or prey may
be found (e.g. pheromone trails, or direction giving) and/or cooperative transport of food items
too large for a single individual to transport.

There are, at the time of writing, very few types of foraging robots successfully employed
in real-world applications. Most foraging robots are to be found in research laboratories or, if
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they are aimed at real-world applications, are at the stage of prototype or proof-of-concept. The
reason for this is that foraging is a complex task which requires a range of competencies to be
tightly integrated within the physical robot and, although the principles of robot foraging are now
becoming established, many of the sub-system technologies required for foraging robots remain
very challenging. In particular, sensing and situational awareness; power and energy autonomy;
actuation, locomotion and safe navigation in unknown physical environments and proof of safety
and dependability all remain difficult problems in robotics.

This article therefore focusses on describing and defining the principles of robot foraging. The
majority of examples will necessarily be of laboratory systems not aimed at solving real-world
applications but designed to model, illuminate and demonstrate those principles. The article
proceeds as follows. Section 3 describes an abstract model of robot foraging, using a finite state
machine (FSM) description to define the discrete sub-tasks, or states, that constitute foraging.
The FSM method will be used throughout this article. The section then develops a taxonomy
of robot foraging. Section 4 describes the essential design features that are a requirement of any
foraging robot, whether operating singly or in a multi-robot team, and the technologies currently
available to implement those features; the section then outlines a number of examples of single-
robot foraging, including robots that are commercially available. Section 5 then describes the
development and state-of-the-art in multi-robot (collective) foraging; strategies for cooperation
are described including information sharing, cooperative transport and division of labour (task
allocation), the section then reviews approaches to the mathematical modelling of multi-robot
foraging. The article concludes in section 6 with a discussion of future directions in robot foraging
and an outline of the technical challenges that remain to be solved.

3 An Abstract model of Robot Foraging

Foraging, by humans or animals, is the act of searching (widely) for and collecting (or capturing)
food for storage or consumption. Robot foraging is defined more broadly as searching for and
collecting any objects, then returning those objects to a collection point. Of course if the robot(s)
are searching for energy resources for themselves then robot foraging will have precisely the same
meaning as human or animal foraging. In their definitive review paper on cooperative mobile
robotics Cao et al state simply “In foraging, a group of robots must pick up objects scattered
in the environment” [14]. Østergaard et al define foraging as “a two-step repetitive process in
which (1) robots search a designated region of space for certain objects, and (2) once found these
objects are brought to a goal region using some form of navigation” [54].

Figure 1: Finite State Machine for Basic Foraging

Figure 1 shows a Finite State Machine (FSM) representation of a foraging robot (or robots).
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In the model the robot is in always in one of four states: searching, grabbing, homing or depositing.
Implied in this model is, firstly, that the environment or search space contains more than one of
the target objects; secondly, that there is a single collection point (hence this model is sometimes
referred to as central-place foraging), and thirdly, that the process continues indefinitely. The
four states are defined as follows.

1. Searching. In this state the robot is physically moving through the search space using
its sensors to locate and recognise the target items. At this level of abstraction we do
not need to state how the robot searches: it could, for instance, wander at random, or it
could employ a systematic strategy such as moving alternately left and right in a search
pattern. The fact that the robot has to search at all follows from the pragmatic real-world
assumptions that either the robot’s sensors are of short range and/or the items are hidden
(behind occluding obstacles for instance); in either event we must assume that the robot
cannot find items simply by staying in one place and scanning the whole environment with
its sensors. Object identification or recognition could require one of a wide range of sensors
and techniques. When the robot finds an item it changes state from searching to grabbing.
If the robot fails to find the target item then it remains in the searching state forever;
searching is therefore the ‘default’ state.

2. Grabbing. In this state the robot physically captures and grabs the item ready to transport
it back to the home region. Here we assume that the item is capable of being grabbed and
conveyed by a single robot (the case of larger items that require cooperative transport by
more than one robot will be covered later in this article). As soon as the item has been
grabbed the robot will change state to homing.

3. Homing. In this state the robot must move, with its collected object, to a home or nest
region. Homing clearly requires a number of stages, firstly, determination of the position
of the home region relative to where the robot is now, secondly, orientation toward that
position and, thirdly, navigation to the home region. Again there are a number of strategies
for homing: one would be to re-trace the robot’s path back to the home region using, for
instance, odometry or by following a marker trail; another would be to home in on a beacon
with a long range beacon sensor. When the robot has successfully reached the home region
it will change state to depositing.

4. Depositing. In this state the robot deposits or delivers the item in the home region, and
then immediately changes state to searching and hence resumes its search.

There are clearly numerous variations on this basic foraging model. Some are simplifications:
for instance if a robot is searching for one or a known fixed number of objects then the process
will not loop indefinitely. Real robots do not have infinite energy and so a model of practical
foraging would need to take account of energy management. However, many variations entail
either complexity within one or more of the four basic states (consider, for instance, objects that
actively evade capture - a predator-prey model of foraging), or complexity in the interaction or
cooperation between robots in multi-robot foraging. Thus the basic model stands as a powerful
top-level abstraction.

3.1 A Taxonomy of Robot Foraging

Oster and Wilson classify the foraging strategies of social insects into five types, summarised in
table 1 [53]. Hölldobler and Wilson describe a more comprehensive taxonomy of insect foraging
as a combination of strategies for (1) hunting, (2) retrieval and (3) defense [30]. However, since we
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will not be concerned in this article with defensive robot(s), then Oster and Wilson’s classification
is more than sufficient as a basis for consideration of robot foraging.

Type Description
I solitary insects find and retrieve prey singly
II as I except that solitary foragers signal the location

of food to other insects
III foragers depart the nest and follow ‘trunk trails’ be-

fore branching off to search unmarked terrain
IV as II except that a group of insects assaults or re-

trieves the prey en-masse
V multiple insects forage as groups

Table 1: Oster and Wilson’s classification of insect foraging

In robotics several taxonomies have been proposed for multi-robot systems. Dudek et al
define seven taxonomic axes: collective size; communications [range, topology and bandwidth];
collective reconfigurability; processing ability and collective composition [21]. Here collective
size may be: single robot, pair of robots, limited (in relation to the size of the environment) or
infinite (number of robots Nr >> 1); communications range may be: none (i.e. robots do not
communicate directly), near (robots have limited range communication) or infinite (any robot
may communicate with any other). Collective reconfigurability refers to spatial organisation and
may be: static (robots are in a fixed formation); coordinated (robots may coordinate to alter
their formation) or dynamic (spatial organisation may change arbitrarily). Processing ability
refers to the computational model of individuals, here Dudek et al make the distinction between
the general purpose computer which most practical robots will have, or simpler models including
the finite state machine. Collective composition may be: identical (robots are both physically
and functionally identical), homogenous or heterogeneous. Dudek et al makes the distinction —
highly relevant to foraging robots — between tasks that are traditionally single-agent, tasks that
are traditionally multi-agent, tasks that require multiple agents, or tasks that may benefit from
multiple agents.

In contrast to Dudek’s taxonomy which is based upon the characteristics of the robot(s),
Balch characterises tasks and rewards [3]. Balch’s task taxonomy is particularly relevant to robot
foraging because it leads naturally to the definition of performance metrics. Balch articulates
six task axes: time; criteria; subject of action; resource limits; group movement and platform
capabilities. Time and criteria are linked; time may be: limited (task performance is determined
by how much can be achieved in the fixed time); minimum (task performance is measured as
time taken to complete the task); unlimited time, or synchronised (robots must synchronise their
actions). Criteria refers to how performance is optimised over time; it may be finite (performance
is summed over a finite number of time steps); average (performance is averaged over all time) or
discounted (future performance is discounted geometrically). Subject of action may be: object-
or robot-based, depending upon whether the movement or positioning of objects or robots,
respectively, is important. Balch’s fourth criterion is again relevant to foraging: resource limits
which may be: limited (external resources, i.e. objects to be foraged, are limited); energy
(energy consumption must be minimised); internally competitive (one robot’s success reduces
the likelihood of success of another), or externally competitive (if, for instance, one robot team
competes against another). See also [24] for a formal analysis and taxonomy of task allocation.

Østergaard et al [54] develop a simple taxonomy of foraging by defining eight characteristics
each of which has two values:
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1. number of robots: single or multiple;

2. number of sinks (collection points for foraged items): single or multiple;

3. number of source areas (of objects to be collected): single or multiple;

4. search space: unbounded or constrained;

5. number of types of object to be collected: single or multiple;

6. object placement: in fixed areas or randomly scattered;

7. robots: homogeneous or heterogeneous and

8. communication: none or with.

This taxonomy maps more closely (but not fully) onto the insect foraging taxonomy of table 1,
but fails to capture task performance criteria, nor does it specify the strategy for either searching
for, physically collecting or retrieving objects. Tables 2 and 3 propose a more comprehensive
taxonomy for robot foraging that incorporates the robot-centric and task/performance oriented
features of Dudek et al and Balch, respectively, with the environmental features of Østergaard
et al, whilst mapping onto the insect foraging classification of Oster and Wilson. The four major
axes are Environment, Robot(s), Performance and Strategy. Each major axis has several minor
axes and each of these can take the values enumerated in the third column of tables 2 and 3. The
majority of the values are self-explanatory, those that are not are annotated. Table 3 suggests a
mapping of Oster and Wilson’s classification onto robot foraging strategies.

Following Balch [3], we can formalise successful object collection and retrieval as follows:

F (Oi, t) =

{

1 if object Oi is in a sink at time t
0 otherwise

(1)

If the foraging task is performance time limited (Performance time = fixed) and the objective is
to maximise the number of objects foraged within fixed time T, then we may define a performance
metric for the number of objects collected in time T,

P =

No
∑

i=1

F (Oi, t0 + T ) (2)

where No is the number of objects available for collection and t0 is the start time. A metric for
the number of objects foraged per second is clearly, Pt = P/T . P as defined here is independent
of the number of robots. In order to measure the performance improvement of multi-robot
foraging, for example the benefit gained by search or homing with trail following, recruitment
or coordination (assuming the task can be completed by a single robot, grabbing = single and
transport = single), then we may define the performance of a single robot Ps as defined in
equation 2 and use this a baseline for the normalised performance Pm of a multi-robot system,

Pm =
P

Nr

(3)

where Nr is the total number of robots. The efficiency of multi-robot foraging is then the ratio
Pm/Ps.
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Major Axis Minor Axis Value Notes
Environment search space unbounded

constrained
source areas single limited fixed number of objects

single unlimited objects ‘re-grow’
multiple

sinks single home, nest or collection point
multiple

object types single static one type of static object, food or ‘prey’
multiple static
single active one type of prey which evades capture

object placement fixed known locations
uniform distribution
clustered

Robot(s) number single
multiple

type homogeneous
heterogeneous

object sensing limited short-range sensing
unlimited unlimited-range sensing

localisation none
relative
absolute

communications none
near
infinite

power limited robot can run out of energy
forage robot forages for own energy
unlimited

Table 2: A taxonomy of robot foraging, part A
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Major Axis Minor Axis Value Notes
Performance time fixed objects foraged per second

minimum minimise time to forage
unlimited

energy fixed objects foraged per Joule
minimum minimise energy used
unlimited

Strategy search random wander
geometrical pattern
trail following type III
follow other robots
in teams type V

grabbing single
cooperative type IV

transport single
cooperative type IV

homing self-navigation
home on beacon
follow trail

recruitment none type I
direct type II
indirect

coordination none type I
self-organised types II-V
master slave
central control

Table 3: A taxonomy of robot foraging, part B

8



Consider now that we wish instead to minimise the energy cost of foraging (Performance en-
ergy = minimum). If the energy cost of foraging object i is Ei, then we may define a performance
metric for the number of objects foraged per Joule of energy,

Pe =
No

∑No

i=1
Ei

(4)

then seek the foraging strategy that achieves the highest value for Pe.

4 Single Robot Foraging

The design of any foraging robot, whether operating alone or as part of a multi-robot team,
will necessarily follow a similar basic pattern. The robot will require one or more sensors, with
which it can both sense its environment for safe navigation and detect the objects or food-items
it seeks; actuators for both locomotion through the environment and for physically collecting,
holding then depositing its prey, and a control system to provide the robot with — at the very
least — a set of basic reflex behaviours. Since robots are machines that perform work, which
requires energy, then power management is important; if, for instance, the robot is foraging
for its own energy then balancing its energy needs with the energy cost of foraging is clearly
critical. Normally, a communication transceiver is also a requirement, either to allow remote
tele-operation or monitoring or, in the case of multi-robot collective foraging, for robot-robot
communications. A foraging robot is therefore a complex set of interconnected sub-systems and,
although its system-level structure may follow a standard pattern, the shape and form of the
robot will vary significantly depending upon its intended environment and application.

This section will review approaches and techniques for sensing, actuation, communications
and control, within the context of robot foraging and with reference to research which focusses
on advancing specific capabilities within each of these domains of interest. Then a number of
examples of single robot foraging are given, including real-world applications.

4.1 Sensing

Obstacle avoidance and path planning There are many sensors available to designers of
foraging robots and a comprehensive review can be found in [22]. A foraging robot will typically
require short or medium range proximity sensors for obstacle avoidance, such as infra-red return-
signal-intensity or ultrasonic- or laser-based time-of-flight systems. The most versatile and widely
used device is the 2D or 3D scanning laser range finder which can provide the robot with a set
of radial distance measurements and hence allow the robot to plan a safe path through obstacles
[64].

Localisation All but the simplest foraging robots will also require sensors for localisation, that
is to enable the robot to estimate its own position in the environment. If external reference signals
are available such as fixed beacons so that a robot can use radio trilateration to fix its position
relative to those beacons, or a satellite navigation system such as the Global Positioning System
(GPS), then localisation is relatively straightforward. If no external infrastructure is available
then a robot will typically make use of several sensors including odometry, an inertial measure-
ment unit (IMU) and a magnetic compass, often combining the data from all of these sensors,
including laser scanning data, to form an estimate of its position. Simultaneous Localisation and
Mapping (SLAM) is a well-known stochastic approach which typically employs Kalman filters to
allow a robot (or a team of robots) to both fix their position relative to observed landmarks and
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map those landmarks with increasing confidence as the robot(s) move through the environment
[18].

Object detection Vision is often the sensor of choice for object detection in laboratory ex-
periments in foraging robots. If, for instance, the object of interest has a distinct colour which
stands out in the environment then standard image processing techniques can be used to detect
then steer towards the object [31]. However, if the environment is visually cluttered, unknown
or poorly illuminated then vision becomes problematical. Alternative approaches to object de-
tection include, for instance, artificial odour sensors: Hayes et al demonstrated a multi-robot
approach to localisation of an odour source [28]. An artificial whisker modelled on the Rat
mystacial vibrissae has recently been demonstrated [56], such a sensor could be of particular
value in dusty or smoky environments.

4.2 Actuation

Locomotion The means of physical locomotion for a foraging robot can take many forms and
clearly depends on the environment in which the robot is intended to operate. Ground robots
typically use wheels, tracks or legs, although wheels are predominantly employed in proof-of-
concept or demonstrator foraging robots. An introduction to the technology of robot mobility
can be found in [63]. Flying robots (unmanned air vehicles - UAVs) are either fixed- or rotary-
wing; for recent examples of work towards teams of flying robots see [13] (fixed-wing) and [51]
(rotary-wing). Underwater robots (unmanned underwater vehicles - UUVs) generally use the
same principles for propulsion as submersible remotely operated vehicles (ROVs), [70]. Whatever
the means of locomotion important principles which apply to all foraging robots are that robot(s)
must be able to (1) move with sufficient stability for the object detection sensors to be able to
operate effectively and (2) position themselves with sufficient precision and stability to allow the
object to be physically grabbed. These factors place high demands on a foraging robot’s physical
locomotion system, especially if the robot is required to operate in soft or unstable terrain.

Object manipulation The manipulation required of a foraging robot is clearly dependent
on the form of the object and the way the object presents itself to the robot as it approaches.
The majority of foraging experiments or demonstrations have simplified the problem of object
manipulation by using objects that are, for instance, always the right way up (metal pucks
or wooden sticks protruding from holes) so that a simple gripper mounted on the front of the
robot is able to grasp the objects with reasonable reliability. However, in general a foraging
robot would require the versatility of a robot arm (multi-axis manipulator) and general purpose
gripper (hand) such that — with appropriate vision sensing — the robot can pick up the object
regardless of its shape and orientation. This technology is well developed in tele-operated robots
used for remote inspection and handling of dangerous materials or devices, see [66, 62].

4.3 Communications

Communications is of fundamental importance to robot foraging. Only in the simplest case of a
single robot foraging autonomously would communications be unnecessary. For single robot tele-
operation radio communication between operator and robot is clearly an essential requirement. In
multi-robot foraging robot-robot communication is frequently employed to improve multi-robot
performance; all six axes of strategy in the taxonomy of table 3: search, grabbing, transport,
homing, recruitment and coordination may require some form of robot-robot communication.
Arai et al point out the important distinction between explicit and implicit communication [1].
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Explicit communication Explicit communication applies when robots need to exchange in-
formation directly. The physical medium of communication is frequently (but not necessarily)
radio, and wireless local area network (WLAN) technology is highly appropriate to terrestrial
multi-robot systems, not least because a spatially distributed team of wireless networked robots
naturally forms an ad-hoc network, which — providing the team maintains sufficient connectivity
— allows any robot to communicate with any other via multiple hops, [69]. A method for linking
wireless connectivity to locomotion in order to maintain connectivity is described in [52]; work
that falls within the framework of situated communications proposed by Støy. Situated commu-
nication pertains when “both the physical properties of the signal that transfers the message and
the content of the message contribute to its meaning” [65].

Implicit communication Implicit communication applies when robots communicate not di-
rectly but via the environment, also known as stigmergic communications. Thus one robot
changes the environment and another senses the change and alters its behaviour accordingly.
Beckers et al, in one of the first demonstrations of self-organised multi-robot puck clustering,
show that stigmergic communication alone can give rise to the desired overall group behaviour
[6]. However, in their study on multi-robot communication, Balch and Arkin show that while
stigmergy may be sufficient to complete the task, direct communication can increase efficiency
[4]. Trail following, in which a robot follows a short-lived trail left by other(s), is an example of
implicit communication [59, 60].

4.4 Control

From a control perspective the simplicity of the finite state machine for basic foraging, in figure 1,
is deceptive. In principle, a very simple foraging robot could be built with basic hard-wired reflex
actions such as obstacle avoidance and taxis toward the attractor object; such a robot is known
as a Braitenberg vehicle, after his landmark work [11]. However, even simple foraging requires
a complex set of competencies that would be impractical to implement except as a program on
one or more embedded computers (microprocessors) in the robot. There are clearly many ways
of building such a control program, but in the field of mobile robotics a number of robot control
architectures have been defined. Such architectures mean that robot designers can approach the
design of the control system in a principled way.

A widely adopted robot control architecture, first proposed and developed by Brooks, is the
layered subsumption architecture known generically as behaviour-based control [12]. Behaviour-
based control is particularly relevant to foraging robots since, like foraging, it is biologically
inspired. In particular, as Arkin describes in [2], the principles of behaviour-based control
draw upon ethology — the study of animal behaviour in the natural environment. Essentially
behaviour-based control replaces the functional modularity of earlier robot control architectures
with task achieving modules, or behaviours. Matarić uses Brooks’ behaviour language (BL) to
implement a set of basic behaviours for multi-robot foraging, as described in more detail below
in section 5, [46, 47]. Refer to [14] for a comprehensive review of group control architectures for
multi-robot systems.

Figure 2 shows the subsumption architecture for basic foraging (from figure 1), with the
addition of avoidance for safely avoiding obstacles (including other robots in the case of multi-
robot foraging). Each behaviour runs in parallel and, when activated suppresses the output of
the layer(s) below to take control of the robot’s actuators.
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Figure 2: Subsumption control architecture for basic foraging

4.5 Examples of Single Robot Foraging

4.5.1 A Soda-can collecting Robot

Possibly the first demonstration of autonomous single-robot foraging is Connell’s soda-can col-
lecting robot Herbert, [15]. Herbert’s task was to wander safely through an office environment
while searching for empty soda-cans; upon finding a soda-can Herbert would need to carefully
grab the can with its hand and 2 degrees-of-freedom arm, then return to a waste basket to deposit
it before resuming the search. Herbert therefore represents an implementation of exactly the ba-
sic foraging model of figures 1 and 2. However, two of the behaviours are not so straightforward.
Both searching and homing require the robot to be able to navigate safely through a cluttered
and unstructured ‘real-world’ environment, while grabbing is equally complex given the precision
required to safely reach and grab the soda-can. Thus Herbert’s control system required around
40 low-level behaviours in order to realise foraging.

4.5.2 A Robot Predator

Figure 3: The Slugbot: a proof-of-concept robot predator
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Arguably the first attempt to build a robot capable of actively predating for its own energy
is the Slugbot of Holland and co-workers, [33, 26]. The Slugbot (figure 3) solved the difficult
problems of finding and collecting slugs in an energy efficient manner by means of, firstly, a
long but light articulated arm which allows the robot to scan (in spiral fashion) a large area of
ground for slugs without having to physically move the whole robot (which is much more costly
in energy). Secondly, the special purpose gripper at the end of the arm is equipped with a camera
which, by means of reflected red light and appropriate vision processing, is able to reliably detect
and collect the slugs. An evolution of the Slugbot, the Ecobot, uses microbial fuel cell (MFC)
technology to generate electrical energy directly from unrefined biomass [49].

4.5.3 Real-world foraging robots

Autonomous crop harvesting is an obvious real-world application of single-robot foraging. The
Demeter system [57] has successfully demonstrated automated harvesting of cereal crops. Deme-
ter uses a combination of GPS for coarse navigation and vision to sense the crop-line and hence
fine-tune the harvester’s steering to achieve a straight and even cut of the crop. The vision pro-
cessing is challenging because it has to cope with a wide range of lighting conditions including
— in conditions of bright sunlight — shadows cast onto the crop line by the harvester itself.
In the field of automated agriculture a number of proof-of-concept robot harvesters have been
demonstrated for cucumber, tomato and other fruits [34, 35].

Robot lawn mowers and vacuum cleaners can similarly be regarded as simple forms of foraging
robot and are notable because they are the only form of autonomous foraging robot in commercial
production; in both cases the search task is simple because the grass, or dirt are not discrete
objects to be found. The search problem for robot lawn movers and vacuum cleaners thus
becomes the problem of energy efficient strategies for (1) safely covering the whole search space
while avoiding obstacles and (2) homing and docking to a re-charging station. Robot lawn
mowers typically require a wire to be installed at the perimeter of the lawn, thus delimiting the
robot’s working area, see [29] for a survey of commercial robot lawn mowers. A short account of
the development of a vacuum cleaning robot is given in [58].

Although technically an off-world application, the planetary rover may be regarded as an
instance of single-robot foraging in which the objects of interest (geological samples) are collected
and analysed within the robot. Autonomous sample-return robots would be true foragers [61].
The proof-of-concept robot astrobiologist Zoë forages - in effect - for evidence of life [67].

5 Multi-robot (collective) Foraging

Foraging is clearly a task that lends itself to multi-robot systems and, even if the task can be
accomplished by a single robot, foraging should — with careful design of strategies for cooperation
— benefit from multiple robots. Swarm intelligence is the study of natural and artificial systems
of multiple agents in which there is no centralised or hierarchical command or control. Instead,
global swarm behaviours emerge as a result of local interactions between the agents and each
other, and between agents and the environment, [8]. Swarm robotics is concerned with the
design of artificial robot swarms based upon the principles of swarm intelligence, thus control
is completely distributed and robots, typically, must choose actions on the basis only of local
sensing and communications, [7, 16]. Swarm robotics is thus a sub-set of multi-robot systems
and, in the taxonomy of table 3 the strategy: coordination = self-organised.

Foraging is therefore a benchmark problem within swarm robotics, not least because of the
strong cross-over between the study of self-organisation in social insects and their artificial coun-
terparts within swarm intelligence [19]. This section will therefore focus on examples of multi-
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robot foraging from within the field of swarm robotics. Three strategies for cooperation will
be outlined: information sharing, physical cooperation and division of labour. The section will
conclude with an outline of the problem of mathematical modelling of swarms of foraging robots.

5.1 Without cooperation

Balch and co-workers describe the winners of the ‘Office Cleanup Event’ of the 1994 AAAI
Mobile Robot Competition: a multi-robot trash-collecting team [5]. The robots were equipped
with a vision system for recognition and distance estimation of trash items (primarily soda cans)
and differentiation between trash items, wastebaskets and other robots. The robots did not
communicate, but employed a collective strategy in which robots generate a strong repulsive
force if they see each other while searching, and a weaker (but sufficient for avoidance) repulsive
force while in other states; this had the effect of causing the robots to spread-out and hence
search the environment more efficiently. Interestingly, Balch et al. found that the high density
of trash in the competition favoured a ‘sit-and-spin’ strategy to scan for trash items rather than
the random wander approach of the original design. The FSM was essentially the same schema
as shown in figure 1 except that since there could be a number of wastebaskets at unknown
locations then ‘homing’ becomes ‘search for nearest wastebasket’.

5.2 Strategies for cooperation

5.2.1 Information sharing

Figure 4: Finite State Machine for multi-robot foraging with recruitment - adapted from [47]

Matarić and Marjanovic provide what is believed to be the first description of a multi-robot
foraging experiment using real (laboratory) robots in which there is no centralised control [47].
They describe a system of 20 identical 12” 4-wheeled robots, equipped with: a two-pronged
forklift for picking up, carrying and stacking metal pucks; proximity and bump sensors; radio
transceivers for data communication and a sonar-based global positioning system. Matarić and
Marjanovic extend the basic five state foraging model (wandering, grabbing, homing, dropping
and avoiding), to introduce information sharing as follows. If a robot finds a puck it will grab it
but also broadcast a radio message to tell other robots it has found a puck. Meanwhile, if another

14



robot in the locale hears this message it will first enter state tracking to home in on the source of
the message, then state searching - a more localised form of wandering. The robot will return to
wandering if it finds no puck within some time out period. Furthermore, while in state tracking
a robot will also transmit a radio signal. If nearby robots hear this signal they will switch from
wandering into following to pursue the tracking robot. Thus the tracking robot actively recruits
additional robots as it seeks the original successful robot (a form of secondary swarming, [48]);
when the tracking robot switches to searching its recruits will do the same. Figure 4 shows a
simplified FSM. Within the taxonomy of table 3 Strategy : recruitment = direct and indirect.

5.2.2 Physical cooperation

Figure 5: Cooperative grabbing: Khephera robots engaged in collective stick-pulling. With kind
permission of A. Martinoli.

cooperative grabbing Consider the case of multi-robot foraging in which the object to be
collected cannot be grabbed by a single robot working alone, in table 3 this is Strategy: grabbing
= cooperative. Ijspeert et al describe an experiment in collaborative stick-pulling in which two
robots must work together to pull a stick out of a hole [32, 44]. Each Khephera robot is equipped
with a gripper capable of grabbing and lifting the stick, but the hole containing the stick is too
deep for one robot to be able to pull the stick out alone; one robot must pull the stick half-way
then wait for another robot to grab the stick and lift it clear of the hole, see figure 5. Ijspeert
and co-workers describe an elegant minimalist strategy which requires no direct communication
between robots. If one robot finds a stick it will lift it and wait. If another finds the same stick
it will also lift it, on sensing the force on the stick from the second robot the first robot will let
go, hence allowing the second to complete the operation.

cooperative transport Now consider the the situation in which the object to be collected
is too large to be transported by a single robot, in table 3 Strategy: transport = cooperative.
Parker describes the ALLIANCE group control architecture applied to an example of cooperative
box-pushing by two robots [55].

Arguably the most accomplished demonstration of cooperative multi-robot foraging to date
is within the swarm-bot project of Dorigo and co-workers [20]. The s-bot is a modular robot
equipped with both a gripper and a gripping ring, which allows one robot to grip another [50].
Importantly, the robot is able to rotate its wheelbase independently of the gripping ring so that
robots can grip each other at any arbitrary point on the circumference of the grip ring but then
rotate and align their wheels in order to be able to move as a single unit (a swarm-bot). Großet
al describe cooperative transport which uses visual signalling [27]. s-bots are attracted to the
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Figure 6: Cooperative transport by s-bots. (Left) s-bots approach the attractor object, (middle)
s-bots start to grab the object, (right) s-bots collectively drag the object toward a beacon. With
kind permission of M. Dorigo.

(large) object to be collected by its ring of red LEDs. The s-bot’s LEDs are blue, but when an
s-bot finds and grabs the attractor object it switches its LEDs to red. This increases the red
light intensity to attract further s-bots which may grab either the object, or arbitrarily a robot
already holding the object. The s-bots are then able to align and collectively move the object.

5.2.3 Division of labour

In multi-robot foraging it is well know that overall performance (measured, for instance, as the
number of objects foraged per robot in a given time interval), does not increase monotonically
with increasing team size because of interference between robots (overcrowding), [4, 25, 38].
Division of labour in ant colonies has been well studied and in particular a response threshold
model is described in [9] and [10]; in essence a threshold model means that an individual will
engage in a task when the level of some task-associated stimulus exceeds its threshold.

For threshold-based multi-robot foraging with division of labour figure 7 shows a generalised
finite state machine for each robot. In this foraging model the robot will not search endlessly. If
the robot fails to find a food-item because, for instance, its searching time exceeds a maximum
search time threshold Ts, or its energy level falls below a minimum energy threshold, then it will
abandon its search and return home without food, shown as failure. Conversely success means
food was found, grabbed and deposited. Note, however, that a robot might see a food-item but
fail to grab it because, for instance, of competition with another robot for the same food-item.
The robot now also has a resting state during which time it remains in the nest conserving
energy. The robot will stop resting and leave home which might be according to some threshold
criterion, such as its resting time exceeding the maximum rest time threshold Tr, or the overall
nest energy falling below a given threshold.

Let us consider the special case of multi-robot foraging in which robots are foraging for their
own energy. For an individual robot foraging costs energy, whereas resting conserves energy.
We can formally express this as follows. Each robot consumes energy at A units per second
while searching or retrieving and B units per second while resting, where A > B. Each discrete
food item collected by a robot provides C units of energy to the swarm. The average food item
retrieval time, is a function of the number of foraging robots x, and the density of food items in
the environment, ρ, thus t = f(x, ρ).

If there are N robots in the swarm, Ec is the energy consumed and Er the energy retrieved,
per second, by the swarm then

Ec = Ax + B(N − x) (5)
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Figure 7: Finite State Machine for Foraging with Division of Labour

Er = Cx/t =
Cx

f(x, ρ)
(6)

The average energy income to the swarm, per second, is clearly the difference between the energy
retrieved and the energy consumed,

E = Er − Ec = (
C

f(x, ρ)
− (A − B))x − BN (7)

Equation 7 shows that maximising the energy income to the swarm requires either increasing
the number of foragers x or decreasing the average retrieval time f(x, ρ). However, if we assume
that the density of robots in the foraging area is high enough that interference between robots
will occur then, for constant ρ, increasing x will increase f(x, ρ). Therefore, for a given food
density ρ there must be an optimal number of foragers x∗.

Krieger ad Billeter adopt a threshold-based approach to the allocation of robots to either
foraging or resting; in their scheme each robot is allocated a fixed but randomly chosen activa-
tion threshold [36]. While waiting in the nest each robot listens to a periodic radio broadcast
indicating the nest-energy level E; when the nest-energy level falls below the robot’s personal
activation threshold then it leaves the nest and searches for food. It will continue to search until
either its search is successful, or it runs out of energy and returns home; if its search is successful
and it finds another food-item the robot will record its position (using odometry). On returning
home the robot will radio its energy consumption thus allowing the nest to update its overall net
energy. Krieger and Billeter show that team sizes of 3 or 6 robots perform better than 1 robot
foraging alone, but larger teams of 9 or 12 robots perform less well. Additionally, they test a
recruitment mechanism in which a robot signals to another robot waiting in the nest to follow
it to the food source, in tandem. Krieger’s approach is, strictly speaking, not fully distributed
in that the nest is continuously tracking the average energy income E; the nest is — in effect —
acting as a central coordinator.

Based upon the work of [17] on individual adaptation and division of labour in ants, Labella
et al describe a fully distributed approach that allows the swarm to self-organise to automatically
find the optimal value x∗ [37]. They propose a simple adaptive mechanism to change the ratio of
foragers to resters by adjusting the probability of leaving home based upon successful retrieval
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of food. With reference to figure 7 the mechanism works as follows. Each robot will leave home,
i.e. change state from resting to searching, with probability Pl. Each time the robot makes the
success transition from deposit to resting, it increments its Pl value by a constant ∆ multiplied
by the number of consecutive successes, up to a maximum value Pmax. Conversely, if the robot’s
searching time is up, the transition failure in figure 7, it will decrement its Pl by ∆ times the
number of consecutive failures, down to minimum Pmin. Interestingly, trials with laboratory
robots show that the same robots self-select as foragers or resters — the algorithm exploits
minor mechanical differences that mean that some robots are better suited as foragers.

Recently Liu et al have extended this fully distributed approach by introducing two additional
adaptation rules [43]. As in the case of Labella et al individual robots use internal cues (successful
object retrieval), but Liu adds environmental cues (collisions with team mates while searching),
and social cues (team mate success in object retrieval), to dynamically vary the time spent
foraging or resting. Furthermore, Liu investigates the performance of a number of different
adaptation strategies based on combinations of these three cues. The three cues increment
or decrement the searching time and resting time thresholds Ts and Tr as follows (note that
adjusting Tr is equivalent to changing the probability of leaving the nest Pl):

1. Internal cues. If a robot successfully finds food it will reduce its own rest time Tr; conversely
if the robot fails to find food it will increase its own rest time Tr.

2. Environment cues. If a robot collides with another robot while searching, it will reduce its
Ts and increase its Tr times.

3. Social cues. When a robot returns to the nest it will communicate its food retrieval success
or failure to the other robots in the nest. A successful retrieval will cause the other robots
in the nest to increase their Ts and reduce their Tr times. Conversely failure will cause the
other robots in the nest to reduce their Ts and increase their Tr times.

In order to evaluate the relative effect of these cues three different strategies are tested, against
a baseline strategy of no cooperation. The strategy/cue combinations are detailed in table 4.

internal cues social cues environment cues
S1 (baseline) × × ×

S2 X × ×

S3 X X ×

S4 X X X

Table 4: Foraging swarm strategy - cue combinations

Figures 8 and 9, from [43], show the number of active foragers and the instantaneous net
swarm energy, respectively, for a swarm of eight robots. In both plots the food density in the
environment is changed at time t = 5000 and again at time t = 10000 seconds. Figure 8 shows the
swarm’s ability to automatically adapt the number of active foragers in response to each of the
step changes in food density. The baseline strategy S1 shows of course that all eight robots are
actively foraging continuously; S2 − S4 however require fewer active foragers and strategies with
social and environmental cues, S3 and S4, clearly show the best performance. Notice, firstly that
the additional of social cues — communication between robots — significantly improves the rate
at which the system can adapt the ratio of foragers to resters and, secondly, that the addition of
environmental cues — collisions with other robots — brings only a marginal improvement. The
rates of change of net swarm energy in figure 9 tell a similar story. Interestingly, however, we see
very similar gradients for S2 − S4 when the food density is high (on the RHS of the plot), but
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Figure 9: Instantaneous net energy E of a foraging swarm with self-organised division of labour.
S1 is the baseline (no cooperation strategy); S2, S3 and S4 are three different cooperation
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when the food density is medium or poor the rate of increase in net energy of strategies S3 and
S4 is significantly better than S2. This result interestingly suggests that foraging robots benefit
more from cooperation when food is scarce, than when food is plentiful.

5.3 Mathematical modelling

A multi-robot system of foraging robots is typically a stochastic non-linear dynamical system
and therefore challenging to mathematically model, but without such models any claims about
the correctness of foraging algorithms are weak. Experiments in computer simulation or with
real-robots (which provide in effect an ‘embodied’ simulation) allow limited exploration of the
parameter space and can at best only provide weak inductive proof of correctness. Mathematical
models on the other hand, allow analysis of the whole parameter space and discovery of optimal
parameters. Ultimately, in real-world applications, validation of a foraging robot system for safety
and dependability will require a range of formal approaches including mathematical modelling.

Martinoli and coworkers proposed a microscopic approach to study collective behaviour of
a swarm of robots engaged in cluster aggregation [45] and collaborative stick-pulling [32], in
which a robot’s interactions with other robots and the environment are modelled as a series of
stochastic events, with probabilities determined by simple geometric considerations and system-
atic experiments with one or two real robots.

Lerman, Martinoli and co-workers have also developed the macroscopic approach, as widely
used in physics, chemistry, biology and the social sciences, to directly describe the collective
behaviour of the robotic swarm. A class of macroscopic models have been used to study the
effect of interference in a swarm of foraging robots [38] and collaborative stick-pulling [39, 44].
A review of macroscopic models is given in [41]. More recently, Lerman et al [40] successfully
expanded the macroscopic probabilistic model to study dynamic task allocation in a group of
robots engaged in a puck collecting task, in which the robots need to decide whether to pick up
red or green pucks based on observed local information.

5.3.1 A macroscopic mathematical model of multi-robot foraging with division of

labour

Figure 10: Probabilistic Finite State Machine (PFSM) for Foraging with Division of Labour
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Recently Liu et al have applied the macroscopic approach to develop a mathematical model
for foraging with division of labour (as described above in section 5.2.3), [42]. The finite state
machine of figure 7 is extended in order to describe the probabilistic behaviour of the whole
swarm, resulting in a probabilistic finite state machine (PFSM). In figure 10 each state represents
the average number of robots in that state. The five basic states are S for searching, H for homing,
G for grabbing, D for depositing and R for resting, and the average number of robots in each
of these states is respectively NS , NH , NG, ND and NR. τS , τH , τG, τD and τR represent the
average times a robot will spend in each state before moving to the next state.

In each time step a robot in state S has probability γf of finding a food-item and moving
to state G, in which it will move towards the target food-item until it is close enough to grab
it using the gripper. Once the robot successfully grabs the food-item it will move to state D,
in which the robot moves back to the ‘nest’ carrying the food-item and deposits it. After the
robot has unloaded the food-item it will rest in state R, for τR seconds and then move to S to
resume searching. Meanwhile, if the robot in state S fails to find a food-item within time τS , it
will move to state H , and return to the ‘nest’ to save energy or minimise interference with other
robots. Because of competition among robots more than one robot may see the same food-item
and thus move towards it at the same time; clearly only one of them can grab it, a robot in state
G therefore has probability γl to lose sight of the food-item if it has already been grabbed by
another robot, which in turn drives the robot back to state S to resume its search.

In foraging interference between robots because of overcrowding, competition for food-items
or simply random collisions is a key aspect of the dynamics of foraging. Thus collision avoidance
is modelled as follows. Robots in states S, G, D and H will move to avoidance states A, AG,
AD and AH respectively with probability γr, as shown in figure 10. The avoidance behaviour
then takes τA seconds to complete before the robot moves back to its previous state.

Constructing the mathematical model requires two further steps. Firstly, writing down a
set of difference equations (DEs) describing the change in the average number of robots in each
state from one time step to the next and, secondly, estimating the state transition probabilities.
Expressing the PFSM as a set of DEs is relatively straightforward. For instance, the change in
the average number of robots NA in state A from time step k to k + 1 is given as:

NA(k + 1) = NA(k) + γrNS(k) − γrNS(k − TA) (8)

where γrNS(k) is the number of robots that move from the search to the avoidance state A and
γrNS(k − TA) is the number of robots that return to S from state A after time TA (note TA is
τA discretised for time step duration ∆t). The full set of DEs is given in [42]. Clearly, the total
number of robots in the swarm remains constant from one time step to the next,

N = NS(k) + NR(k) + NG(k) + ND(k) + NH(k) + NA(k) + NAh
(k) + NAg

(k) + NAd
(k) (9)

Estimating state transition probabilities can be challenging but if we simplify the environment
by placing the ‘nest’ region at the centre of a circular environment in which the food growing
area is bounded by two concentric rings in a bounded arena, as shown in figure 11, then a purely
geometrical approach can be used to estimate γf , γr and γl together with the average times for
grabbing, depositing and homing τG, τD and τH . Clearly τR and τS are the design parameters
we seek to optimise, while τA is determined by the physical design of the robot and its sensors.

Figure 12, from [42], plots the average number of robots, from both simulation and the
mathematical model, in states searching, resting and homing for the swarm with τr = 80. The
average number of robots in each state predicted by the probabilistic model quickly settles to
a constant value. In contrast, but as one would expect, the average number of robots from
simulation oscillates over time but stays near the value predicted by the model.
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The black curve is the prediction of the mathematical model; the dashed curve with error bars
is measured from simulation.

Figure 13 compares the predicted value of net swarm energy from the mathematical model,
with the measured value from simulation, for resting time parameter τr increasing from 0 to 200s.
The two curves show, firstly a good match between measured and predicted curves therefore
validating the mathematical model and, secondly, that there is indeed an optimal value for τr

(at about 160 seconds). We thus have confirmation that a mathematical model can be used to
analyse the effect of individual parameters on the overall performance of collective foraging.

6 Future Directions

This article has defined robot foraging, set out a taxonomy and described both the develop-
ment and state-of-the-art in robot foraging. Although the principles of robot foraging are well
understood, the engineering realisation of those principles remains a research problem. Con-
sider multi-robot cooperative robot foraging. Separate aspects have been thoroughly researched
and demonstrated, and a number of exemplars have been described in this article. However, to
date there has been no demonstration of autonomous multi-robot foraging which integrates self-
organised cooperative search, object manipulation and transport in unknown or unstructured
real-world environments. Such a demonstration would be a precursor to a number of compelling
real-world applications including search and rescue, toxic waste cleanup or foraging for recycling
of materials.

The future directions for foraging robots lie along two separate axes. One axis is the contin-
uing investigation and discovery of foraging algorithms — especially those which seek to mimic
biologically inspired principles of self-organisation. The other axis is the real-world application
of foraging robots and it is here that many key challenges and future directions are to be found.
Foraging robot teams are complex systems and the key challenges are in systems integration and
engineering, which would need to address:

1. Principled design and test methodologies for self-organised multi-robot foraging robot sys-
tems.

2. Rigorous methodologies and tools for the specification, analysis and modelling of multi-
robot foraging robot systems.
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3. Agreed metrics and quantitative benchmarks to allow comparative evaluation of different
approaches and systems.

4. Tools and methodologies for provable multi-robot foraging stability, safety and dependabil-
ity [23, 68].

Acknowledgments

The author is indebted to both Wenguo Liu and Guy Théraulaz for case studies, advice and
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[25] D. Goldberg and M. J. Matarić. Interference as a tool for designing and evaluating multi-
robot controllers. In Proc. 14th National conference on Artificial Intelligence (AAAI-97),
pages 637–642. MIT Press, 1997.

[26] J. Greenman, O. E. Holland, I. Kelly, K. Kendall, D. McFarland, and C. R. Melhuish.
Towards robot autonomy in the natural world: A robot in predator’s clothing. Mechatronics,
13(3):195–228, 2003.

[27] R. Groß, E. Tuci, M. Dorigo, M. Bonani, and F. Mondada. Object transport by mod-
ular robots that self-assemble. In Proc. IEEE International Conference on Robotics and
Automation, pages 2558–2564, 2006.

[28] A. T. Hayes, A. Martinoli, and R. M. F. Goodman. Distributed odor source localization.
IEEE Sensors, Special Issue on Artificial Olfaction, 2(3):260–271, 2002.

[29] R. W. Hicks and E. L. Hall. A survey of robot lawn mowers. In D.P. Casasent, editor, Proc.
SPIE Intelligent Robots and Computer Vision XIX: Algorithms, Techniques, and Active
Vision, volume 4197, pages 262–269, 2000.

25



[30] B. Hölldobler and E. O. Wilson. The Ants. Cambridge: Harvard University Press, 1990.

[31] B. K. P. Horn. Robot Vision. MIT Press, 1986.

[32] A. J. Ijspeert, A. Martinoli, A. Billard, and L. M. Gambardella. Collaboration through
the exploitation of local interactions in autonomous collective robotics: The stick pulling
experiment. Autonomous Robots, 11(2):149–171, 2001.

[33] I. Kelly, O. E. Holland, and C. R. Melhuish. Slugbot: a robotic predator in the natural
world. In 5th Symposium on Artificial Life and Robotics (AROB2000), Oita, Japan, January
2000.

[34] N. Kondo, M. Monta, Y. Shibano, and K. Mohri. Basic mechanism of robot adapted to
physical properties of tomato plant. In Proc. International Conference for Agricultural
Machinery and Process Engineering, volume 3, pages 840–849, 1993.

[35] N. Kondo, M. Nakamura, M. Monta, Y. Shibano, K. Mohri, and S. Arima. Visual sensor for
cucumber harvesting robot. In Proceedings of the Food Processing Automation Conference,
pages 461–470, 1994.

[36] M. Krieger and J.-B. Billeter. The call of duty: Self-organised task allocation in a population
of up to twelve mobile robots. Jour. of Robotics & Autonomous Systems, 30:65–84, 2000.

[37] T. H. Labella, M. Dorigo, and J.-L. Deneubourg. Division of labour in a group of robots
inspired by ants’ foraging behaviour. ACM Transactions on Autonomous and Adaptive
Systems, 1(1):4–25, 2006.

[38] K. Lerman. Mathematical model of foraging in a group of robots: Effect of interference.
Autonomous Robots,, 13(2):127–141, 2002.

[39] K. Lerman, A. Galstyan, A. Martinoli, and A. J. Ijspeert. A macroscopic analytical model
of collaboration in distributed robotic systems. Artificial Life, 7:375–393, 2002.

[40] K. Lerman, C. Jones, A. Galstyan, and M. J. Matarić. Analysis of dynamic task allocation
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