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Abstract

Application of machine learning (ML) to the prediction of reaction activation

barriers is a new and exciting field for these algorithms. The works covered

here are specifically those in which ML is trained to predict the activation

energies of homogeneous chemical reactions, where the activation energy is

given by the energy difference between the reactants and transition state of a

reaction. Particular attention is paid to works that have applied ML to directly

predict reaction activation energies, the limitations that may be found in these

studies, and where comparisons of different types of chemical features for ML

models have been made. Also explored are models that have been able to

obtain high predictive accuracies, but with reduced datasets, using the Gauss-

ian process regression ML model. In these studies, the chemical reactions for

which activation barriers are modeled include those involving small organic

molecules, aromatic rings, and organometallic catalysts. Also provided are

brief explanations of some of the most popular types of ML models used in

chemistry, as a beginner's guide for those unfamiliar.
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1 | INTRODUCTION

A critical component in any computational reaction modeling study is the accurate calculation of activation energies.
Defined as the energy difference between the reactant states and the transition state (TS) of a reaction, it represents the
minimum energy a system must attain for a reaction to proceed, and from its value, product identities, reaction rates,
and selectivities can be computed.1–5 Activation energies (or activation barriers, used interchangeably here) can be eval-
uated by modeling reactions with quantum mechanical (QM) calculations, particularly density functional theory
(DFT).6,7 DFT has played a major role in calculating activation energies of reactions in several valuable areas of chemis-
try including: mechanistic modeling of organic reactions,8–12 drug design,12–14 toxicology,15,16 and catalyst design.17–19

However, accurate QM and DFT calculations incur a significant computational expense20–22 and their practicality for
reaction modeling on a large scale is thus limited. Ideally, there could be a method that can predict in seconds or
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minutes the results of QM calculations that may take hours, days, or weeks. Other methods for modeling reaction acti-
vation barriers include force field methods specially designed for the modeling of TSs.23–27 However, these will often be
limited in accuracy compared to QM methods, due to the low abundance of highly accurate data for their parameteriza-
tion and the inherent approximations of force fields that make them computationally cheap.20,22,28

Machine learning (ML) could offer a remedy to the issue of computational cost in quantum chemistry. ML models
(or ML methods, used interchangeably here) are, broadly speaking, advanced statistical methods that aim to analyze
and deduce patterns and properties within large amounts of data.29–33 Importantly, these models have extremely low
computational costs compared to QM calculations. However, for a ML model to be useful, it must first be trained. This
involves creating a dataset that, for chemical applications, should contain features (or descriptors) of the systems under
study and the accurate values of the properties (e.g., activation energies) of those systems one wishes to predict. Chemi-
cal features may be representations or encodings of molecular geometries or atomic environments, or other properties
of the systems such as atomic charges, bond orders, or orbital energies. The use of raw Cartesian coordinates as features
is never advised since the values of these coordinates are not invariant upon translation or rotation. That is, a chemical
system may be translated or rotated, and the internal geometry of the system will remain the same, but the absolute
values of the Cartesian coordinates will be different. Therefore, the ML model will likely not be reliable since it cannot
be trained to consider all possible sets of Cartesian coordinates that describe the translations or rotations of a system.

The training of ML models is carried out by passing the training data to an initial form of the model, followed by
minimizing the error between the ML prediction and the reference value of the target property of interest. This is
achieved by adjusting the parameters within the model's algorithm. The quality of the trained ML model is then
assessed by inputting descriptors from unseen systems, with the error from this testing showing how well the model
can make predictions on new data. A generic scheme for the workflow to create a ML model to predict activation ener-
gies is shown in Figure 1. It should be noted that the final accuracy of an ML model is limited to the underlying accu-
racy of the training data. An ML model is only able to reproduce the target values from the training data it is provided
with, and therefore if that data is inaccurate, the ML will also be inaccurate (probably even more inaccurate than the
training data, since for a complex system the functional fit of the ML model to the data is not likely to be perfect). A
common aim for a ML model in chemistry is to make predictions of activation barriers at “chemical accuracy” which is
considered to be an error of 1 kcal mol�1.34,35 Note, the “chemical accuracy” threshold is not applicable to all types of
energetic prediction. For instance, if aiming to predict chemical selectivity, an error of 1 kcal mol�1 could cause a sub-
stantial change in the predicted outcome. Thus, it is wise to consider whether an accuracy threshold, if used, is appro-
priate to the prediction being made.

Outside of chemistry, ML has been applied in many circumstances including: natural language processing36–39; driv-
erless vehicles40–44 speech recognition45–48; handwriting analysis49–51; enhancing image resolution52–55; robotics56–60;
and, famously, beating the human champions of the games chess61 and Go.62 Within chemistry, an incomplete list of
applications include: evaluating potential energy surfaces of ground63–66 and excited states67,68; forming solutions to the
Schrödinger equation69,70; modeling molecular wavefunctions71,72; accelerating TS optimization73,74; finding exchange-
correlation functionals for DFT75,76; predicting reaction rate constants77,78; predicting the outcomes of organic
reactions79–84; X-ray,85–87 UV–Vis,88 IR,89–92 and NMR93–95 spectroscopies; sequence-based biomolecular function pre-
diction96,97 and predictions of protein structures.98–101 Another very recent and exciting application of ML in chemistry
is the prediction of activation energies. Before discussing work where ML is used to calculate activation barriers, the fol-
lowing section shall provide some brief explanations of the most commonly used ML models.

2 | ML MODELS

2.1 | Linear regression

Linear regression (LR) attempts to describe the relationship between input features (x) and the target property (y) as a
linear function of the input features, as in Equation (1).29,102,103 For a single input feature, this function reduces to the
“y = mx + c” form that most will be familiar with. When more than one input feature is considered, the model is
referred to as multi-variate linear regression.

y¼ f xð Þ¼ β0þ
Xn
i¼1

βi �xi: ð1Þ
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The β coefficients are the parameters in the model that are adjusted such that the model is fit to the data. This can be
achieved by, for example, minimizing a loss function (L) of the mean squares error of the model with respect to the β
coefficients, given by Equation (2).

L¼ 1
n

Xn
j¼1

yj� f xj
� �� �2

, ð2Þ

where yj is the true value of the target property from the training data, f(xj) is the predicted value from the linear model,
n is the number of datapoints in the training set, and j runs over all training points with features xj and target values yj.

It is also possible to introduce an extra term to the loss function that penalizes redundant features in the linear
model. This is known as regularization, and two common types are called L2 and L1. L2 regularization adds the sum of
the squares of the β coefficients to the loss function, as in Equation (3).

L¼ 1
n

Xn
j¼1

yj� f xj
� �� �2

þ λ
Xn
i¼1

β2i

 !
, ð3Þ

FIGURE 1 A generic strategy for designing a ML model to predict a target chemical property, such as activation energy (Ea, Y) of SN2
reactions. Encoding of both the training and unseen reacting systems gives the input features (X). The model is trained to reproduce the

target property of interest (Ytrain), from the features of the training systems (Xtrain). The trained ML model can be applied to unseen systems

with features Xpredict, and the model's performance is assessed by how accurately it predicts the property Ypredict from the unseen system
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where i runs over all of the β coefficients for all the input features and λ is the regularization parameter and gives the
“strength” of the L2 regularization. Larger λ values lead to an increase in the magnitude of the penalty and may lead to
underfitting if too high. When L2 regularization is used in a LR model, it is known as ridge regression.104,105

L1 regularization adds the magnitude of the β coefficients to the loss function, as in Equation (4).

L¼ 1
n

Xn
j¼1

yj� f xj
� �� �2

þλ
Xn
i¼1

βij j
 !

: ð4Þ

The use of L1 regularization with an LR model is known as least absolute shrinkage and selection operator (LASSO)
regression.106 An interesting advantage of LASSO regression is that the L1 term in the loss function causes the β coeffi-
cients of low importance features to become zero, and it can thus be used for feature selection. When both L1 and L2
regularization terms are applied to a LR model, it is known as elastic net regression.107 Note that regularization is a
technique that is not only applicable to LR, the regularization terms can be included in the loss functions for many ML
methods.

LR models are easily trained and understood by the user, however, their predictions can be less reliable than other
models if the key assumption behind a LR model is not present in the data; that a linear relationship exists between the
features and the target property.32

2.2 | Neural networks

A standard feedforward neural network (NN) is made up of layers of nodes (or neurons) with connections between all
nodes in adjacent layers (Figure 2).29–32,108–111 Each node operates by taking the sum of all values that are input to it
and outputting the activation function value of that sum. The activation function may be, for example sigmoid
(Figure 2, right), hyperbolic tangent, or rectified linear functions.112 A sigmoid activation function means that if the
total input to a node is greater than a certain threshold, the node will output a larger value. Similarly, for inputs lower
than the threshold, the node will output a smaller value. This is analogous to the process which neurons in the brain
undergo; neurons receive electric signals, and if the total signal passes that neuron's threshold, it “fires” and transmits
its signal to further neurons.113

The NN's ability to learn the relationship between the input features and output variables of a dataset comes from
the weight parameters between nodes. By adjusting these weights such that the error between the NN predictions and
the actual values in the training data is minimized, the NN effectively learns the relationship between the input and
output variables. NNs with larger numbers of layers are known as deep neural networks (DNNs) and are the algorithms
behind “deep learning.”84,114–118 DNNs are powerful predictors due to the extreme flexibility of the algorithm; however,
they typically require much larger datasets to be reliable119 and all but the simplest NNs become impossible for a

FIGURE 2 (Left) A representation of a simple NN. Starting from the input layer, the outputs of each node are multiplied by the weights

for each connection before being passed to the next layer. Each connection has a unique weight associated with it, wk
ij, where the weight

corresponds to the connection between the ith and jth nodes in the kth and (k + 1)th layers respectively. An activation function is applied to

the sum of the inputs to hidden layer nodes that produce the outputs of those nodes. (Right) The form of a sigmoid activation function
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human mind to grasp. Hence, NNs are often referred to as “black box” methods117,120–122 due to the difficulty in com-
prehending how or why the predictions of the model were made.

2.3 | Support vector regression

A support vector machine (SVM) is a tool for classifying data (a chemical example of which could be whether a particu-
lar compound will undergo a given reaction). This is done by constructing a hyperplane such that all datapoints from
each class lie on opposite sides of the hyperplane. If the data are not linearly separable in the original feature space, a
kernel function is used to map the data to a space where the categories are linearly separable by the hyperplane
(Figure 3). The hyperplane is positioned so the distances between the hyperplane and its nearest datapoints (the sup-
port vectors, Figure 3) are maximized. In support vector regression (SVR), which considers continuous rather than dis-
crete data (perhaps the percentage yield of a particular reaction), the support vectors between the hyperplane and the
data are minimized, allowing the hyperplane to give the best possible description of the data. Should the data not be lin-
early related in the original feature space, a nonlinear kernel function can be applied to the data, and they become line-
arly related in the higher-dimensional space.29,30,32,111,123–125 However, there are some considerations that need to be
made when utilizing a SVM or SVR. The choice of kernel function is very rarely obvious from the data alone (since the
optimal separation or relationship between the datapoints may be found in a higher-dimensional space), and poten-
tially several different kernel functions may need to be tested to maximize the predictive performance of the model.
Furthermore, from a practical perspective, the SVR algorithm must store all of the support vectors for the datapoints in
memory, and therefore the computational cost of the model increases with the size of the training dataset.

2.4 | Kernel ridge regression

The basic idea of kernel ridge regression (KRR) is to map the input features to a higher dimensional space and perform
Ridge regression in that space.29,31,125–129 The KRR prediction for the features of a new instance, x, is given by a
weighted sum of all examples in the training set, as in Equation (5).

f xð Þ¼
Xn
i¼1

αik xi,xð Þ, ð5Þ

where k is the kernel function, αi are the regression coefficients (cf. the β coefficients in LR), and xi are the feature vec-
tors for the training examples where i runs over all examples in the training set. The loss function for KRR is then given
by Equation (6).

FIGURE 3 Illustration of the workings in a SVM. For example, a SVM could be attempting to classify whether a given compound will

undergo a reaction (e.g., blue represents a compound that will react and red represents a compound that will not). Since the data are not

linearly separable in the original feature space, a kernel function is applied that maps the data to a higher-dimensional space, where they are

separable by the hyperplane. The distances between the datapoints and the hyperplane are known as the “support vectors” (purple arrows)
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L¼ 1
n

Xn
j¼1

yj� f xj
� �� �2

þλ fj jj j2, ð6Þ

where λ is the regularization parameter, j again runs over all the examples in the training set, yj is the true target value
in the training set, and kfk is the norm of the function f from Equation (5) in the higher dimensional space. Since the
square of the norm is added to the loss function, this is where the ridge regression part of KRR arises. Setting the first
derivative of the loss function with respect to the α coefficients and solving gives the values of the α coefficients as in
Equation (7).

α¼ Kþ λIð Þ�1y, ð7Þ

where α is the vector containing the α coefficients, I is the identity matrix, y is the vector of the target values from the
training set, and K is the kernel matrix with each element given by Kij = k(xi, xj), the kernel function between xi and xj
which are the feature vectors for two training set examples, where i and j run over all training points. A critical disad-
vantage of KRR is that the kernel function must be computed between the new instance and every datapoint in the
training set each time a prediction is to be made. This can make KRR computationally expensive for large training sets.

2.5 | Random forest regression and gradient boosting

Random forests consist of decision trees which contain nodes that, for a given input, split the data according to the
value of that input (Figure 4). Each node is followed by two separate nodes that further split the data until the end of
the tree is reached. In classification problems, categories within the data will have been separated by the end of the tree,
so that any input will be placed into its proper category. In regression problems, the tree splittings formed during train-
ing minimize the root mean square error (RMSE) between the output of the decision tree and the true value
corresponding to the input from the training set. Random forest regression (RFR) uses numerous decision trees and
takes the average prediction of all the decision trees in the forest as its final output (“the wisdom of
crowds”).29,30,32,111,124,130,131 For example, if one attempts to predict the value of a property with RFR, each tree is pro-
vided with the set of descriptors, and each provides its prediction of the property, and the average value from all trees
becomes the RFR prediction (Figure 5). Random forests are generally considered to perform well for datasets of moder-
ate size (perhaps a few hundred points) and increasing the number of decision trees within the model will typically
improve model performance. However, if too many trees are used, the computational cost may become an intractable
problem.

Gradient boosting (GB), or tree boosting, is also constructed from decision trees, but rather than initializing the
model with a certain number of trees and training them together, GB trains one tree at a time such that a subsequent
tree minimizes the error from the previous ensemble of trees.29,32,132 GB is a very similar ML method to RFR, and it also
has the issue of computational cost when very large numbers of trees are used in the model. Also, one significant differ-
ence between RFR and GB is that the decision trees in RFR can be trained in parallel, while those in GB are created

FIGURE 4 A simple decision tree (right) to classify whether a point in a dataset (left) will be blue or red based on the values of its two

features
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and trained in series. This means that, for the same number of trees at the same depth, GB will have a longer training
time than RFR (Figure 6).

2.6 | Gaussian process regression

In Gaussian process regression (GPR) a prior distribution of functions for the input features is sampled, such that the
mean of the prior function distribution is zero for all values of all features. The forms of the functions are defined by a
kernel function, which could be for example, sinusoidal or the radial distribution function. As training data are added
to the model, the function distribution is updated so that each function passes through the training points, and this is
known as the posterior distribution of functions. The GPR predictions for new inputs are given by the mean of the pos-
terior distribution of functions for those input features.31,133–137 Empirically, GPR seems to have the advantage of not
requiring a large training dataset60,133,138 as in other models such as NNs. However, just as in KRR, it must take the
entire training set into account for every prediction made, meaning its computational cost scales expensively relative to
other ML models (the cost scales with the cube of the number of training points,133,134 which presents a major bottle-
neck for the use of this algorithm when dealing with large datasets, as is common in problems for which ML is useful)
(Figure 7).

2.7 | Other points for machine learning

There are a few other points with regard to ML that are worth mentioning. The first is that just as the parameters of the
ML algorithm (e.g., the β coefficients in LR, or the weights in a NN) must be optimized in order to train the model, the

FIGURE 5 An illustration of RFR, which is constructed from the combination of many decision trees. Each tree is supplied with the

same input features (X) and makes its (likely rather inaccurate) prediction of the desired output property. The splittings are based on the

values of the input features (e.g., atomic charges or log Kow). The values of the features determine which path on the tree is followed and

thus which prediction the single tree produces. The average value of the predictions from all trees gives the final RFR prediction (yprediction)

FIGURE 6 An illustration of the GB method. Training starts from an initial tree and subsequent trees are added such that the error

from all tree predictions combined is minimized
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hyperparameters of the models may also need to be optimized to ensure that the model is best suited to the dataset at
hand. These are the parameters that relate to the models themselves, rather than the ones used to fit the model to train-
ing data, for example, the number of hidden layers in a NN, or the number of decision trees in RFR.

Care must also be taken during training to avoid the occurrences of underfitting and overfitting (Figure 8). Under-
fitting can occur when the model is not flexible enough to account for the complexity of the data. An underfit model
will show large errors between its predictions and both training and testing errors. Overfitting occurs when the training
data have been passed to the model too many times, or the model is too flexible for the dataset. The model thus
becomes overfit towards the training data, and it has learned the specific trend in the training data and is unable to gen-
eralize. An overfit model is characterized by a low error for the training data, but a high error for testing data. Lastly,
ML methods are interpolative not extrapolative. Generally, one cannot expect good performance from ML models for
inputs outside of the range of the training data. For example, if a model were trained to predict the activation energies
of reactions following the E2 mechanism, this model will not likely provide reliable predictions for reactions outside its
training domain, such as SN2 reactions.

3 | ML FOR ACTIVATION ENERGIES

Given the success of ML both inside and outside of chemistry, it has been considered for the prediction of reaction acti-
vation barriers. Several groups have made use of ML in this way, and this section reviews the work concerning ML pre-
dictions of homogeneous chemical reaction activation barriers.139–148 Note, for works discussed in this review, the
terms “activation barrier” and “activation energy” refer to those of elementary reactions, rather than the apparent bar-
rier that would be observed over an entire reaction composed of multiple elementary steps.

FIGURE 7 Illustration of GPR. (Left) The prior distribution where the sample of functions has mean zero at all points. (Right) The

posterior distribution after training, which is a sample of all the possible functions that pass through the training data (black dots). New GPR

predictions are given by the mean of the posterior distribution (black line). The gray shading shows the standard deviation of the posterior

distribution, which gives the uncertainty of the GPR prediction

FIGURE 8 (Left) An underfit model, where a linear relationship is not sufficient to describe the data. (Center) A model with an ideal,

balanced fit. (Right) An overfit model, where the model will perfectly predict the training data, but does not capture the general underlying

relationship and will likely not perform well for any data outside the training set
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Figure 1 displays a general flowchart showing the very basic steps for creating a ML model to predict activation bar-
riers. As well as obtaining a large dataset of reaction activation energies, a critical stage in creating these ML models is
extracting the molecular representations, that is, the molecular features (or descriptors). Often used molecular descrip-
tors in predicting activation barriers can be organized into different categories. “Physical organic” descriptors139,142–
144,146,149 that are molecular and atomic properties such as atomic charges, bond orders, molecular orbital energies,
measurements of molecular sterics, or thermodynamic quantities (e.g., free energy or enthalpy). Also used are geomet-
ric descriptors, for example, two-dimensional molecular representations known as molecular fingerprints139–141,147,148

and descriptors of the three-dimensional atomic environments.142 Physical organic features seem to require expensive
QM calculations to be obtained, whereas the purely geometric features may not require such expensive calculations.

First, studies that apply ML models to directly predict activation energies will be covered, along with some aspects
of the use and training of NNs in the context of these studies. Following this, attention will be turned to some of the
limitations in these works; either the dataset used, or their use of reaction energy (the energy difference between prod-
ucts and reactants) as an input feature to the models. Further, some studies that address these issues will be covered.

Works that compare different types of features are examined, followed by those that produced models with reduced
data requirements, and those that attempted to interpret their models. Finally, the uses of Δ-ML (see Section 3.4) to pre-
dict reaction activation energies will be discussed, and an interesting non-direct use of activation energy ML will be
briefly mentioned. There also exists a fair amount of literature concerning ML predictions of the adsorption energies of
small molecules onto catalytic surfaces,150–156 but these are beyond the scope of the discussion here and a review on
ML for heterogeneous small molecule activation has been published very recently.157 We also do not include works
where ML has been used for predicting activation energies in heterogeneous systems,158–161 only homogeneous reac-
tions are covered here. There are also a couple of works exploring ML for activation barriers from molecular dynamics
simulations,162,163 which are also not covered here.

3.1 | Direct predictions of activation energies with machine learning

The first step in building a ML model for chemical property prediction is the choice of algorithm. It may not be obvious
which ML method is best suited for a given problem, but given the flexibility and predictive power of NNs, they should
be expected to give good predictions of reaction activation barriers. In this section, the training and use of NNs are dis-
cussed, in the context of multiple studies that used NNs (among other models) for activation barrier predictions.

In work by Choi et al. in 2018,139 an attempt was made to assess the feasibility of using ML for predicting activation
energies of organic reactions (see Figure 9 for a few example reaction types). SVR, GB, and NNs with three to six hidden
layers were trained on 12,704 (6078 unique) gas-phase reaction barriers from the RMG-py dataset.164 The models were
assessed by mean absolute error (MAE), RMSE, and coefficient of determination (R 2) between the ML-predicted and
actual values of activation energy from the dataset. The NN reached a minimum MAE (for the test data) of roughly
2.5 kcal mol�1 at five hidden layers, indicating that overfitting was occurring with increased layers. However, none of
the NNs were greater in accuracy than the GB method, which had the lowest MAE of just under 2.0 kcal mol�1, despite
the fact that one may expect the more complex and flexible NN model to show a better performance. Choi et al. state
that this occurred due to an insufficient amount of data used in training the NNs. Although, all of the NNs had the

FIGURE 9 Three examples of some of the reactions in the RMG-py dataset used by Choi et al. in their ML models for predicting the

activation energies of these reactions. (Top left) Radical oxygen substitution. (Top right) CO insertion. (Bottom) HO2 elimination from

peroxy radical. The full set of reactions available in this dataset may be found in Reference 164
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same numbers of nodes per hidden layer and optimizing the numbers of hidden layer nodes could possibly have led to
an improvement in NN accuracy.

Li et al.142 used 15 ML methods (including, but not limited to, LR, SVR, RFR, KRR, GPR, GB [implemented in
XGBoost], and NNs) to predict the regioselectivity of 3406 radical C–H functionalization reactions of heteroaromatic
rings. Activation barriers of the reactions were determined from the differences between the Gibbs free energies of the
minima and TSs, which were geometry optimized at the B3LYP/6-311+G(2d,p) level of theory, with single-point ener-
gies calculated at the M06-2X/aug-cc-pVTZ level of theory. The regioselectivity of the reactions was determined by the
difference between free energy activation barriers (ΔΔG ‡) of the functionalization reaction for different positions on
the heteroaromatic ring (Figure 10). The ML models were trained to predict the values of ΔΔG ‡, and several different
sets of features were used as inputs (see Section 3.2). The NN attained the second lowest R 2 correlation coefficient of
0.967 between the ML-predicted and DFT-calculated values of ΔΔG ‡, very close to the best, which was GB with an R 2

value of 0.968. However, further analysis was only carried out with GB, not the NN. This illustrates a practical consider-
ation when facing model choice in ML; it is likely more worthwhile to use and explore a simpler model if, for a given
dataset, it has roughly equal performance with a more complex model such as a NN.

A “frustrated Lewis pair” is a system in which a Lewis acid and a Lewis base are combined, but bulky groups sur-
round the electron accepting and donating centers, forcing the centers to remain separated and preventing the transfer
of electron density between them. Frustrated Lewis pairs are used in small molecule catalysis as they can be inserted
between the Lewis centers, and subsequently activated for reactions.165–169 Migliaro and Cundari undertook a study of
methane activation by frustrated Lewis pairs formed from group 13 trihalides and group 15 pentahalides with ammonia
(Figure 11).143 Note that simplified structures were used to reduce the impact of steric effects on the reaction barriers,
and hence the effects of periodicity on the reaction could be analyzed directly. The group 13 elements in the Lewis acids
were B, Al, Ga, In, and Tl, the group 15 elements were P, As, Sb, and Bi, and calculations were performed on the F, Cl,
Br, and I halides of all nine elements. Calculations of the reactant and TS energies used the ωB97X-D density functional
and the Def2-TZVPP basis set. The deprotonation of methane by the Lewis base (see Figure 11), rather than hydride
abstraction by the Lewis acid, was calculated to be the more favorable mechanism both kinetically and thermodynami-
cally. Migliaro and Cundari formulated a model for the activation energies of this mechanism. No single descriptor of

FIGURE 10 Illustration of how Li et al. determined regioselectivities for radical (R˙) C H functionalization reactions of heteroaromatic

rings. The ΔG ‡ value for a single reaction is calculated by the difference in free energies of the reactants and the transition states.

Regioselectivity is then given by the difference between ΔG ‡ values for two positions on the ring. The ML models were trained to predict

these ΔΔG ‡ values

FIGURE 11 (Left) Transition state for deprotonation of methane with a group 13 trihalide (here AlCl3). (Right) Transition state for

deprotonation of methane by a group 15 pentahalide (here SbF5). Note that the mechanism here involves the insertion of methane between

the Lewis acid–base adduct and a proton from methane is transferred to the Lewis base (ammonia)
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the systems had strong linear correlation with activation energy, and hence a NN model was created. Only 35 datapoints
were available (a TS for the reaction with BiF5 was not found) so a very small NN with one hidden layer containing five
nodes was trained to predict the activation energies for the insertion of methane into the Lewis pair. The importance of
avoiding overfitting in NN training was also seen in this work. For a NN to become an accurate predictor, the training
procedure must be repeated with the same data several times. The mean square error in the NN's prediction for the
training, validation, and testing data decreased with each training iteration (or epoch). However, after nine iterations,
overfitting towards the training data became apparent, and the errors for the validation and testing sets started to
increase, while the training error continued to decrease. Thus, training was stopped at nine epochs in this case, so that
the NN had its maximum possible general predictive accuracy. After training, the NN had an R 2 coefficient between
the NN-predicted and DFT-calculated activation energies of 0.908 for all 35 datapoints, and an R 2 of 0.851 for the test
data alone.

The works discussed above have demonstrated that NNs can be used to make strong predictions of activation ener-
gies based on input features that do not usually have strong linear correlations with activation energy. The flexibility of
NNs gives rise to their strong predictive ability, but as seen in the above discussion, the user must tune the NN architec-
ture and training process to avoid under/overfitting.

3.2 | Dataset limitations and the use of reaction energy as a feature

Grambow et al. highlight141 that the results of Choi et al.139 have some limitations. Most of the reactions in the dataset
used to train and test the ML models were mostly composed of many similar reactions, which limits the general appli-
cability of the ML models. Another unfortunate fact of the RMG-py dataset164 used by Choi et al. is that many of the
12,704 gas-phase reaction energy barriers were different values from multiple sources, and thus, only 6078 unique reac-
tions were actually considered. All 12,704 barriers were used to train the ML models, since there was no way of deter-
mining which value for each reaction was the more accurate. Therefore, on average, each unique reaction in the
dataset would have two activation energies associated with it. It is not unreasonable to expect that activation energies
for the same reaction from different sources may be similar, and the testing set would likely contain many reactions
that were already included in the training set. Thus, the predictions of the ML models trained on this data would show
on average, better predictive performance than if tested with reactions which the model had not already seen, albeit
with data from a different source. Ideally, future workers should consider diversity of reaction datasets, such that ML
models can be constructed with greater generality and lower costs of development.

Choi et al. used the reaction enthalpies and entropies (B3LYP/6-31G*) as features. This presents a practical issue
and undermines the use of ML as a rapid predictor of chemical properties. For any reaction to be analyzed by this ML
model, one requires thermodynamic properties of the products and reactants. These must be obtained via DFT calcula-
tions, which is not feasible on a high-throughput scale.

These same drawbacks can also be found in the study by Migliaro and Cundari.143 As mentioned above, Migliaro
and Cundari used only 35 methane deprotonation reactions, all of which follow identical mechanisms, and the only dif-
ference between structures is the periodic alteration of the halides and the central atom in the Lewis acid. However, it
is not clear if this model could make accurate predictions for reactions involving more realistic frustrated Lewis pairs,
with bulkier groups around the Lewis acid and base centers. The model also takes reaction energy as input, but also the
dissociation energy of the acid–base adduct and the global electrophilicity index170 (a measure of the level of Lewis acid-
ity of a molecule), all of which had to be calculated at the expensive ωB97X-D/Def2-TZVPP level of theory.

A promising example comes from Palazzesi et al.,145 where they created “BIreactive,” which uses Extra-Tree regres-
sion171 (similar to RFR, but with small differences in how best splittings in the trees are chosen in the training algo-
rithm) to predict activation energies for covalent drugs, which bind to their biological target through covalent bonds
rather than non-bonded interactions.172–174 The reactions of 2083 acrylamides and 2716 2-chloroacetamides with the
methanethiolate anion (used as a less-complex stand-in for the peptide glutathione) were chosen to make up the dataset
(Figure 12). Conformational searches175 were performed for each molecule, and the five lowest energy conformers of
each were calculated at the ωB97XD/cc-pVDZ level of theory. Activation energies were calculated from the difference
between the Boltzmann-averaged energies of the reactants and TSs. Separate BIreactive models were trained for the
acrylamides and 2-chloroacetamides with 44 and 45 descriptors respectively for each system. Notably, none of the
descriptors for the systems required QM calculations, and could be obtained from only the geometric information of
the molecule.176,177 The most important features to the two BIreactive models were: the number of terminal, primary
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sp2 carbons atoms in the acrylamides, and whether chlorine was present five bonds from the nitrogen in the
2-chloroacetamides. The testing predictions from a five-fold cross-validation were combined and, for acrylamides and
2-chloroacetamides respectively, BIreactive was able to achieve R 2 coefficients between the predicted and DFT-
calculated activation barriers of 0.85 and 0.69; Spearman rank correlation coefficients of 0.91 and 0.84 and MAEs of
0.75 and 0.88 kcal mol�1. The values of the Spearman coefficients178 show how well the ML model has managed to
order its predictions, that is, how well the predicted and actual values of the target activation energies would fit to a
monotonic function; the closer the value is to unity, the better the overall ordering. While the accuracies of BIreactive
are impressive (notably the test MAEs are substantially less than 1 kcal mol�1), the software used to calculate the
descriptors179 is proprietary and has been discontinued at the time of writing, making use of these particular descriptors
as well as a replication study rather difficult. Therefore, we would make the recommendation for the use of open-source
alternatives for extracting chemical descriptors.

Choi et al.139 suggested that, to make improvements in the quality of ML predictions of activation energies:

“A deep learning approach with big reaction data may be a viable solution.”

This is the very approach Grambow et al. took, although without using any features that require QM calculations to
extract.141 The model begins with atom-mapped representations of the products and reactants; atom-mapped means
that every atom in the reactants was labeled and its final position in the products is identified by that label.180,181 These
initial representations are passed to a directed message passing neural network182 (D-MPNN) which creates its own
learned representations of the molecules. The D-MPNN representation is a series of atomic vectors that contain the
bonding information for each atom (collected from the atom type), the bonds with which it is directly involved and its
neighboring bonds. The D-MPNN representation was chosen as it had been found that the D-MPNN model could fre-
quently provide better predictions of chemical properties than using more traditional molecular descriptors as inputs.182

For each atom in the products and reactants, the D-MPNN atomic vectors are subtracted from each other to obtain a
difference fingerprint of the reaction. This was done so that the atoms that undergo the greatest changes to their envi-
ronments (during the reaction) have the greatest influence on the activation energy prediction, since (as Grambow
et al. state) the atoms whose environments change very little have only a small effect on activation energy. The differ-
ence fingerprint is then passed to another NN that takes the difference fingerprints from each atom and collects them
into an encoding of the entire reaction. Lastly, the reaction encoding is input to a final NN, which is trained to predict
the activation energies of reactions from their encodings.

The model was trained with the activation energies of 33,000 elementary reactions calculated at the B97-D3/
def2-mSVP level of theory, and 24,000 reactions at the ωB97X-D3/def2-TZVP level of theory. See Figure 13 for a few
examples of the reactions considered. This dataset183 included the forward and backward reactions, and structures con-
tained up to a maximum of seven heavy atoms (carbon, nitrogen, and oxygen). It is not clear whether this model will
be transferrable to larger systems, given the small sizes of the molecules in the training set. The DNNs in this model
may have been able to learn the underlying principles behind the chemical reactions, and if this is the case, the model
may show good performance on larger systems. Two levels of theory were chosen and a transfer learning approach was
used to train the model. In this case, transfer learning184 was performed by initially training the ML model with a large
dataset of less accurate, more easily obtainable data and then the model was refined by further training with a more
accurate and expensive dataset. The central idea is that the ML model can be well trained for the lower level of theory,
given the larger amount of data available, and then a smaller amount of higher-level data can correct the model. This
has a similar philosophy to the Δ-ML method (discussed later, Section 3.4), although in this case the low-level trained
ML model is corrected by training with high level data, rather than using Δ-ML to correct lower-level calculated
properties.

FIGURE 12 Illustration of the TSs for the reactions between acrylamides (left) and 2-chloroacetamides (right) with the methanethiolate

anion that made up the datasets for the training of the BIreactive models
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The model was able to achieve an impressive MAE of 1.7 kcal mol�1 and RMSE of 3.4 kcal mol�1 relative to the
ωB97X-D3/def2-TZVP activation energies (the reactions spanned a range of 200 kcal mol�1, and no QM-derived fea-
tures were used as inputs for the model). The advantage of this model (i.e., that it can provide predictions of activation
energies directly from 2-D molecular representations without the need for expensive QM calculations) also leads to a
potential disadvantage. Unlike BIreactive,145 this model does not consider the effects of conformational flexibility.
Should a compound be particularly bulky, important steric effects may not be accounted for by the ML model, as they
would be by QM. However, since the molecules included a maximum of seven heavy atoms, this likely did not cause a
particularly significant amount of error. ML models that are able to consider the conformation of a chemical system
have already been constructed for predicting potential energy surfaces.66,118,185–187 These methods can use, for example,
atom-centered symmetry functions that describe the atomic environments and are invariant with respect to translation
or rotation of the system.65,188 Barring the likely massive data requirements from sampling the potential energy surfaces
for thousands of reacting systems with accurate QM methods (ensuring both minima and TSs were well represented),
there is no reason why models such as these could not be applied to predicting activation barriers. However, it would
seem the approach from Palazzesi et al. of conformational searching the reactants and TSs is a more efficient way to
construct a dataset. If this were explored further, reliable and accurate force fields189–191 will become vital for the con-
formational searching involved in ML dataset construction.

3.3 | Comparisons of different feature types

Along with several ML models, Li et al.142 tested how model performances varied with different sets of input features.
Three types of local features were tested, as well as the combination of each type of local feature with global features.
Local features refer to those that are specific to properties or environments of individual atoms, while global features
refer to those that represent properties or the structure of an entire molecule. An example of a local feature is a single
atom partial charge, whereas a global feature could be the molecular electrostatic polarizability. The local features that
described atomic environments based on molecular geometries were atom-centered symmetry functions188; smooth
overlap of atomic positions (SOAPs), in which atoms have a Gaussian function associated with their positions; and the
local environments are given by the integral of the sum of all other distance-weighted atomic-position Gaussians within
a given cutoff radius.135,192,193 Local physical organic (PhysOrg) features were calculated using the B3LYP/6-311+G
(2d,p) level of theory and were C H bond order, atomic charges, and buried volume194,195 (in this case, the percentage
of a sphere, centered on a specific atom, of radius 3 Å that is occupied by the heteroaromatic molecule). The global geo-
metric features were molecular fingerprints,196,197 where molecules are described by vectors in which each element is a
bit corresponding to a substructure of the molecule, and bag of bonds,198 where a molecule is represented as a vector
containing all possible pairwise interactions of atoms. The global PhysOrg features consisted of frontier molecular
orbital energies and nucleus-independent chemical shifts199 (NMR chemical shift at the center of an aromatic ring).
Following training, the importances of the local and global PhysOrg features were analyzed, and it was found that both
local and global were in the top 15 most important PhysOrg features. This suggests that a sensible direction for future

FIGURE 13 Three examples of the elementary organic reactions used by Grambow et al. to train their DNN models for predictions of

activation barriers

LEWIS-ATWELL ET AL. 13 of 31



chemical ML models may involve the inclusion of both molecular and atomic properties as descriptors, since features
at both levels may contribute significantly to the predictions of activation barriers.

The model that achieved the greatest R 2 value (0.968) between the predicted and DFT-calculated ΔΔG ‡ values was
a GB algorithm with SOAP local features and molecular fingerprints as global features. Since the SOAP/molecular fin-
gerprint descriptors only require molecular geometries to be determined, the heteroaromatic rings were also optimized
with the MMFF94 force field200 and the PM7 semiempirical method,201 as well as with B3LYP/6-311+G(2d,p). Using
the SOAP/molecular fingerprint features, computed from the MMFF94 geometries, produced a slightly higher R 2 value
(0.975) between the predicted and DFT-calculated ΔΔG ‡ values. This is rather promising, since these features could be
used in a reliable ML model without the need for expensive QM calculations, as needed for the PhysOrg features. The
GB model with SOAP/molecular fingerprint features and the RFR model with PhysOrg features were then applied to
heteroaromatic systems with substituents that were not present in the training data. RFR was the method that gave the
greatest R 2 for PhysOrg features.

After retraining the two models with the new systems, the PhysOrg model showed better predictions of ΔΔG ‡

(lower MAEs) for unseen systems from the new class of heteroaromatics, but the SOAP/molecular fingerprint model
predictions did not improve. This suggests that the PhysOrg features are better able to capture the underlying influences
that lead to differences in activation energies between the systems, whereas the description from the SOAP/molecular
fingerprints could have reached a maximum possible accuracy. This brings up the discussion from the previous section,
that is, the molecular features that tend to provide the most reliable predictions of activation energies require expensive
QM calculations, which thus limits the model's feasibility for high-throughput applications. However, models trained
with input features that are more easily produced may lose predictive accuracy. Perhaps there is the potential for “dual”
ML models for the screening of large numbers of reactions: an initial ML model using cheaply obtainable features to
provide an estimation of reaction activation energies, then a second model using QM-derived features to provide a bet-
ter prediction for the reactions of interest from the first model.

Mikami144 discovered that using so-called “interactive” quantum chemical descriptors (see definitions below) can
lead to an improvement in the predictive abilities of ML models compared with using “classical” quantum chemical
descriptors. In this case, the ML models were trained to predict the activation barriers of ethylene-metallocene
coordination-insertion reactions (see the TS for the reaction in Figure 14). The classical descriptors were obtained from
a lone metallocene (pre-reaction) and were LUMO energy, the charge on the metal (from natural population analy-
sis202), the metal cation-cyclopentadiene distance, buried volume, and sterimol parameters (that provide quantitative
measures of ligand size203,204). The “interactive” descriptors were obtained from an ethylene-metallocene complex
(Figure 15) and were stabilization energy (energy difference between the starting metallocene and the intermediate
ethylene-metallocene complex); and the electrical interaction, charge transfer, and core repulsion energies from natural
energy decomposition analysis207–209 (each of these three energies are a portion of the energy difference between the
ethylene-metallocene complex and the unrelaxed, separated ethylene and metallocene, see Figure 15).

Calculations were carried out with 68 group IV metallocenes (Ti, Zr, and Hf) with various cyclopentadiene-based
ligands with the B3LYP density functional, the SDD basis set210–212 for the metal and Si, and the 6-31++G(d,p) basis
set for all other atoms. Ten ML models were trained to predict the activation energies of the ethylene-metallocene reac-
tions using only classical features and five were retrained with the interactive descriptors. R 2 coefficients between the
predicted and DFT-calculated activation energies increased for the training, validation, and testing datasets for all five
models. The R 2 values for all five models also became much closer to each other. Although, once again, the descriptors
used in this work require QM calculations to be obtained. It would be interesting to assess the use of interactive descrip-
tors for other reaction classes, particularly if the descriptors were obtained at low-cost levels of theory.

Döntgen et al. have compared atomic partial charges to bond dissociation energies for their use as descriptors for
activation barriers of unimolecular reactions.149 Reaction activation barrier heights and bond dissociation energies were

FIGURE 14 A representation of the TS for the insertion-coordination reaction of ethylene with a cationic metallocene catalyst, studied

by Mikami
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calculated at the DLPNO-CCSD(T)/CBS(cc-pVTZ, cc-pVQZ) level of theory (CBS refers to extrapolating cc-pVTZ and
cc-pVQZ to the complete basis set limit213) for 15 alkoxy roaming reactions, 10 keto-enol tautomerizations, 17 external
radical H-atom abstractions, and 14 internal radical H-atom abstractions, with geometries optimized at the B3LYP-
D3BJ/def2-TZVP level of theory. See Figure 16 for illustrations of the four reactions. One atomic partial charge was
used for each reaction that corresponded to the carbon atom at the “reaction center.” The bond dissociation energies
and partial charges were fit to the activation barrier heights data with linear and/or quadratic equations
(i.e., determining the functions that best expressed the relationships between barrier height and the two descriptors for
each set of reactions). For the alkoxy roaming reactions and keto-enol tautomerizations, the model relating atomic par-
tial charges to activation barrier was a much better fit than that for bond dissociation energies, as evidenced by the
lower MAEs and RMSEs for the partial charge model than the bond dissociation energy model. However, for the two
sets of H-atom abstraction reactions, neither the single partial charge nor the bond dissociation energy could be reason-
ably fit to a polynomial equation. Despite this, for the internal H-atom abstraction reactions where a peroxy radical
formed an aldehyde or ketone and an OH˙ radical, the product of the carbon and oxygen partial charges of the peroxide
group had a strong linear correlation with the activation energy of the reactions (with R 2 correlation coefficient of 0.9).
This indicates that the single partial charge provided insufficient information, but the two partial charges encoded
enough information of the reaction mechanism that a better model for activation barrier was achieved. This perhaps
indicates that a choice of features based on mechanistic understanding may provide a better description of activation
energy. In this case, more than only the carbon atom in the peroxy group was significantly involved in the reaction
mechanism and thus the combination of partial charges of atoms involved in the reaction was a superior descriptor.

3.4 | Reducing data requirements and interpreting models

Most ML models require reasonable amounts of data to ensure the accuracy of their predictions is as close as possible
to the accuracy of the training data. However, highly accurate training data, whether from experiment, or high-level
QM calculations, is very expensive to produce and in most instances these data will likely be of a limited scale. There-
fore, a ML model that can attain a good performance with only very small amounts of training data will be very desir-
able indeed. GPR seems to be a good candidate for this task,60,133,138 and in this section the papers that have used GPR
for predicting activation barriers with reduced training sets are reviewed.

FIGURE 15 The procedure by which electrical interaction, charge transfer and core repulsion energies are calculated from natural

energy decomposition analysis. The energy change (ΔE) is calculated as the energy difference between the ethylene-metallocene

intermediate complex (left) and the unrelaxed and separated ethylene and metallocene (right). This energy change is then partitioned into

the three energies, based on natural bond order analysis205,206

FIGURE 16 The four reaction types studied by Döntgen et al., shown as generic mechanisms. (Top left) Alkoxy roaming reaction.

(Bottom left) Keto-enol tautomerization. (Top right) Internal radical H-atom abstraction. (Bottom right) External radical H-atom abstraction

LEWIS-ATWELL ET AL. 15 of 31



Another attempt to address both reducing data requirements and interpreting ML models comes from Friederich
et al. with their modeling of hydrogen activation on derivatives of Vaska's complex.140 The derivatives of Vaska's com-
plex214,215 that would make up the dataset were defined from the combinations of a chosen set of ligands surrounding
an iridium center (Figure 17). See also Figure 18 for a representation of a TS for the hydrogen activation reaction at an
example of Vaska's complex. In total, 2574 complexes were possible from the set of ligands (and their allowed positions
around the complex), and the ML models were to be trained to predict activation energies of the reaction between the
complexes and molecular hydrogen. However, the TSs for only 2197 complexes could be optimized using the PBE den-
sity functional,216 the def2-SVP basis set,217 and Grimme's D3 dispersion correction.218

The first part of the study was to train NNs to predict the activation energies of the reactions. The NNs used autocor-
relation and deltametric functions as features. These combine the values of an atomic property for all atoms within a
certain number of bonds from the iridium center, through pairwise products (for autocorrelation) or differences (for
deltametric). Thus, the functions give unique encodings of the environments within a complex as the number of bonds
from the iridium center varies. The atomic properties used were electronegativities, atomic numbers, the number of
atoms at a given number of bonds from the center, coordination numbers, and covalent radii. Thus, for example, one
feature could be the deltametric function for electronegativities at a distance of two bonds, which would be calculated
by the sum of the pairwise differences between the electronegativities of all atoms two bonds from the center. Note that
none of these features require QM calculations to be determined, only a two-dimensional representation of the complex
is required. The best NN model had a MAE for the test data of 1.12 kcal mol�1 when trained on 80% of the training data
available; an impressive result. Ideally however, the ML could be able to make predictions with this accuracy (or better)
with a reduced set of training data. Hence the second part of their study involved using GPR and feature selection, to
ascertain if an accurate ML model could be constructed on a reduced training set. As well as the autocorrelation/
deltametric function features, Morgan fingerprints197,219 (which provide string-based representations of atomic environ-
ments taking into account all atoms within a given circular cutoff) and molecular fingerprints from RDKit220 were also
included as potential features for the GPR model. A GB model was used to select which features had the most substan-
tial contributions to activation energy. The GPR model trained on 80% of the data had a MAE of 0.59 kcal mol�1, but
perhaps more significantly, the GPR was able to reach a MAE below 1 kcal mol�1 with only 20% of the training data.
This is a significant result; not only did the GPR model show excellent performance with very limited amounts of train-
ing data, but it did so with features that were not derived from expensive QM calculations.

After the ML models were trained, the GB method was used to analyze which input features had the greatest impor-
tance to the GPR and NN models, thereby allowing interpretation of the factors that lead the models to their predictions
for any given complex. For the NN and GPR, the autocorrelation feature corresponding to the atomic numbers of atoms

FIGURE 17 The ligands composing the chemical space of the derivatives of Vaska's complex considered by Friederich et al. The R1

ligands are σ-donors and π-acceptors, the R2 and R4 ligands are σ-donors, and the R3 ligands are σ-donors and π-donors

FIGURE 18 An illustration of an example TS for hydrogen activation on the [Ir(PMe3)2(CO)Cl] complex

16 of 31 LEWIS-ATWELL ET AL.



at a distance of two bonds from the center was the most important. In the NN, autocorrelation functions for atoms at
other distances, and the deltametric functions for electronegativities, also had high importances. For GPR, the Morgan
and RDKit fingerprints were the other high-importance features. Taken together, the analysis showed that reactivity
around the complexes was more largely dependent on electronic effects, rather than steric effects from the ligands. Fur-
ther in-depth analyses using the fingerprints from the GPR model allowed for interpretation of the effects of changing
ligands on activation energy. For example, when a fluoride ligand was replaced with a cyanide, the predicted activation
energy decreased by 14.4 kcal mol�1 which was due to the electron withdrawing character of the cyanide, leading to
less repulsion between the iridium center and the approaching hydrogen. Friederich et al. note that this type of inter-
pretation of ML models can be used for the screening and design of new potential catalysts.140

Jorner et al. also utilized GPR in low data circumstances146 when they created a “hybrid” model, in which a ML
model was trained on experimental data, and DFT was used to calculate the features for the model. The rate constants
for 443 nucleophilic aromatic substitution (SNAr) reactions were obtained from the literature, see Figure 19 for an illus-
tration of a selection of the reactions. GPR models were trained to reproduce these rate constants and thus, from the
predictions, activation barriers could be calculated. Reactants and TSs for each reaction were conformationally searched
with the GFN2-xTB semiempirical method,221 and the lowest energy conformers from the searches were optimized at
the ωB97X-D/6-31+G(d) level of theory, with single-point energies calculated at the ωB97X-D/6-311+G(d,p) level of
theory. Electronic properties of the reactants and TSs were calculated with the B3LYP/6-31+G(d) level of theory and
used as features for the models. Reactant features were ionization energies; electron attachment energies222; the surface
electrostatic potential and electrostatic potentials at reactive nuclei223,224; local and global descriptors of nucleophilicity
and electrophilicity225; atomic charges; bond orders; solvent accessible surface areas226; and a descriptor for disper-
sion.227 TS features were the activation barrier of the reaction as calculated with the ωB97X-D/6-311+G(d,p) level of
theory; TS atomic charges; TS bond orders; and TS nuclear electrostatic potentials. Separate GPR models were trained
using different sets of the electronic (DFT-calculated) features. One set used all the electronic features from reactants
and TSs, another without any TS features, and another using a small subset of the features, including the DFT calcu-
lated activation energy. GPR models were also trained with Morgan fingerprints, as well as “In Silico Design and Data
Analysis” descriptors228 (which encode molecules and reactants based on the fragments that make up the systems). The
final feature set was a deep learning encoding of the reactions using a Bidirectional Encoder Representations from
Transformers (BERT) classifier.229 The DNN in the BERT classifier is trained to create fingerprint representations of the
reactions, and these learned fingerprint representations were used as input features for the barrier ML models. Overall,
GPR trained on the full set of electronic features performed best, with a MAE of 0.77 kcal mol�1.

Since the hybrid model proposed by Jorner et al. uses experimental data, and most experimental datasets are likely
to be of reduced size compared to those constructed from DFT, it will be crucial for the ML method in this type of
model to be able to provide reliable results with restricted amounts of data. As also seen in the study by Friederich
et al.,140 GPR seems to fill this limited-data role very well; it was able to reach a MAE less than 1 kcal mol�1 with less

FIGURE 19 Three of the SNAr reactions modeled by Jorner et al. from their experimental dataset
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than 120 training samples and was also found to outperform LR, RFR, and SVR models trained with the same experi-
mental rate constants with the full set of electronic features. The major advantage of this hybrid method is that the
model is not confined to the accuracy of DFT; the limit of the model's accuracy is experiment itself. It also represents a
useful method in the case when a limited amount of training data is available for ML (e.g., when using experimental
data). In this case, the additional cost of DFT calculations for input features is justified by the greatly improved accuracy
of the ML model.

Jorner et al. interpreted the model by calculating the Spearman coefficients between the model predictions and the
features. This found, as may be expected, that the DFT calculated activation barrier was the most important feature to
the predictions. However, the GPR model that did not include any features from the TSs still had a very respectable
MAE of 0.86 kcal mol�1, and the MAE was still lower than 1 kcal mol�1 with under 200 training samples. Thus, not
including TS features did not lead to massively lowered accuracy for the SNAr reactions. The model was still able to give
chemical accuracy with only a modest amount of extra training data. The model based on the deep learning BERT fea-
tures was also able to reach chemical accuracy, although with just over 350 training samples. In addition, the BERT fea-
tures only require the connectivity of the systems in the reactions to be created, with no QM calculations needed. With
a rather small number of datapoints, the risk of overfitting is apparent, although given the very strong performance of
this model this may not be an issue. However, it is still worth guarding against overfitting when creating ML models,
since this will deteriorate the general performance of the model, and one should always aim to use the largest dataset
that is feasible to obtain.

There has recently been an increasing amount of attention paid to the interpretation of ML models, especially to
avoid so-called “black box” approaches (especially DNNs), where the ML methods can make useful predictions, but
their complexity means that it is not possible for humans to grasp exactly why the model came to its conclusions.230 An
argument can be made231 that a better approach is to construct explainable, more easily understood models (such as
LR), rather than to interpret feature importances after a more complex model has been trained. However, at least in the
context of predicting activation barriers, LR models do not typically match the performance of more advanced algo-
rithms such as NNs, GPR, and KRR.140,142,144,146,158,159 This is not to say that LR models are irrelevant; their accuracies
can be reasonable when trained with suitable features, but future workers attempting to predict activation barriers with
ML should consider that a potential trade-off between model performance and interpretability may occur.

3.5 | Δ-ML for activation energy prediction

Δ-ML is a technique developed by Ramakrishnan et al.232 where an ML model is trained to predict a correction for a
property calculated at a low level of theory (known as the baseline). Rather than training the model to directly predict
the high-level (targetline) value of the property, Δ-ML models are trained on the difference between the baseline and
targetline values. The Δ-ML model is thus able to correct a property calculated at a low level of theory closer to its value
at a higher level of theory (represented graphically in Figure 20).

Hammett's equation is notable for its simultaneous simplicity and predictive ability.233–237 However, Hammett's
original method is saddled with some significant disadvantages. The values of the substituent constants are highly
dependent on the choice of reference reaction and may not be reliable for other reactions.238–240 Hammett's method also
easily overfits towards the reference reaction, meaning its predictions will be good for the reference reaction, but poorer
for others. Thus, it was the work of Bragato et al.148 to form a new Hammett method such that the substituent constants
could become more transferable and the overall model be made more reliable for different reactions. This was achieved
by calculating all reaction constants at the same time and calculating each substituent constant from its average over
all reactions. This means the substituent constants give, generally speaking, better predictions for all reactions in the
dataset rather than being biased towards the reference.

For a dataset of approximately 2400 SN2 reactions (Figure 21), with MP2 calculated activation energies, Bragato
et al. created Hammett models based on both the old and new methods as well as a ML and a Δ-ML model, to predict
the activation energies of the SN2 reactions. Note that the Hammett model is still applicable to activation energies since,
from TS theory, activation energy is directly proportional to the negative logarithm of rate constant.

Their chosen ML model was KRR, and it was trained on inputs of one-hot strings (zeros and ones only) encoded to
represent the functional groups and their positions, with reaction activation energy as output. As may be expected,
KRR was able to outperform both Hammett models. When plotted, the MAEs between the predicted and the MP2
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activation energies were consistently lower for KRR than the new Hammett model and much lower than the original as
the number of training points was increased. The greater performance of KRR is due to its greater flexibility; it can
account for deviations from linearity in the data that the linear Hammett models cannot. However, KRR does have the
disadvantage of being much more complex and requiring more data compared to the Hammett model. For the Ham-
mett equation, only one parameter is needed per substituent, per possible position, but for KRR a parameter must be
determined for every training point.

The Δ-ML also used KRR and was trained to predict the difference between the activation energies from the new
Hammett method as a baseline, and the MP2 activation energies as the targetline. The “normal” ML and Δ-ML models
eventually reached the same error (MAEs just greater than 1.5 kcal mol�1) with enough training points, but Δ-ML con-
sistently had lower MAEs for all numbers of training points. This has been noted as an advantage of the Δ-ML
approach.232,241 The function that describes the error from a lower level of quantum chemical theory, relative to a
higher level is apparently smoother232 (and hence easier for ML algorithms to interpolate its form), compared to the
function describing the relationship between the chemical system and its properties.

Δ-ML makes for an effective combination of QM and ML. It is able to reach the same level of accuracy as a ML
model trained with molecular descriptors, but with reduced data requirements due to the smoother and more easily

FIGURE 20 Illustration of how Δ-ML can make predictions of chemical properties (E) in chemical feature space (R). Δ-ML is trained

to predict the difference between the baseline (orange) and targetline (green) values of the property of interest. This predicted difference can

then be used to correct the baseline value closer to the accuracy of the targetline (black arrow)

FIGURE 22 Illustration of how ReactionPredictor breaks down an overall reaction (top) into a sequence of elementary steps (bottom).

For a given reaction, the most favorable elementary steps are selected by the DNN and the entire reaction is modeled from start to

completion with DFT

FIGURE 21 SN2 reactions with activation energies calculated at the MP2 level of theory used by Bragato et al. for training of the

Hammett and ML methods. Nucleophiles and leaving groups can be any of H, F, Cl and Br. R-groups (substituents) can be any of H, NO2,

CN, NH3 and CH3
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learnt relationship between the baseline and targetline properties. This allows for QM reaction modeling studies to be
performed at increased speed and scale.

3.6 | QM-ML synergy

An interesting example of a somewhat indirect use of reaction activation energies with ML came from Sadowski et al.
and their software ReactionPredictor.147 The program was designed to be able to predict the likely outcomes of chemi-
cal reactions through a synergy of QM and ML. The procedure for this task was as follows: when given a set of reac-
tants, electron sources and sinks are identified242,243 and a DNN ranks all possible electron transfers between source–
sink pairs (corresponding to an elementary step in a reaction, see also Figure 22) in order of their favorability. After
ranking by the DNN, the reactants, products, and TSs for the top few reaction pathways are optimized with DFT and
the activation energies for the elementary reactions are calculated. Hence the overall mechanism of a reaction can be
determined based on which elementary steps are most favorable, as ranked by the DNN.

In this approach, the synergy between ML and QM occurs when the DNN has incorrectly ranked the reactions, as
will be discovered after QM calculations. In that case the DNN is retrained with the correct ordering for these reactions,
and thus its predictions are brought closer in line with QM. The ReactionPredictor system was later tested by Fooshee
et al.244 on a new dataset of reactions and achieved an accuracy of 80% for correctly predicting the products of an
unseen benchmark dataset of multistep reactions.

The task of ReactionPredictor requires a great deal of flexibility from its ML model. Not only does the model have to
interpret the input for a given reaction, but it also needs to be able to learn the underlying principles behind how
organic reaction mechanisms proceed, based only on elementary reaction steps. DNNs are optimally suited to this type
of problem. DNNs appear to gain some understanding of the underlying chemistry of the systems in their training sets.
This is also seen when DNNs are used to predict potential energies of chemical systems66,185,245; when trained on data
from smaller systems, they are still able to make accurate predictions for larger systems.

4 | SUMMARY AND CONCLUSION

This review has examined the work using ML to predict activation energy barriers of homogeneous chemical reactions.
Using ML models for activation barrier prediction is a relatively new, rapidly evolving area of study with all studies pres-
ented having being published within 5 years of the time of writing. Please see Table 1 for a summary of the key information
from these studies. NNs have been seen to be flexible and effective ML techniques for this task, especially DNNs, and their
use in the context of these works was discussed. A couple of potential limitations in some studies were noted. First, models
using training data that consisted mostly of similar reactions would likely display very limited ability for generalization, but
even more prominently was the use of input features derived from QM calculations. Although the ML models mean that
difficult TS structures need not be found with QM to make predictions, the purpose of using ML in chemistry is to reduce
the need for expensive QM calculations. However, also seen are models that exclusively use geometrical features as inputs,
and still give very promising results. On the other hand, these models will not be able to offer the same level of mechanistic
insight that could be obtained by analyzing feature importances in a model using QM-derived features.

As the use of ML in computational chemistry increases, the need for large datasets of chemical properties generated
by QM calculations will also increase. It will therefore be a worthy endeavor to create tools that are capable of per-
forming high-throughput QM calculations for a wide variety of different reaction types.246 Attention has also been
drawn to methods that have a reduced requirement for the amount of training data needed, and those that make
attempts to interpret ML models. It is debatable whether it is better to use simpler models that can be easily interpreted,
or to construct less comprehensible models that (at least in the context of activation energies) give more reliable results
and interpret them by computing feature importances from the fully trained models. Δ-ML has also been seen to be a
very effective technique for the acceleration of activation energy evaluation. Given the very recent influx of work using
ML for reaction barrier modeling, there is little doubt that there is much work to be done towards the goal of general,
rapid and chemically accurate activation energies.
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