
Martinez, G. J., Adamatzky, A., Alonso-Sanz, R. and Mora, J. C.
(2010) Complex dynamics emerging in Rule 30 with majority mem-
ory. Complex Systems, 18 (3). pp. 345-365. ISSN 0891-2513 Avail-
able from: http://eprints.uwe.ac.uk/10410

We recommend you cite the published version.
The publisher’s URL is:
http://www.complex-systems.com/Archive/hierarchy/abstract.cgi?vol=18&iss=3&art=05

Refereed: Yes

(no note)

Disclaimer

UWE has obtained warranties from all depositors as to their title in the material
deposited and as to their right to deposit such material.

UWE makes no representation or warranties of commercial utility, title, or fit-
ness for a particular purpose or any other warranty, express or implied in respect
of any material deposited.

UWE makes no representation that the use of the materials will not infringe
any patent, copyright, trademark or other property or proprietary rights.

UWE accepts no liability for any infringement of intellectual property rights
in any material deposited but will remove such material from public view pend-
ing investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

http://www.complex-systems.com/Archive/hierarchy/abstract.cgi?vol=18&iss=3&art=05

Martinez, G. J., Adamatzky, A., Alonso-Sanz, R. and Mora, J. C.
(2010) Complex dynamics emerging in Rule 30 with majority mem-
ory. Complex Systems, 18 (3). pp. 345-365. ISSN 0891-2513 Avail-
able from: http://eprints.uwe.ac.uk/10410

We recommend you cite the published version.
The publisher’s URL is:
http://www.complex-systems.com/Archive/hierarchy/abstract.cgi?vol=18&iss=3&art=05

Refereed: Yes

(no note)

Disclaimer

UWE has obtained warranties from all depositors as to their title in the material
deposited and as to their right to deposit such material.

UWE makes no representation or warranties of commercial utility, title, or fit-
ness for a particular purpose or any other warranty, express or implied in respect
of any material deposited.

UWE makes no representation that the use of the materials will not infringe
any patent, copyright, trademark or other property or proprietary rights.

UWE accepts no liability for any infringement of intellectual property rights
in any material deposited but will remove such material from public view pend-
ing investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

http://www.complex-systems.com/Archive/hierarchy/abstract.cgi?vol=18&iss=3&art=05

Complex Dynamics Emerging in Rule 30
with Majority Memory

Genaro J. Martínez* H1,2L

Andrew Adamatzky H1L

Ramon Alonso-Sanz H1L

H1LDepartment of Computer Science
University of the West of England
Bristol BS16 1QY, United Kingdom
H2LInstituto de Ciencias Nucleares and Centro de Ciencias de la Complejidad

Universidad Nacional Autónoma de México
*genaro.martinez@uwe.ac.uk

Juan C. Seck-Tuoh-Mora

Centro de Investigación Avanzada en Ingeniería Industrial
Universidad Autónoma del Estado de Hidalgo Pachuca
Hidalgo, México

In cellular automata (CAs) with memory, the unchanged maps of
conventional CAs are applied to cells endowed with memory of their
past states in some specified interval. We implement the rule 30 automa-
ton and show that by using the majority memory function we can trans-
form the quasi-chaotic dynamics of classical rule 30 into domains of
traveling structures with predictable behavior. We analyze morphologi-
cal complexity of the automata and classify glider dynamics (particle,
self-localizations) in the memory-enriched rule 30. Formal ways of
encoding and classifying glider dynamics using de Bruijn diagrams, soli-
ton reactions, and quasi-chemical representations are provided.

1. Introduction

An elementary cellular automaton (CA) is a one-dimensional array of
finite automata, where each automaton takes two states and updates
its state in discrete time depending on its own state and the states of
its two closest neighbors. All cells update their state synchronously.
The following general classification of elementary CAs was intro-
duced in [1].

Class I. CAs evolve to a homogeneous state.

Class II. CAs that evolve periodically.

Class III. CAs that evolve chaotically.

Class IV. Include all previous cases, also known as the class of complex
rules.

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

Class IV is of particular interest because the rules exhibit nontrivial
behavior with rich and diverse patterns, as shown for rule 54 in [2, 3].

2. Basic Notation

2.1 One-Dimensional Cellular Automata

One-dimensional CAs are represented by an infinite array of cells xi
where i œ  and each x takes a value from a finite alphabet S. Thus, a
sequence of cells 8xi< of finite length n represents a string or global
configuration c on S with the set of finite configurations represented
as Sn. An evolution is represented by a sequence of configurations 9ci=

given by the mapping F : Sn Ø Sn; thus their global relation is
provided as

(1)F IctM Ø ct+1

where t is time and every global state of c is defined by a sequence of
cell states. Also, the cell states in configuration ct are updated at the
next configuration ct+1 simultaneously by a local function j:

(2)j Ixi-r
t , … , xi

t, … , xi+r
t M Ø xi

t+1.

Wolfram represents a one-dimensional CA with two parameters
Hk, rL where k  †S§ is the number of states, and r is the neighborhood
radius. Elementary CAs are defined by parameters Hk  2, r  1L.
There are Sn different neighborhoods (where n  2 r + 1) and kkn

different evolution rules.
We used automata with periodic boundary conditions in our

computer experiments.

2.2 Cellular Automata with Memory

Conventional CAs are ahistoric (memoryless): that is, the new state of
a cell depends on the neighborhood configuration solely at the preced-
ing time step of j as in equation (2).

Cellular automata with memory consider an extension to the stan-
dard CA framework by implementing memory capabilities in cells xi
from its own history.

Thus, to implement memory we incorporate a memory function f,

(3)f Ixi
t-t, … , xi

t-1, xi
tM Ø si

such that t < t determines the degree of memory backward and each
cell si œ S is a state function of the series of states of the cell xi with
memory up to the current time step. Finally, to execute the evolution
we apply the original rule as:

jI… , si-1
t , si

t, si+1
t , …M Ø xi

t+1.
Thus, in CAs with memory, while the mappings j remain unal-

tered, historic memory of all past iterations is retained by featuring
each cell with a summary of its past states from f. Therefore, cells
canalize memory to the map j.

 346 G. J. Martínez et. al

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

Thus, in CAs with memory, while the mappings j remain unal-
tered, historic memory of all past iterations is retained by featuring
each cell with a summary of its past states from f. Therefore, cells
canalize memory to the map j.

As an example, we define the majority memory as

(4)fmaj Ø si

where, in case of a tie given by S1  S0 from f, we will take the last
value xi. So the fmaj function represents the classic majority function

[4] on the cells Ixi
t-t, … , xi

t-1, xi
tM and defines a temporal ring before

finally getting the next global configuration c.

Figure 1. The effect of majority memory with increasing depths on rule 30
starting from a single site live cell.

Majority memory exerts a general inertial effect [5]. This effect,
when starting from a single site live cell, notably restrains the dynam-
ics, as illustrated using rule 30 in Figure 1. This figure shows the
spatio-temporal patterns of both the current x state values and that of
the underlying s values.

3. Elementary Cellular Automaton Rule 30

Rule 30 was initially studied by Wolfram in [1] because of its chaotic
global behavior while looking for a random number generator.
Rule°30 is an elementary CA that evolves in one dimension of order
H2, 1L. An interesting property is that it has a surjective relation and
thus does not have Garden of Eden configurations [6]. In this way,
any configuration always has at least one predecessor.

Here is the local rule j corresponding to rule 30:

jR30 
1 if 100, 011, 010, 001

0 if 111, 110, 101, 000
.

Generally speaking, rule 30 displays a typical chaotic global behav-
ior, that is, it is in Wolfram’s Class III. An interesting study on rule 30
showing a local nested structure that repeats periodically while look-
ing for invertible properties is given in [7].

 Complex Dynamics Emerging in Rule 30 with Majority Memory 347

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

Generally speaking, rule 30 displays a typical chaotic global behav-
ior, that is, it is in Wolfram’s Class III. An interesting study on rule 30
showing a local nested structure that repeats periodically while look-
ing for invertible properties is given in [7].

So, initially jR30 has a 50% probability of states zero or one, and
consequently each state appears with the same frequency.

HaL HbL

Figure 2. (a) Typical behavior of rule 30, where a single cell in state one leads
to a chaotic state. (b) Shows the automaton behavior from a random initial
condition with an initial density of 50% for each state. Both automata
evolved on a ring of 497 cells (with a periodic boundary property) to 417
generations. White cells represent state zero and dark cells the state one.

Also, the evolution of rule 30 presents the following feature: if an
initial configuration is covered all in state one, then it always evolves
into one; but if this is empty or filled with state one then this always
evolves to state zero. Figure 2 shows two typical cases of evolution
with rule 30.

3.1 De Bruijn and Subset Diagrams in Rule 30

Given a finite sequence w œ Sm, such that w  w1, … , wm, let
a HwL  w1, b HwL  w2, … , wm, and yHwL  w1, … , wm-1. With
these elements, we can specify a labeled directed graph known as a de
Bruijn diagram   8N; E< associated with the evolution rule of the
CA. The nodes of  are defined by N  S2 r and the set of directed
edges E Œ S2 räS2 r is defined as

(5)E  8Hv, wL v, w œ N, b HvL  y HwL<.

For every directed edge Hv, wL œ E, let h Hv, wL  a w œ S2 r+1

where a  a HvL; that is, h Hv, wL is a neighborhood of the automaton.
In this way, the edge Hv, wL is labeled by j È h Hv, wL; hence, every
labeled path in  represents the evolution of the corresponding
sequence specified by its nodes. Since each w œ N can be described by
a number base k of length 2 r, every node in  can be enumerated by
a unique element in k2 r , which is useful for simplifying the diagram.
The de Bruijn diagram associated with rule 30 is depicted in Figure 3,
where black edges indicate the neighborhoods evolving into zero and
those evolving into one are shown by gray edges. The de Bruijn and
subset diagrams were calculated using NXLCAU21 designed by McIn-
tosh. The program is available from delta.cs.cinvestav.mx/~mcintosh.

 348 G. J. Martínez et. al

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

For every directed edge Hv, wL œ E, let h Hv, wL  a w œ S2 r+1

where a  a HvL; that is, h Hv, wL is a neighborhood of the automaton.
In this way, the edge Hv, wL is labeled by j È h Hv, wL; hence, every
labeled path in  represents the evolution of the corresponding
sequence specified by its nodes. Since each w œ N can be described by
a number base k of length 2 r, every node in  can be enumerated by
a unique element in k2 r , which is useful for simplifying the diagram.
The de Bruijn diagram associated with rule 30 is depicted in Figure 3,
where black edges indicate the neighborhoods evolving into zero and
those evolving into one are shown by gray edges. The de Bruijn and
subset diagrams were calculated using NXLCAU21 designed by McIn-
tosh. The program is available from delta.cs.cinvestav.mx/~mcintosh.

Figure 3. De Bruijn diagram for the elementary CA rule 30.

Figure 3 shows that there are four neighborhoods evolving into
zero and four into one, meaning that each state has the same probabil-
ity to appear during the evolution. This indicates the possibility that
the automaton is surjective, that is, there are no Garden of Eden
configurations. Classical analysis in graph theory has been applied
over de Bruijn diagrams for studying topics such as reversibility [8];
cycles in the diagram indicate periodic elements in the evolution of
the automaton if the label of the cycle corresponds to the sequence
defined by its nodes, in periodic boundary conditions. The cycles in
the de Bruijn diagram from Figure 3 are presented in Figure 4.

Figure 4. Cycles in the de Bruijn diagram and the corresponding periodic
evolution for cycle H1, 2L.

The largest cycle in Figure 4 indicates that the undefined repetition
of sequence wb  10 establishes a periodic structure without displace-
ment in one generation during the evolution of rule 30. We then say
that wb is the filter in rule 30. A filter is a periodic sequence that
exists alone or in blocks during the evolution; thus, suppressing such
a string produces a new view. In the present paper, we apply the filter
to the original rule 30 and its modifications with memory. Thus, we
can see how a de Bruijn diagram can recognize any periodic structures
in a CA [3, 9].

 Complex Dynamics Emerging in Rule 30 with Majority Memory 349

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

The largest cycle in Figure 4 indicates that the undefined repetition
of sequence wb  10 establishes a periodic structure without displace-
ment in one generation during the evolution of rule 30. We then say
that wb is the filter in rule 30. A filter is a periodic sequence that
exists alone or in blocks during the evolution; thus, suppressing such
a string produces a new view. In the present paper, we apply the filter
to the original rule 30 and its modifications with memory. Thus, we
can see how a de Bruijn diagram can recognize any periodic structures
in a CA [3, 9].

A de Bruijn diagram is nondeterministic in the sense that a given
node may have several output edges with the same label. A classical
approach to analyzing the diagram would be to construct the subset
(or power) diagram in order to obtain a deterministic version for the
de Bruijn diagram in the evolution rule [10, 11].

The subset diagram is defined as   8, < where
  8P P Œ S‹«< is the set of nodes of  and the directed edges are
defined by  Õ ä where for P1, P2 œ  there is a directed edge
HP1, P2L labeled by a œ S in  if and only if P2 is the maximum subset
such that for every c œ P2 there exists b œ P1 such that j Hb, cL  a.

The inclusion of the empty set assures that every edge has a well-
defined ending node. For a CA with k states, it is fulfilled that
†§  2k2 r

, which implies an exponential growth in the number of
nodes in  when more states are considered. Every P œ  can be iden-
tified by a binary number showing the states belonging to this subset,
that is, taking the states as an ordered list. The states in P can be
signed by a 1 and the others by 0, making a unique binary sequence
to identify the subset. The decimal value of this binary number can be
taken to get a shorter representation where the empty set has a deci-
mal number 0 and the full subset p  S has the number 2k2 r

- 1. The
subset diagram corresponding to rule 30 is shown in Figure 5.

Figure 5. Subset diagram for rule 30.

In Figure 5, the subset diagram has no path starting from the full
subset (node 15) going to the empty subset (node 0). This means that
every sequence can be produced by the evolution of the automaton
and there are no Garden of Eden sequences. Thus, the automaton is
surjective. The subset diagram can also be used as a deterministic
automaton for calculating ancestors of any desired sequence [12] by
recognizing the regular expressions that may be generated by the
corresponding automaton. Some of these expressions would be able
to represent interesting structures as gliders [13]; however, more
effort is needed in order to get a straightforward detection of such
constructions in the diagram.

 350 G. J. Martínez et. al

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

In Figure 5, the subset diagram has no path starting from the full
subset (node 15) going to the empty subset (node 0). This means that
every sequence can be produced by the evolution of the automaton
and there are no Garden of Eden sequences. Thus, the automaton is
surjective. The subset diagram can also be used as a deterministic
automaton for calculating ancestors of any desired sequence [12] by
recognizing the regular expressions that may be generated by the
corresponding automaton. Some of these expressions would be able
to represent interesting structures as gliders [13]; however, more
effort is needed in order to get a straightforward detection of such
constructions in the diagram.

Finally, such diagrams help get periodic strings that eventually
represent a general filter wb working on the original rule 30 and rule
30 with memory. Also, we will take advantage of these results to find
gliders in the strings.

4. Majority Memory Helps to Discover Complex Dynamics in Rule 30

This section reports on how the majority memory f helps in the
discovery of complex dynamics in elementary CAs by experimenta-
tion. For an introduction to elementary CAs with memory, see
[14|16].

Figure 6 displays different scenarios where the majority memory
fmaj works on rule 30 to extract the complex dynamics. The evolu-
tions should be read from left to right and up to down. All of these
evolutions use the same random initial density and filter wb
(including the original rule 30). Thus, the first evolution shown in
Figure 6 is the original rule 30, that is, without majority memory. In
the original evolution we can see gaps that the filter can clean. Tradi-
tionally, it was difficult to distinguish such a filter, but when fmaj was
applied to rule 30 its presence was more evident. A general technique
for getting filters was developed by Wuensche in [17].

Initially, even values of t seem to extract gliders more quickly and
odd values fight to reach an order. Eventually, the majority memory
will converge to one stability in F while t increases.

The first snapshot calculating fmaj with t  3 is shown by the
second evolution in Figure 6. It is not yet clear how memory induces
another behavior because the global behavior is still similar to the
original with only small changes.

On the other hand, the third evolution with t  4 does extract peri-
odic patterns. The evolution might not display impressive gliders but
it already allows picking out more diversity in mobile localizations on
lattices of 100ä100 cells. Thus, we have enumerated and ordered
values of t from Figure 6 based on the space-time dynamics they are
responsible for:

Chaotic global behavior: t  0, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21

Periodic patterns: t  4, 6, 8, 10, 12, 14, 16, 18, 19, 20, 21

Collision patterns: t  6, 8, 10, 12

 Complex Dynamics Emerging in Rule 30 with Majority Memory 351

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

Figure 6. Complex dynamics emerging in rule 30 with majority memory fmaj
from a range of values from t  3 to t  21. The first evolution shows the
original function. Evolutions were calculated on a ring of 104 cells in 104
generations with a random initial density of 50% and the same initial
conditions were used in all cases. Also, the filter wb was applied to clearly
show the structures.

4.1 Morphological Complexity in Rule 30 with Memory

In this section we explore some techniques for finding global complex
dynamics in rule 30 with and without majority memory.

We evaluate the morphological complexity of a CA using the
morphological richness approach in [18]. We calculate the statistical
morphological richness m as follows. Given the space-time configura-
tion of a one-dimensional CA, we extract the 3ä3 cell neighborhood
state for each site of the configuration and build a distribution of the
neighborhood states over an extended period of the automaton’s
development time.

Examples of morphological richness m are shown in Figure 7. A
control case, where the next state of a cell is calculated at random
from the distribution of space-time neighborhood states, is uniform
(Figure 7(a)). Two-dimensional random configurations are morpho-
logically rich. The morphology of memoryless, classical rule 30 is
characterized by few peaks in the local domain distributions, where
several space-time templates dominate in the global space-time config-
uration (Figure 7(b)). The statistical morphological richness m
decreases.

 352 G. J. Martínez et. al

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

Examples of morphological richness m are shown in Figure 7. A
control case, where the next state of a cell is calculated at random
from the distribution of space-time neighborhood states, is uniform
(Figure 7(a)). Two-dimensional random configurations are morpho-
logically rich. The morphology of memoryless, classical rule 30 is
characterized by few peaks in the local domain distributions, where
several space-time templates dominate in the global space-time config-
uration (Figure 7(b)). The statistical morphological richness m
decreases.

Incorporating memory in the cell-state transition rules leads to an
erosion of the distribution (Figure 7(c)) and thus slight increases in m.
With an increase in the memory depth, the shape of the morphologi-
cal distribution changes just slightly, up to minor height variations in
the major peaks (Figures 7(d) through (f)).

Figure 7. Morphological richness. Cellular automaton length of 1500 cells
with a running time of 5000 steps. (a) Random update of cell states. (b) Rule
30 without memory. Rule 30 with memory: (c) t  3, (d) t  5, (e) t  10,
and (f) t  21.

The number r of 3ä3 blocks (of states 0 and 1) that never appear
in the space-time configuration of a CA can be used to express an
estimate of the nominal morphological richness; smaller r indicate a
richer nominal configuration.

The difference between statistical m and nominal r measures of
morphological richness is that m allows picking most common
configurations of local domains, while r just shows how many blocks
of 3ä3 states appeared in the automaton evolution at least once.

For the case of randomly updating cell states, all blocks are present
in the space-time configuration and r  0.

 Complex Dynamics Emerging in Rule 30 with Majority Memory 353

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

For the case of randomly updating cell states, all blocks are present
in the space-time configuration and r  0.

Memoryless automata governed by rule 30 have r  434 so the
total number of possible blocks is 512. When memory is first
incorporated into the cell-state transition function, richness decreases,
for example, with t  1 we have r  448. Then we observe a
consistent increase in complexity. Thus, rule 30 with small-depth
memory (t  2) r  140, drastically decreases to r  68 for t  3.
The richness is stabilized, or rather oscillates around r values of 20 to
40 with a further increase of memory.

In summary, we found that majority memory increases the nominal
complexity of a CA but decreases its statistical complexity.

4.2 Gliders in Rule 30 with Memory t  8

Most frequently the complex dynamics of an elementary CA is related
to gliders, glider guns, and nontrivial reactions between localizations,
for example, rules 110 or 54 [2, 19]. The phenomena, and their regu-
lar expressions [3, 9], may lead to the discovery of novel systems with
computational universality [20, 21].

Figure 8. Gliders emerging in rule 30 with fmaj and t  8. This evolution
shows how some kinds of gliders arise and still interact from random initial
conditions. The evolution was calculated on a ring of 590 cells to 320 genera-
tions, with an initial density of 50%.

Among the sets of complex dynamics in rule 30 determined by t
(shown in Figure 6), we have chosen the memory fmaj with t  8. In
this way, Figure 8 illustrates an ample evolution space of its global
dynamics.

Of course, these gliders may not be as impressive as others from
such well-known complex rules as 110, 54, or some other one-dimen-
sional rules [1, 2, 19, 22, 23]. However, it is interesting that fmaj is
able to open complex patterns from chaotic rules.

Nevertheless, even though rule 30 does not offer an ample range of
complex dynamics, it is useful for describing gliders and collisions.
So, we shall illustrate how a chaotic CA can be decomposed as a
complex system.

 354 G. J. Martínez et. al

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

Figure 9. Set of gliders GR30m with memory fmaj and t  8.

We now classify the family of gliders and enumerate some of their
properties. Figure 9 displays the family of gliders
GR30m  9g1, g2, g3=. As was hoped, an immediate consequence is
that gliders in CAs with memory have longer periods.

Structure vg Lineal Volume

wb 0 ê c  0 2

g1 2 ê 11 º 0.1818 5

g2 4 ê 19 º 0.2105 7

g3 4 ê 17 º 0.2352 6

Table 1. Properties of gliders GR30m with memory fmaj and t  8.

Table 1 summarizes the basic properties of each glider. Practically,
all gliders in this domain have a constant displacement of four cells to
the right and no glider with speed zero was found, and yet finding a
glider gun in this domain is more complicated. Nevertheless, some
interesting reactions did originate from GR30m.

Structure wb does not have a displacement and it is also not a
glider. This pattern is the periodic background in rule 30 and repre-
sents the filter. It was really hard to detect the existence of a periodic
background evolving from the original rule. But when fmaj was
applied, a periodic pattern began to emerge that was inherited from
jR30. Finally, this filter was confirmed with its respective de Bruijn
and cycle diagrams (see Section 3.1).

4.3 Reactions between Gliders from GR30m

We now demonstrate some simple examples of collisions between glid-
ers. Codes for all gliders, necessary to generate the whole set of binary
collisions, are presented in the Appendix.

 Complex Dynamics Emerging in Rule 30 with Majority Memory 355

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

Figure 10 shows how a stream of g1 gliders is deleted from a
reaction cycle:

g3 + g1 Ø g2 and g2 + g1 Ø g3.

Figure 10. Deleting streams of g1 gliders initialized with a single g3 glider.

To obtain such a cycle by glider reactions, we can code an unlim-
ited initial condition as ... g3 ... g1 g1 g1 , that can be
reduced as ... g3 ... g1 H g1L

* (where a dot represents a copy of wb).
Finally, the evolution produces the given cycle, with nine periods of
g3 and eight periods of g2. Thus, each column presents 1135, 2270,
and 3405 generations, respectively. In such a representation, codes of
gliders will be different from codes used in our previous papers [3, 9,
19]. The glider reactions were produced using the OSXLCAU21
system available at uncomp.uwe.ac.uk/ genaro/OSXCASystems.html.

Since the better way to preserve jR30 and fmaj is to code the glid-
ers as “natural”, we consider the codification from its original initial
condition. See Appendix B where some strings are defined to get glid-
ers with memory from their original functions.

HaL HbL HcL

Figure 11. Some simple reactions display how to (a) delete, (b) read, and (c)
preserve information with gliders using rule 30 with memory.

Some simple but interesting reactions from GR30m are illustrated in
Figure 11. The first reaction shows the annihilation of gliders g2 and
g1. The second reaction shows how a transformation g3 glider trans-
forms a g1 glider into a g2. The third reaction shows a soliton-like
collision between gliders g2 and g1. The soliton reaction between glid-
ers is particularly promising because it can be used to implement
computation, for example, as in the carry-ripple adder embedded by
phase coding solitons in parity CAs [24, 25].

 356 G. J. Martínez et. al

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

Some simple but interesting reactions from GR30m are illustrated in
Figure 11. The first reaction shows the annihilation of gliders g2 and
g1. The second reaction shows how a transformation g3 glider trans-
forms a g1 glider into a g2. The third reaction shows a soliton-like
collision between gliders g2 and g1. The soliton reaction between glid-
ers is particularly promising because it can be used to implement
computation, for example, as in the carry-ripple adder embedded by
phase coding solitons in parity CAs [24, 25].

4.4 Quasi-Chemistry of Gliders

Assuming gliders g1, g2, and g3 are chemical species a, b, and c in a
well-stirred chemical reactor, we can derive the following set of quasi-
chemical reactions from the interactions between them:

(6)

a + b Ø
0.6

e

a + b Ø
0.2

2 a

a + b Ø
0.2

c

a + c Ø
0.44

b

a + c Ø
0.12

b + c

a + c Ø
0.22

3 a

a + c Ø
0.22

a

b + c Ø
0.5

b

b + c Ø
0.5

2 a + b

where reaction rates are evaluated from the frequencies of the interac-
tions.

We evaluated global dynamics of the quasi-chemical system (6)
with constant volume (reflecting the finite size of an automaton
lattice), constant temperature, and variable pressure using Chemical
Kinetics Simulator (available at www.almaden.ibm.com/st/computa-
tion_science/ck/?cks). Figure 12 shows the temporal dynamics of
species concentrations in the system with 107 molecules.

When all three species are present in equal concentrations at the
beginning (Figure 12(a)), we observe an exponential decay of species
b and c and a stabilization of the concentration of species a. When
only species b and c are initially present in a well-stirred reaction,
species c is produced by their reactions. This leads to an outburst in
species a concentration (Figure 12(b)) on the background of an expo-
nential decline of species c and b, until species b and c disappear and
the concentration of species a becomes constant.

 Complex Dynamics Emerging in Rule 30 with Majority Memory 357

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

When all three species are present in equal concentrations at the
beginning (Figure 12(a)), we observe an exponential decay of species
b and c and a stabilization of the concentration of species a. When
only species b and c are initially present in a well-stirred reaction,
species c is produced by their reactions. This leads to an outburst in
species a concentration (Figure 12(b)) on the background of an expo-
nential decline of species c and b, until species b and c disappear and
the concentration of species a becomes constant.

Figure 12. Dynamics of concentrations of species a (circle), b (diamond), and c
(square) governed by the reactions in equation (6). (a) Initial concentrations
of all species are 0.001 mole/l. (b) Initial concentrations of species b and c are
0.001 mole/l, species a is nil.

4.5 Glider Machines

Table 2 shows the interactions found between gliders, depending on
distance s between the interacting gliders.

s  3 s  4 s  5 s  6
b + a Ø 8a, b< b + a Ø 8«< b + a Ø 8«< b + a Ø a

c + a Ø b c + a Ø b c + a Ø 8b, c< c + a Ø 8b, c<
c + b Ø b c + b Ø b c + b Ø 8a, b< c + b Ø 8a, b<

Table 2. Glider interactions.

Taking into account the gliders’ velocities from Table 1, we can
construct the following finite state indeterministic machine with an
internal state h and input state p, h, p œ 8a, b, c, «<. The machine can
be characterized by an input-output transition matrix
M  Imi jMi,jœ9a,b,c,«=

, where for j  ht, i  pt, mi j  ht+1. The matrix

has the following form:

M 

ht+1 a b c «

a a 8a, «< b a

b b b 8a, b< b

c c c c c

« « « « «

Starting at a randomly chosen initial state and subjected to random
uniformly distributed input strings, the machine will end in the state c
with probability 1

4
 and in the state set with probability 3

4
. The

machine starting in the initial h generates the string l HhL as follows:
l H«L  «*, l HaL  Ha b* a*L* «*, l HbL  Hb* a*L* «*, l HcL  c*.

 358 G. J. Martínez et. al

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

Starting at a randomly chosen initial state and subjected to random
uniformly distributed input strings, the machine will end in the state c
with probability 1

4
 and in the state set with probability 3

4
. The

machine starting in the initial h generates the string l HhL as follows:
l H«L  «*, l HaL  Ha b* a*L* «*, l HbL  Hb* a*L* «*, l HcL  c*.

5. Discussion

We enriched elementary CA rule 30 with majority memory and
demonstrated that by applying certain filtering procedures we can
extract rich dynamics of traveling localizations, or gliders. We
inferred a sophisticated system of quasi-chemical reactions between
the gliders. It was shown that the majority memory increases nominal
complexity but decreases statistical complexity of patterns generated
by the CA. By applying methods of de Brujin diagrams and graph
theory, we proved the surjectivity of rule 30 CA with memory and
provided blue prints for future detailed analysis of glider dynamics.

Recalling previous results on the classification of one-dimensional
CA [17, 23, 26], we envisage that introducing majority memory fmaj
into elementary CA will open a new field of research in the selection
of nontrivial rules of cell-state transitions and precise mechanics of
relationships between chaotic and complex systems.

This is because rule 30 was grouped into a cluster of rules with
similar behavior, that can be transformed one to another using combi-
nations of reflection, negation, and complement (as done by Wuen-
sche in [26]). Figure 13 shows a diagram that explains how the origi-
nal cluster for rule 30 is presented in [26]. Obviously, the cluster can
be arbitrarily enriched using not only fmaj but any type of memory
and t. Thus, the dynamical complexity of automata with fmaj is the
same as for the set of functions 9jR30, jR86, jR135, jR149=, particu-
larly because the local functions jR86 and jR149 are responsible for
the leftward motion of gliders.

Therefore, memory in elementary and other CA families offers a
new approach for discovering complex dynamics based on gliders and
nontrivial interactions between gliders. This can be substantiated by a
number of different techniques, for example, number-conservation
[27, 28], exhaustive search [29], tiling [9, 30], de Bruijn diagrams [3],
Z-parameter [17], genetic algorithms [31], mean field theory [32], or
from a differential equations viewpoint [33].

 Complex Dynamics Emerging in Rule 30 with Majority Memory 359

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

Figure 13. A new family of elementary CA that can be composed.

Acknowledgments

Genaro J. Martínez and Ramon Alonso-Sanz are supported by
EPSRC (grants EP/F054343/1 and EP/E049281/1). Juan C. Seck-
Tuoh-Mora is supported by CONACYT (project CB-2007/083554).

Appendix

A. Binary Reactions and Beyond

We represent binary collisions in rule 30, fmaj and t  8 in the form

gj
space

gi, where j > i, g œ GR30 and space is the interval between
gliders given by the number of strings wb. Collisions that produce e
mean the annihilation of gliders. Reactions are developed by
increasing the distance between gliders before collision.

Collisions of type g2 Æ g1

1. g2ö
3

g1  g1 + g2 (soliton)

2. g2ö
4

g1  e

 360 G. J. Martínez et. al

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

3. g2ö
5

g1  e

4. g2ö
6

g1  2 g1

5. g2ö
7

g1  e

6. g2ö
8

g1  g3

Collisions of type g3 Æ g1

1. g3ö
3

g1  g2

2. g3ö
4

g1  g2

3. g3ö
5

g1  g2 + g3

4. g3ö
6

g1  g1
3

5. g3ö
7

g1  g1 + g1
2

6. g3ö
8

g1  g2

7. g3ö
9

g1  g1

8. g3ö
10

g1  g2

9. g3ö
11

g1  g1

Collisions of type g3 Æ g2

1. g3ö
3

g2  g2

2. g3ö
4

g2  g2

3. g3ö
5

g2  2 g1 + g2

4. g3ö
6

g2  2 g1 + g2

Some other reactions with packages of gliders

1. g2ö
5

2 g1  g1

2. g2ö
8

2 g1  3 g1

 Complex Dynamics Emerging in Rule 30 with Majority Memory 361

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

3. g2ö
10

2 g1  g2 (sequence g2, g3, g2)

4. 2 g2ö
6

g1  3 g1

5. 2 g2ö
7

g1  g2

6. 2 g2ö
8

g1  g1 + g3

7. g3ö
5

2 g1  e

8. g3ö
6

2 g1  g3

9. g3ö
7

2 g1  g1 + g2

10. g3ö
8

2 g1  g1
3 + g1

11. g3ö
9

2 g1  g1
4

12. g3ö
10

2 g1  2 g1

13. 2 g3ö
5

g2  g2 (wall)

B. Coding Gliders GR30m

We can enumerate strings conforming gliders in rule 30 with fmaj and
t  8, in given initial conditions and using “phases” (we omit strings
that do not produce gliders).

Note that such strings evolve initially with jR30 and a value of t
given, then fmaj will open these strings when memory works. Thus
we can code initial conditions with gliders in CA with memory, that
also was implemented in OSXLCAU21 system to get our simulations.

Table 2 enumerates strings for each glider represented as a tiling so
we know their “phases” [9, 19]. In this case, however, it was difficult
to classify such strings as regular expressions because not all strings
from the tiling representation evolve into gliders.

 362 G. J. Martínez et. al

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

g1 Glider g2 Glider g3 Glider

1 | g1 100 | g2 110110 | 2 g1 join

111 | g1 111 | g1 101110 | g3

10000 | g1 10000 | g1 111100 | 2 g1

11110 | g1 11110 | g1 100011 | 2 g1 join

100 | g2 1100110 | g2 + g3 1011 | g3

11110 | g1 1010110 | g1

10000 | g1 1101100 | g2

11001 | g2 + g3

Table 3. Strings evolving in gliders of GR30m.

References

[1] S. Wolfram, Cellular Automata and Complexity: Collected Papers, Read-
ing, MA: Addison-Wesley Publishing Company, 1994.

[2] G. J. Martínez, A. Adamatzky, and H. V. McIntosh, “Phenomenology
of Glider Collisions in Cellular Automaton Rule 54 and Associated Logi-
cal Gates,” Chaos, Solitons and Fractals, 28(1), 2006 pp. 100|111.

[3] G. J. Martínez, A. Adamatzky, and H. V. McIntosh, “On the Represen-
tation of Gliders in Rule 54 by de Bruijn and Cycle Diagrams,” in
Proceedings of the Eighth International Conference on Cellular
Automata for Research and Industry (Part 1), Yokohama, Japan,
Lecture Notes in Computer Science, 5191, Berlin: Springer, 2008
pp. 83|91. doi.10.1007/978-3-540-79992-4_ 11.

[4] M. L. Minsky, Computation: Finite and Infinite Machines, Englewood
Cliffs, NJ: Prentice-Hall, 1967.

[5] R. Alonso-Sanz, Cellular Automata with Memory, Philadelphia: Old
City Publishing, Inc., 2008.

[6] S. Amoroso and G. Cooper, “The Garden-of-Eden Theorem for Finite
Configurations,” Proceedings of the American Mathematical Society,
26, 1970 pp. 158|164.

[7] E. S. Rowland, “Local Nested Structure in Rule 30,” Complex Systems,
16(3), 2006 pp. 239|258.

[8] J. C. Seck-Tuoh-Mora, S. V. Chapa-Vergara, G. J. Martínez, and
H. V. McIntosh, “Procedures for Calculating Reversible One-Dimen-
sional Cellular Automata,” Physica D: Nonlinear Phenomena, 202(1-2),
2005 pp. 134|141. cat.inist.fr/?aModele=afficheN&cpsidt=16660256.

[9] G. J. Martínez, H. V. McIntosh, J. C. Seck-Tuoh-Mora, and
S. V. Chapa-Vergara, “Determining a Regular Language by Glider-
Based Structures Called Phases fi_1 in Rule 110,” Journal of Cellular
Automata, 3(3), 2008 pp. 231|270.

[10] H. V. McIntosh, One-Dimensional Cellular Automata, Beckington, UK:
Luniver Press, 2009.

 Complex Dynamics Emerging in Rule 30 with Majority Memory 363

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

[11] B. H. Voorhees, Computational Analysis of One-Dimensional Cellular
Automata, Series A, Vol. 15, River Edge, NJ: World Scientific Series on
Nonlinear Science, 1996.

[12] J. C. Seck-Tuoh-Mora, G. J. Martínez, and H. V. McIntosh,
“Calculating Ancestors in One-Dimensional Cellular Automata,” Inter-
national Journal of Modern Physics C (IJMPC), 15(8), 2004
pp. 1151|1169. doi.10.1142/50129183104006625.

[13] G. J. Martínez, H. V. McIntosh, J. C. Seck-Tuoh-Mora, and
S. V. Chapa-Vergara, “A Note About the Regular Language of Rule 110
and Its General Machine: The Scalar Subset Diagram,” in Proceedings
of the Third International Workshop on Natural Computing (Japan So-
ciety for Artificial Intelligence), C3004, 2008 pp. 39|49.

[14] R. Alonso-Sanz and M. Martin, “Elementary Cellular Automata with
Memory,” Complex Systems, 14(2), 2003 pp. 99|126.

[15] R. Alonso-Sanz and M. Martin, “One-Dimensional Cellular Automata
with Memory in Cells of the Most Recent Value,” Complex Systems,
15(3), 2005 pp. 203|236.

[16] R. Alonso-Sanz, “Elementary Rules with Elementary Memory Rules:
The Case of Linear Rules,” Journal of Cellular Automata, 1(1), 2006
pp. 71|87.

[17] A. Wuensche, “Classifying Cellular Automata Automatically: Finding
Gliders, Filtering, and Relating Space-Time Patterns, Attractor Basins,
and the Z Parameter,” Complexity, 4(3), 1999 pp. 47|66.
doi.10.1002/(SICI)1099-0526(199901/02)4:3<47::AID-CPLX9>3.3.-
CO;2-M.

[18] A. Adamatzky and O. Holland, “Phenomenology of Excitation in 2-D
Cellular Automata and Swarm Systems,” Chaos, Solitons & Fractals,
9(7), 1998 pp. 1233|1265. doi.10.1016/S0960-0779|(97)00123-9.

[19] G. J. Martínez, H. V. McIntosh, and J. C. Seck-Tuoh-Mora, “Gliders in
Rule 110,” International Journal of Unconventional Computing, 2(1),
2006 pp. 1|50.

[20] M. Cook, “Universality in Elementary Cellular Automata,” Complex
Systems, 15(1), 2004 pp. 1|40.

[21] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[22] N. Boccara, J. Nasser, and M. Roger, “Particlelike Structures and Their
Interactions in Spatiotemporal Patterns Generated by One-Dimensional
Deterministic Cellular Automaton Rules,” Physical Review A, 44(2),
1991 pp. 866|875. doi.10.1103/PhysRevA.44.866.

[23] A. Wuensche, “Complexity in One-D Cellular Automata: Gliders,
Basins of Attraction and the Z Parameter,” Santa Fe Institute working
paper 94-04-025, 1994.

[24] J. K. Park, K. Steiglitz, and W. P. Thurston, “Soliton-Like Behavior
in Automata,” Physica D:Nonlinear Phenomena, 19(3), 1986
pp. 423|432. doi.10.1016/-167-2789(86)90068-0.

[25] M. H. Jakubowski, K. Steiglitz, and R. K. Squier, “Computing with Soli-
tons: A Review and Prospectus,” Multiple-Valued Logic, 6(5-6), 2001.
Also republished in A. Adamatzky, ed., Collision-Based Computing,
New York: Springer, 2002 pp. 277|299.

 364 G. J. Martínez et. al

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

[26] A. Wuensche and M. Lesser, The Global Dynamics of Cellular
Automata: An Atlas of Basin of Attraction Fields of One-Dimensional
Cellular Automata, Santa Fe Institute Studies in the Sciences of
Complexity, Reading, MA: Addison-Wesley Publishing Company, 1992.

[27] N. Boccara and H. Fuks, “Number-Conserving Cellular Automaton
Rules,” Fundamenta Informaticae, 52(1-3), 2002 pp. 1|13.

[28] K. Imai, A. Ikazaki, C. Iwamoto, and K. Morita, “A Logically Universal
Number-Conserving Cellular Automaton with a Unary Table-Lookup
Function,” IEICE Transactions on Information and Systems, E87-D(3),
2004 pp. 694|699.

[29] D. Eppstein, “Searching for Spaceships,” MSRI Publications, 42, 2002
pp. 433|453.

[30] M. Margenstern, Cellular Automata in Hyperbolic Spaces, Vol. 1:
Theory, Philadelphia: Old City Publishing, Inc., 2007.

[31] R. Das, M. Mitchell, and J. P. Crutchfield, “A Genetic Algorithm
Discovers Particle-Based Computation in Cellular Automata,” in
Proceedings of the International Conference on Evolutionary Computa-
tion (The Third Conference on Parallel Problem Solving from
Nature(PPSN III), Jerusalem, Lecture Notes in Computer Science, 866,
London: Springer-Verlag, 1994 pp. 344|353.

[32] H. V. McIntosh, “Wolfram’s Class IV and a Good Life,” Physica D,
45(1-3), 1990 pp. 105|121. doi.10.1016/0167-2789(90)90177-Q.

[33] L. O. Chua, A Nonlinear Dynamics Perspective of Wolfram’s New Kind
of Science, Hackensack, NJ: World Scientific Publishing Company,
2007.

 Complex Dynamics Emerging in Rule 30 with Majority Memory 365

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

