
Martinez, G. J., Adamatzky, A., Alonso-Sanz, R. and Mora, J. C.
(2010) Complex dynamics emerging in Rule 30 with majority mem-
ory. Complex Systems, 18 (3). pp. 345-365. ISSN 0891-2513 Avail-
able from: http://eprints.uwe.ac.uk/10410

We recommend you cite the published version.
The publisher’s URL is:
http://www.complex-systems.com/Archive/hierarchy/abstract.cgi?vol=18&iss=3&art=05

Refereed: Yes

(no note)

Disclaimer

UWE has obtained warranties from all depositors as to their title in the material
deposited and as to their right to deposit such material.

UWE makes no representation or warranties of commercial utility, title, or fit-
ness for a particular purpose or any other warranty, express or implied in respect
of any material deposited.

UWE makes no representation that the use of the materials will not infringe
any patent, copyright, trademark or other property or proprietary rights.

UWE accepts no liability for any infringement of intellectual property rights
in any material deposited but will remove such material from public view pend-
ing investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

http://www.complex-systems.com/Archive/hierarchy/abstract.cgi?vol=18&iss=3&art=05


Martinez, G. J., Adamatzky, A., Alonso-Sanz, R. and Mora, J. C.
(2010) Complex dynamics emerging in Rule 30 with majority mem-
ory. Complex Systems, 18 (3). pp. 345-365. ISSN 0891-2513 Avail-
able from: http://eprints.uwe.ac.uk/10410

We recommend you cite the published version.
The publisher’s URL is:
http://www.complex-systems.com/Archive/hierarchy/abstract.cgi?vol=18&iss=3&art=05

Refereed: Yes

(no note)

Disclaimer

UWE has obtained warranties from all depositors as to their title in the material
deposited and as to their right to deposit such material.

UWE makes no representation or warranties of commercial utility, title, or fit-
ness for a particular purpose or any other warranty, express or implied in respect
of any material deposited.

UWE makes no representation that the use of the materials will not infringe
any patent, copyright, trademark or other property or proprietary rights.

UWE accepts no liability for any infringement of intellectual property rights
in any material deposited but will remove such material from public view pend-
ing investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

http://www.complex-systems.com/Archive/hierarchy/abstract.cgi?vol=18&iss=3&art=05


Complex Dynamics Emerging in Rule 30 
with Majority Memory

Genaro J. Martínez* H1,2L

Andrew Adamatzky H1L

Ramon Alonso-Sanz H1L

H1LDepartment of Computer Science
University of the West of England
Bristol BS16 1QY, United Kingdom
H2LInstituto de Ciencias Nucleares and Centro de Ciencias de la Complejidad 

Universidad Nacional Autónoma de México
*genaro.martinez@uwe.ac.uk

Juan C. Seck-Tuoh-Mora 

Centro de Investigación Avanzada en Ingeniería Industrial
Universidad Autónoma del Estado de Hidalgo Pachuca
Hidalgo, México

In  cellular  automata  (CAs)  with  memory,  the  unchanged  maps  of
conventional  CAs  are  applied  to  cells  endowed  with  memory  of  their
past states in some specified interval. We implement the rule 30 automa-
ton and show that by using the majority memory function we can trans-
form  the  quasi-chaotic  dynamics  of  classical  rule  30  into  domains  of
traveling structures with predictable behavior. We analyze morphologi-
cal  complexity  of  the  automata  and  classify  glider  dynamics  (particle,
self-localizations)  in  the  memory-enriched  rule  30.  Formal  ways  of
encoding and classifying glider dynamics using de Bruijn diagrams, soli-
ton reactions, and quasi-chemical representations are provided. 

1. Introduction

An elementary cellular automaton (CA) is a one-dimensional array of
finite  automata,  where  each automaton takes  two states  and updates
its  state in discrete time depending on its  own state and the states of
its  two  closest  neighbors.  All  cells  update  their  state  synchronously.
The  following  general  classification  of  elementary  CAs  was  intro-
duced in [1]. 

Class I. CAs evolve to a homogeneous state. 

Class II. CAs that evolve periodically. 

Class III. CAs that evolve chaotically. 

Class IV. Include all previous cases, also known as the class of complex
rules. 
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Class  IV  is  of  particular  interest  because  the  rules  exhibit  nontrivial
behavior with rich and diverse patterns, as shown for rule 54 in [2, 3]. 

2. Basic Notation

2.1 One-Dimensional Cellular Automata

One-dimensional  CAs  are  represented  by  an  infinite  array  of  cells  xi
where i œ  and each x takes a value from a finite alphabet S. Thus, a
sequence  of  cells  8xi<  of  finite  length  n  represents  a  string  or  global
configuration  c  on S  with  the  set  of  finite  configurations  represented
as Sn. An evolution is represented by a sequence of configurations 9ci=

given  by  the  mapping  F : Sn Ø Sn;  thus  their  global  relation  is
provided as 

(1)F IctM Ø ct+1

where t is time and every global state of c is defined by a sequence of
cell  states.  Also,  the  cell  states  in  configuration ct  are  updated at  the
next configuration ct+1 simultaneously by a local function j: 

(2)j Ixi-r
t , … , xi

t, … , xi+r
t M Ø xi

t+1.

Wolfram  represents  a  one-dimensional  CA  with  two  parameters
Hk, rL where k  †S§ is the number of states, and r is the neighborhood
radius.  Elementary  CAs  are  defined  by  parameters  Hk  2, r  1L.
There  are  Sn  different  neighborhoods  (where  n  2 r + 1)  and  kkn

different evolution rules. 
We  used  automata  with  periodic  boundary  conditions  in  our

computer experiments. 

2.2 Cellular Automata with Memory

Conventional CAs are ahistoric (memoryless): that is, the new state of
a cell depends on the neighborhood configuration solely at the preced-
ing time step of j as in equation (2). 

Cellular automata with memory consider an extension to the stan-
dard  CA framework by  implementing  memory capabilities  in  cells  xi
from its own history. 

Thus, to implement memory we incorporate a memory function f, 

(3)f Ixi
t-t, … , xi

t-1, xi
tM Ø si

such that  t < t  determines the degree of  memory backward and each
cell  si œ S  is  a state function of the series of states of the cell  xi  with
memory up to the current time step. Finally, to execute the evolution
we apply the original rule as: 

jI… , si-1
t , si

t, si+1
t , …M Ø xi

t+1.
Thus,  in  CAs  with  memory,  while  the  mappings  j  remain  unal-

tered,  historic  memory  of  all  past  iterations  is  retained  by  featuring
each  cell  with  a  summary  of  its  past  states  from  f.  Therefore,  cells
canalize memory to the map j. 
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Thus,  in  CAs  with  memory,  while  the  mappings  j  remain  unal-
tered,  historic  memory  of  all  past  iterations  is  retained  by  featuring
each  cell  with  a  summary  of  its  past  states  from  f.  Therefore,  cells
canalize memory to the map j. 

As an example, we define the majority memory as 

(4)fmaj Ø si

where, in case of a tie given by S1  S0  from f, we will take the last
value xi.  So the fmaj  function represents the classic majority function

[4] on the cells Ixi
t-t, … , xi

t-1, xi
tM and defines a temporal ring before

finally getting the next global configuration c. 

Figure  1.  The  effect  of  majority  memory  with  increasing  depths  on  rule  30
starting from a single site live cell.

Majority  memory  exerts  a  general  inertial  effect  [5].  This  effect,
when starting from a single site live cell, notably restrains the dynam-
ics,  as  illustrated  using  rule  30  in  Figure  1.  This  figure  shows  the
spatio-temporal patterns of both the current x state values and that of
the underlying s values. 

3. Elementary Cellular Automaton Rule 30

Rule 30 was initially studied by Wolfram in [1] because of its chaotic
global  behavior  while  looking  for  a  random  number  generator.
Rule°30  is  an  elementary  CA  that  evolves  in  one  dimension  of  order
H2, 1L.  An  interesting  property  is  that  it  has  a  surjective  relation  and
thus  does  not  have  Garden  of  Eden  configurations  [6].  In  this  way,
any configuration always has at least one predecessor. 

Here is the local rule j corresponding to rule 30: 

jR30 
1 if 100, 011, 010, 001

0 if 111, 110, 101, 000
.

Generally speaking, rule 30 displays a typical chaotic global behav-
ior, that is, it is in Wolfram’s Class III. An interesting study on rule 30
showing a local  nested structure that  repeats  periodically while  look-
ing for invertible properties is given in [7]. 
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Generally speaking, rule 30 displays a typical chaotic global behav-
ior, that is, it is in Wolfram’s Class III. An interesting study on rule 30
showing a local  nested structure that  repeats  periodically while  look-
ing for invertible properties is given in [7]. 

So, initially jR30  has a 50% probability of states zero or one, and
consequently each state appears with the same frequency. 

HaL HbL

Figure 2. (a) Typical behavior of rule 30, where a single cell in state one leads
to  a  chaotic  state.  (b)  Shows  the  automaton  behavior  from a  random initial
condition  with  an  initial  density  of  50%  for  each  state.  Both  automata
evolved  on  a  ring  of  497  cells  (with  a  periodic  boundary  property)  to  417
generations. White cells represent state zero and dark cells the state one.

Also,  the evolution of  rule  30 presents  the following feature:  if  an
initial configuration is covered all in state one, then it always evolves
into one; but if this is empty or filled with state one then this always
evolves  to  state  zero.  Figure  2  shows  two  typical  cases  of  evolution
with rule 30. 

3.1 De Bruijn and Subset Diagrams in Rule 30

Given  a  finite  sequence  w œ Sm,  such  that  w  w1, … , wm,  let
a HwL  w1,  b HwL  w2, … , wm,  and  yHwL  w1, … , wm-1.  With
these elements, we can specify a labeled directed graph known as a de
Bruijn  diagram    8N; E<  associated  with  the  evolution  rule  of  the
CA.  The  nodes  of    are  defined  by  N  S2 r  and  the  set  of  directed
edges E Œ S2 räS2 r is defined as 

(5)E  8Hv, wL v, w œ N, b HvL  y HwL<.

For  every  directed  edge  Hv, wL œ E,  let  h Hv, wL  a w œ S2 r+1

where a  a HvL; that is, h Hv, wL is a neighborhood of the automaton.
In  this  way,  the  edge  Hv, wL  is  labeled  by  j È h Hv, wL;  hence,  every
labeled  path  in    represents  the  evolution  of  the  corresponding
sequence specified by its nodes. Since each w œ N can be described by
a number base k of length 2 r, every node in  can be enumerated by
a unique element in k2 r , which is useful for simplifying the diagram.
The de Bruijn diagram associated with rule 30 is depicted in Figure 3,
where black edges indicate the neighborhoods evolving into zero and
those  evolving  into  one  are  shown by  gray  edges.  The  de  Bruijn  and
subset diagrams were calculated using NXLCAU21 designed by McIn-
tosh. The program is available from delta.cs.cinvestav.mx/~mcintosh.
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For  every  directed  edge  Hv, wL œ E,  let  h Hv, wL  a w œ S2 r+1

where a  a HvL; that is, h Hv, wL is a neighborhood of the automaton.
In  this  way,  the  edge  Hv, wL  is  labeled  by  j È h Hv, wL;  hence,  every
labeled  path  in    represents  the  evolution  of  the  corresponding
sequence specified by its nodes. Since each w œ N can be described by
a number base k of length 2 r, every node in  can be enumerated by
a unique element in k2 r , which is useful for simplifying the diagram.
The de Bruijn diagram associated with rule 30 is depicted in Figure 3,
where black edges indicate the neighborhoods evolving into zero and
those  evolving  into  one  are  shown by  gray  edges.  The  de  Bruijn  and
subset diagrams were calculated using NXLCAU21 designed by McIn-
tosh. The program is available from delta.cs.cinvestav.mx/~mcintosh.

Figure 3. De Bruijn diagram for the elementary CA rule 30.

Figure  3  shows  that  there  are  four  neighborhoods  evolving  into
zero and four into one, meaning that each state has the same probabil-
ity  to  appear  during  the  evolution.  This  indicates  the  possibility  that
the  automaton  is  surjective,  that  is,  there  are  no  Garden  of  Eden
configurations.  Classical  analysis  in  graph  theory  has  been  applied
over  de  Bruijn  diagrams  for  studying  topics  such  as  reversibility  [8];
cycles  in  the  diagram  indicate  periodic  elements  in  the  evolution  of
the  automaton  if  the  label  of  the  cycle  corresponds  to  the  sequence
defined  by  its  nodes,  in  periodic  boundary  conditions.  The  cycles  in
the de Bruijn diagram from Figure 3 are presented in Figure 4.  

Figure  4.  Cycles  in  the  de  Bruijn  diagram  and  the  corresponding  periodic
evolution for cycle H1, 2L.

The largest cycle in Figure 4 indicates that the undefined repetition
of sequence wb  10 establishes a periodic structure without displace-
ment in one generation during the evolution of  rule  30.  We then say
that  wb  is  the  filter  in  rule  30.  A  filter  is  a  periodic  sequence  that
exists alone or in blocks during the evolution; thus,  suppressing such
a string produces a new view. In the present paper, we apply the filter
to  the  original  rule  30 and its  modifications  with  memory. Thus,  we
can see how a de Bruijn diagram can recognize any periodic structures
in a CA [3, 9]. 
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The largest cycle in Figure 4 indicates that the undefined repetition
of sequence wb  10 establishes a periodic structure without displace-
ment in one generation during the evolution of  rule  30.  We then say
that  wb  is  the  filter  in  rule  30.  A  filter  is  a  periodic  sequence  that
exists alone or in blocks during the evolution; thus,  suppressing such
a string produces a new view. In the present paper, we apply the filter
to  the  original  rule  30 and its  modifications  with  memory. Thus,  we
can see how a de Bruijn diagram can recognize any periodic structures
in a CA [3, 9]. 

A  de  Bruijn  diagram  is  nondeterministic  in  the  sense  that  a  given
node  may  have  several  output  edges  with  the  same  label.  A  classical
approach  to  analyzing  the  diagram would  be  to  construct  the  subset
(or power) diagram in order to obtain a deterministic version for the
de Bruijn diagram in the evolution rule [10, 11].

The  subset  diagram  is  defined  as    8, <  where
  8P P Œ S‹«< is the set of nodes of  and the directed edges are
defined  by   Õ ä  where  for  P1, P2 œ   there  is  a  directed  edge
HP1, P2L labeled by a œ S in  if and only if P2  is the maximum subset
such that for every c œ P2 there exists b œ P1 such that j Hb, cL  a. 

The  inclusion of  the  empty  set  assures  that  every  edge  has  a  well-
defined  ending  node.  For  a  CA  with  k  states,  it  is  fulfilled  that
†§  2k2 r

,  which  implies  an  exponential  growth  in  the  number  of
nodes in  when more states are considered. Every P œ  can be iden-
tified by a binary number showing the states belonging to this subset,
that  is,  taking  the  states  as  an  ordered  list.  The  states  in  P  can  be
signed by a 1 and the others  by 0,  making a unique binary sequence
to identify the subset. The decimal value of this binary number can be
taken to get  a shorter representation where the empty set  has a deci-
mal number 0 and the full subset p  S has the number 2k2 r

- 1. The
subset diagram corresponding to rule 30 is shown in Figure 5. 

Figure 5. Subset diagram for rule 30.

In  Figure  5,  the  subset  diagram has  no path  starting  from the  full
subset (node 15) going to the empty subset (node 0). This means that
every  sequence  can  be  produced  by  the  evolution  of  the  automaton
and  there  are  no  Garden  of  Eden  sequences.  Thus,  the  automaton  is
surjective. The  subset  diagram  can  also  be  used  as  a  deterministic
automaton  for  calculating  ancestors  of  any  desired  sequence  [12]  by
recognizing  the  regular  expressions  that  may  be  generated  by  the
corresponding  automaton.  Some  of  these  expressions  would  be  able
to  represent  interesting  structures  as  gliders  [13];  however,  more
effort  is  needed  in  order  to  get  a  straightforward  detection  of  such
constructions in the diagram.

 350 G. J. Martínez et. al 

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.



In  Figure  5,  the  subset  diagram has  no path  starting  from the  full
subset (node 15) going to the empty subset (node 0). This means that
every  sequence  can  be  produced  by  the  evolution  of  the  automaton
and  there  are  no  Garden  of  Eden  sequences.  Thus,  the  automaton  is
surjective. The  subset  diagram  can  also  be  used  as  a  deterministic
automaton  for  calculating  ancestors  of  any  desired  sequence  [12]  by
recognizing  the  regular  expressions  that  may  be  generated  by  the
corresponding  automaton.  Some  of  these  expressions  would  be  able
to  represent  interesting  structures  as  gliders  [13];  however,  more
effort  is  needed  in  order  to  get  a  straightforward  detection  of  such
constructions in the diagram.

Finally,  such  diagrams  help  get  periodic  strings  that  eventually
represent a general filter wb  working on the original rule 30 and rule
30 with memory. Also, we will take advantage of these results to find
gliders in the strings. 

4. Majority Memory Helps to Discover Complex Dynamics in Rule 30

This  section  reports  on  how  the  majority  memory  f  helps  in  the
discovery  of  complex  dynamics  in  elementary  CAs  by  experimenta-
tion.  For  an  introduction  to  elementary  CAs  with  memory,  see
[14|16]. 

Figure  6  displays  different  scenarios  where  the  majority  memory
fmaj  works  on  rule  30  to  extract  the  complex  dynamics.  The  evolu-
tions  should  be  read  from left  to  right  and  up  to  down.  All  of  these
evolutions  use  the  same  random  initial  density  and  filter  wb
(including  the  original  rule  30).  Thus,  the  first  evolution  shown  in
Figure 6 is  the original rule 30, that is,  without majority memory. In
the original evolution we can see gaps that the filter can clean. Tradi-
tionally, it was difficult to distinguish such a filter, but when fmaj was
applied to rule 30 its presence was more evident. A general technique
for getting filters was developed by Wuensche in [17]. 

Initially, even values of t  seem to extract gliders more quickly and
odd values  fight  to  reach  an  order.  Eventually,  the  majority  memory
will converge to one stability in F while t increases. 

The  first  snapshot  calculating  fmaj  with  t  3  is  shown  by  the
second evolution in Figure 6. It  is not yet clear how memory induces
another  behavior  because  the  global  behavior  is  still  similar  to  the
original with only small changes. 

On the other hand, the third evolution with t  4 does extract peri-
odic  patterns.  The evolution might  not  display impressive  gliders  but
it already allows picking out more diversity in mobile localizations on
lattices  of  100ä100  cells.  Thus,  we  have  enumerated  and  ordered
values of t  from Figure 6 based on the space-time dynamics they are
responsible for: 

Chaotic global behavior: t  0, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 

Periodic patterns: t  4, 6, 8, 10, 12, 14, 16, 18, 19, 20, 21 

Collision patterns: t  6, 8, 10, 12 
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Figure 6.  Complex dynamics emerging in rule 30 with majority memory fmaj
from a  range  of  values  from t  3 to  t  21.  The  first  evolution  shows  the
original  function.  Evolutions  were  calculated  on  a  ring  of  104  cells  in  104
generations  with  a  random  initial  density  of  50%  and  the  same  initial
conditions  were  used  in  all  cases.  Also,  the  filter  wb  was  applied  to  clearly
show the structures.

4.1 Morphological Complexity in Rule 30 with Memory

In this section we explore some techniques for finding global complex
dynamics in rule 30 with and without majority memory. 

We  evaluate  the  morphological  complexity  of  a  CA  using  the
morphological  richness  approach  in  [18].  We  calculate  the  statistical
morphological  richness  m  as  follows.  Given the space-time configura-
tion of a one-dimensional CA, we extract the 3ä3 cell  neighborhood
state for each site of the configuration and build a distribution of the
neighborhood  states  over  an  extended  period  of  the  automaton’s
development time. 

Examples  of  morphological  richness  m  are  shown  in  Figure  7.  A
control  case,  where  the  next  state  of  a  cell  is  calculated  at  random
from  the  distribution  of  space-time  neighborhood  states,  is  uniform
(Figure  7(a)). Two-dimensional  random  configurations  are  morpho-
logically  rich.  The  morphology  of  memoryless,  classical  rule  30  is
characterized  by  few  peaks  in  the  local  domain  distributions,  where
several space-time templates dominate in the global space-time config-
uration  (Figure  7(b)).  The  statistical  morphological  richness  m
decreases. 
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Examples  of  morphological  richness  m  are  shown  in  Figure  7.  A
control  case,  where  the  next  state  of  a  cell  is  calculated  at  random
from  the  distribution  of  space-time  neighborhood  states,  is  uniform
(Figure  7(a)). Two-dimensional  random  configurations  are  morpho-
logically  rich.  The  morphology  of  memoryless,  classical  rule  30  is
characterized  by  few  peaks  in  the  local  domain  distributions,  where
several space-time templates dominate in the global space-time config-
uration  (Figure  7(b)).  The  statistical  morphological  richness  m
decreases. 

Incorporating  memory  in  the  cell-state  transition  rules  leads  to  an
erosion of the distribution (Figure 7(c)) and thus slight increases in m.
With an increase in the memory depth, the shape of the morphologi-
cal distribution changes just slightly, up to minor height variations in
the major peaks (Figures 7(d) through (f)). 

Figure  7.  Morphological  richness.  Cellular  automaton  length  of  1500  cells
with a running time of 5000 steps. (a) Random update of cell states. (b) Rule
30 without memory. Rule 30 with memory: (c)  t  3, (d) t  5, (e)  t  10,
and (f) t  21.

The number r of 3ä3 blocks (of states 0 and 1) that never appear
in  the  space-time  configuration  of  a  CA  can  be  used  to  express  an
estimate  of  the  nominal  morphological  richness;  smaller  r  indicate  a
richer nominal configuration. 

The  difference  between  statistical  m  and  nominal  r  measures  of
morphological  richness  is  that  m  allows  picking  most  common
configurations of local domains, while r just shows how many blocks
of 3ä3 states appeared in the automaton evolution at least once. 

For the case of randomly updating cell states, all blocks are present
in the space-time configuration and r  0. 
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For the case of randomly updating cell states, all blocks are present
in the space-time configuration and r  0. 

Memoryless  automata  governed  by  rule  30  have  r  434  so  the
total  number  of  possible  blocks  is  512.  When  memory  is  first
incorporated into the cell-state transition function, richness decreases,
for  example,  with  t  1  we  have  r  448.  Then  we  observe  a
consistent  increase  in  complexity.  Thus,  rule  30  with  small-depth
memory  (t  2)  r  140,  drastically  decreases  to  r  68  for  t  3.
The richness is stabilized, or rather oscillates around r values of 20 to
40 with a further increase of memory. 

In summary, we found that majority memory increases the nominal
complexity of a CA but decreases its statistical complexity. 

4.2 Gliders in Rule 30 with Memory t  8

Most frequently the complex dynamics of an elementary CA is related
to gliders, glider guns, and nontrivial reactions between localizations,
for example, rules 110 or 54 [2, 19]. The phenomena, and their regu-
lar expressions [3, 9], may lead to the discovery of novel systems with
computational universality [20, 21].

Figure  8.  Gliders  emerging  in  rule  30  with  fmaj  and  t  8.  This  evolution
shows how some kinds  of  gliders  arise  and still  interact  from random initial
conditions. The evolution was calculated on a ring of 590 cells to 320 genera-
tions, with an initial density of 50%.

Among  the  sets  of  complex  dynamics  in  rule  30  determined  by  t
(shown in Figure 6), we have chosen the memory fmaj  with t  8. In
this  way,  Figure  8  illustrates  an  ample  evolution  space  of  its  global
dynamics. 

Of  course,  these  gliders  may  not  be  as  impressive  as  others  from
such well-known complex rules as 110, 54, or some other one-dimen-
sional  rules  [1,  2,  19,  22,  23].  However,  it  is  interesting  that  fmaj  is
able to open complex patterns from chaotic rules. 

Nevertheless, even though rule 30 does not offer an ample range of
complex  dynamics,  it  is  useful  for  describing  gliders  and  collisions.
So,  we  shall  illustrate  how  a  chaotic  CA  can  be  decomposed  as  a
complex system.
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Figure 9. Set of gliders GR30m with memory fmaj and t  8.

We now classify the family of gliders and enumerate some of their
properties.  Figure  9  displays  the  family  of  gliders
GR30m  9g1, g2, g3=.  As  was  hoped,  an  immediate  consequence  is
that gliders in CAs with memory have longer periods. 

Structure vg Lineal Volume 

wb 0 ê c  0 2 

g1 2 ê 11 º 0.1818 5 

g2 4 ê 19 º 0.2105 7 

g3 4 ê 17 º 0.2352 6 

Table 1. Properties of gliders GR30m with memory fmaj and t  8.

Table 1 summarizes the basic properties of each glider. Practically,
all gliders in this domain have a constant displacement of four cells to
the right and no glider with speed zero was found, and yet  finding a
glider  gun  in  this  domain  is  more  complicated.  Nevertheless,  some
interesting reactions did originate from GR30m. 

Structure  wb  does  not  have  a  displacement  and  it  is  also  not  a
glider.  This  pattern  is  the  periodic  background  in  rule  30  and  repre-
sents the filter. It was really hard to detect the existence of a periodic
background  evolving  from  the  original  rule.  But  when  fmaj  was
applied,  a  periodic  pattern  began  to  emerge  that  was  inherited  from
jR30.  Finally,  this  filter  was  confirmed  with  its  respective  de  Bruijn
and cycle diagrams (see Section 3.1). 

4.3 Reactions between Gliders from GR30m

We now demonstrate some simple examples of collisions between glid-
ers. Codes for all gliders, necessary to generate the whole set of binary
collisions, are presented in the Appendix. 
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Figure  10  shows  how  a  stream  of  g1  gliders  is  deleted  from  a
reaction cycle: 

g3 + g1 Ø g2 and g2 + g1 Ø g3.

Figure 10. Deleting streams of g1 gliders initialized with a single g3 glider.

To obtain such a cycle  by glider reactions,  we can code an unlim-
ited  initial  condition  as  ... g3 ... g1 .... g1 .... g1 .... ,  that  can  be
reduced as ... g3 ... g1 H .... g1L

*  (where a dot represents a copy of wb).
Finally,  the  evolution  produces  the  given  cycle,  with  nine  periods  of
g3  and  eight  periods  of  g2.  Thus,  each  column presents  1135,  2270,
and 3405 generations, respectively. In such a representation, codes of
gliders will be different from codes used in our previous papers [3, 9,
19].  The  glider  reactions  were  produced  using  the  OSXLCAU21
system available at uncomp.uwe.ac.uk/ genaro/OSXCASystems.html. 

Since the better way to preserve jR30  and fmaj  is to code the glid-
ers as “natural”,  we consider the codification from its  original initial
condition. See Appendix B where some strings are defined to get glid-
ers with memory from their original functions. 

HaL HbL HcL

Figure  11.  Some  simple  reactions  display  how to  (a)  delete,  (b)  read,  and  (c)
preserve information with gliders using rule 30 with memory.

Some simple but interesting reactions from GR30m  are illustrated in
Figure 11. The first reaction shows the annihilation of gliders g2  and
g1.  The second reaction shows how a transformation g3  glider trans-
forms  a  g1  glider  into  a  g2.  The  third  reaction  shows  a  soliton-like
collision between gliders g2 and g1. The soliton reaction between glid-
ers  is  particularly  promising  because  it  can  be  used  to  implement
computation,  for  example,  as  in  the  carry-ripple  adder  embedded  by
phase coding solitons in parity CAs [24, 25]. 
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Some simple but interesting reactions from GR30m  are illustrated in
Figure 11. The first reaction shows the annihilation of gliders g2  and
g1.  The second reaction shows how a transformation g3  glider trans-
forms  a  g1  glider  into  a  g2.  The  third  reaction  shows  a  soliton-like
collision between gliders g2 and g1. The soliton reaction between glid-
ers  is  particularly  promising  because  it  can  be  used  to  implement
computation,  for  example,  as  in  the  carry-ripple  adder  embedded  by
phase coding solitons in parity CAs [24, 25]. 

4.4 Quasi-Chemistry of Gliders

Assuming gliders g1,  g2,  and g3  are chemical  species a,  b,  and c  in a
well-stirred chemical reactor, we can derive the following set of quasi-
chemical reactions from the interactions between them: 

(6)

a + b Ø
0.6

e

a + b Ø
0.2

2 a

a + b Ø
0.2

c

a + c Ø
0.44

b

a + c Ø
0.12

b + c

a + c Ø
0.22

3 a

a + c Ø
0.22

a

b + c Ø
0.5

b

b + c Ø
0.5

2 a + b

where reaction rates are evaluated from the frequencies of the interac-
tions. 

We  evaluated  global  dynamics  of  the  quasi-chemical  system  (6)
with  constant  volume  (reflecting  the  finite  size  of  an  automaton
lattice),  constant  temperature,  and  variable  pressure  using  Chemical
Kinetics  Simulator  (available  at  www.almaden.ibm.com/st/computa-
tion_science/ck/?cks).  Figure  12  shows  the  temporal  dynamics  of
species concentrations in the system with 107 molecules. 

When  all  three  species  are  present  in  equal  concentrations  at  the
beginning  (Figure  12(a)),  we observe  an exponential  decay  of  species
b  and  c  and  a  stabilization  of  the  concentration  of  species  a.  When
only  species  b  and  c  are  initially  present  in  a  well-stirred  reaction,
species  c  is  produced  by  their  reactions.  This  leads  to  an  outburst  in
species a concentration (Figure 12(b)) on the background of an expo-
nential decline of species c and b, until species b and c disappear and
the concentration of species a becomes constant. 
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When  all  three  species  are  present  in  equal  concentrations  at  the
beginning  (Figure  12(a)),  we observe  an exponential  decay  of  species
b  and  c  and  a  stabilization  of  the  concentration  of  species  a.  When
only  species  b  and  c  are  initially  present  in  a  well-stirred  reaction,
species  c  is  produced  by  their  reactions.  This  leads  to  an  outburst  in
species a concentration (Figure 12(b)) on the background of an expo-
nential decline of species c and b, until species b and c disappear and
the concentration of species a becomes constant. 

Figure 12. Dynamics of concentrations of species a (circle), b (diamond), and c
(square)  governed  by  the  reactions  in  equation  (6).  (a)  Initial  concentrations
of all species are 0.001 mole/l. (b) Initial concentrations of species b and c are
0.001 mole/l, species a is nil.

4.5 Glider Machines

Table  2  shows  the  interactions  found  between  gliders,  depending  on
distance s between the interacting gliders. 

s  3 s  4 s  5 s  6
b + a Ø 8a, b< b + a Ø 8«< b + a Ø 8«< b + a Ø a

c + a Ø b c + a Ø b c + a Ø 8b, c< c + a Ø 8b, c<
c + b Ø b c + b Ø b c + b Ø 8a, b< c + b Ø 8a, b<

Table 2. Glider interactions.

Taking  into  account  the  gliders’  velocities  from  Table  1,  we  can
construct  the  following  finite  state  indeterministic  machine  with  an
internal state h and input state p, h, p œ 8a, b, c, «<. The machine can
be  characterized  by  an  input-output  transition  matrix
M  Imi jMi,jœ9a,b,c,«=

, where for j  ht, i  pt, mi j  ht+1. The matrix

has the following form: 

M 

ht+1 a b c «

a a 8a, «< b a

b b b 8a, b< b

c c c c c

« « « « «

Starting at a randomly chosen initial state and subjected to random
uniformly distributed input strings, the machine will end in the state c
with  probability  1

4
 and  in  the  state   set  with  probability  3

4
.  The

machine  starting  in  the  initial  h  generates  the  string  l HhL  as  follows:
l H«L  «*, l HaL  Ha b* a*L* «*, l HbL  Hb* a*L* «*, l HcL  c*. 
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Starting at a randomly chosen initial state and subjected to random
uniformly distributed input strings, the machine will end in the state c
with  probability  1

4
 and  in  the  state   set  with  probability  3

4
.  The

machine  starting  in  the  initial  h  generates  the  string  l HhL  as  follows:
l H«L  «*, l HaL  Ha b* a*L* «*, l HbL  Hb* a*L* «*, l HcL  c*. 

5. Discussion

We  enriched  elementary  CA  rule  30  with  majority  memory  and
demonstrated  that  by  applying  certain  filtering  procedures  we  can
extract  rich  dynamics  of  traveling  localizations,  or  gliders.  We
inferred  a  sophisticated  system  of  quasi-chemical  reactions  between
the gliders. It was shown that the majority memory increases nominal
complexity  but  decreases  statistical  complexity  of  patterns  generated
by  the  CA.  By  applying  methods  of  de  Brujin  diagrams  and  graph
theory,  we  proved  the  surjectivity  of  rule  30  CA  with  memory  and
provided blue prints for future detailed analysis of glider dynamics. 

Recalling  previous  results  on  the  classification  of  one-dimensional
CA [17, 23, 26], we envisage that introducing majority memory fmaj
into elementary CA will  open a new field of research in the selection
of  nontrivial  rules  of  cell-state  transitions  and  precise  mechanics  of
relationships between chaotic and complex systems. 

This  is  because  rule  30  was  grouped  into  a  cluster  of  rules  with
similar behavior, that can be transformed one to another using combi-
nations  of  reflection,  negation,  and  complement  (as  done  by  Wuen-
sche in [26]). Figure 13 shows a diagram that explains how the origi-
nal cluster for rule 30 is presented in [26]. Obviously, the cluster can
be  arbitrarily  enriched  using  not  only  fmaj  but  any  type  of  memory
and t.  Thus,  the  dynamical  complexity  of  automata  with  fmaj  is  the
same  as  for  the  set  of  functions  9jR30, jR86, jR135, jR149=,  particu-
larly  because  the  local  functions  jR86  and  jR149  are  responsible  for
the leftward motion of gliders. 

Therefore,  memory  in  elementary  and  other  CA  families  offers  a
new approach for discovering complex dynamics based on gliders and
nontrivial interactions between gliders. This can be substantiated by a
number  of  different  techniques,  for  example,  number-conservation
[27, 28], exhaustive search [29], tiling [9, 30], de Bruijn diagrams [3],
Z-parameter [17],  genetic  algorithms [31],  mean field theory [32],  or
from a differential equations viewpoint [33]. 
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Figure 13. A new family of elementary CA that can be composed.
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Appendix

A. Binary Reactions and Beyond

We represent binary collisions in rule 30, fmaj  and t  8 in the form

gj
space

gi,  where  j > i,  g œ GR30  and  space  is  the  interval  between
gliders  given  by  the  number  of  strings  wb.  Collisions  that  produce  e
mean  the  annihilation  of  gliders.  Reactions  are  developed  by
increasing the distance between gliders before collision. 

Collisions of type g2 Æ g1

1. g2ö
3

g1  g1 + g2 (soliton) 

2. g2ö
4

g1  e 
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3. g2ö
5

g1  e 

4. g2ö
6

g1  2 g1 

5. g2ö
7

g1  e 

6. g2ö
8

g1  g3 

Collisions of type g3 Æ g1

1. g3ö
3

g1  g2 

2. g3ö
4

g1  g2 

3. g3ö
5

g1  g2 + g3 

4. g3ö
6

g1  g1
3 

5. g3ö
7

g1  g1 + g1
2 

6. g3ö
8

g1  g2 

7. g3ö
9

g1  g1 

8. g3ö
10

g1  g2 

9. g3ö
11

g1  g1 

Collisions of type g3 Æ g2

1. g3ö
3

g2  g2 

2. g3ö
4

g2  g2 

3. g3ö
5

g2  2 g1 + g2 

4. g3ö
6

g2  2 g1 + g2 

Some other reactions with packages of gliders 

1. g2ö
5

2 g1  g1 

2. g2ö
8

2 g1  3 g1 
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3. g2ö
10

2 g1  g2 (sequence g2, g3, g2) 

4. 2 g2ö
6

g1  3 g1 

5. 2 g2ö
7

g1  g2 

6. 2 g2ö
8

g1  g1 + g3 

7. g3ö
5

2 g1  e 

8. g3ö
6

2 g1  g3 

9. g3ö
7

2 g1  g1 + g2 

10. g3ö
8

2 g1  g1
3 + g1 

11. g3ö
9

2 g1  g1
4 

12. g3ö
10

2 g1  2 g1 

13. 2 g3ö
5

g2  g2 (wall) 

B. Coding Gliders GR30m

We can enumerate strings conforming gliders in rule 30 with fmaj  and
t  8, in given initial conditions and using “phases” (we omit strings
that do not produce gliders). 

Note  that  such  strings  evolve  initially  with  jR30  and  a  value  of  t
given,  then  fmaj  will  open  these  strings  when  memory  works.  Thus
we can code  initial  conditions  with  gliders  in  CA with  memory,  that
also was implemented in OSXLCAU21 system to get our simulations. 

Table 2 enumerates strings for each glider represented as a tiling so
we know their “phases” [9, 19]. In this case, however, it was difficult
to  classify  such  strings  as  regular  expressions  because  not  all  strings
from the tiling representation evolve into gliders. 
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g1 Glider g2 Glider g3 Glider

1 | g1 100 | g2 110110 | 2 g1 join 

111 | g1 111 | g1 101110 | g3 

10000 | g1 10000 | g1 111100 | 2 g1 

11110 | g1 11110 | g1 100011 | 2 g1 join 

100 | g2 1100110 | g2 + g3 1011 | g3 

11110 | g1 1010110 | g1 

10000 | g1 1101100 | g2 

11001 | g2 + g3 

Table 3. Strings evolving in gliders of GR30m.
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