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Acquisition in Wireless Sensor Networks and
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Abstract—The emerging compressed sensing (CS) theory can
significantly reduce the number of sampling points that directly
corresponds to the volume of data collected, which means that
part of the redundant data is never acquired. It makes it possible
to create stand-alone and net-centric applications with fewer
resources required in Internet of things (IoT). CS-based signal
and information acquisition/compression paradigm combines the
nonlinear reconstruction algorithm and random sampling on a
sparse basis that provides a promising approach to compress
signal and data in information systems. This paper investigates
how CS can provide new insights into data sampling and
acquisition in wireless sensor networks and IoT. At first, we
briefly introduce the CS theory in respect of the sampling and
transmission coordination during the network lifetime through
providing a compressed sampling process with low computation
costs. Then, a compressed sensing-based framework is proposed
for IoT, in which the end nodes measure, transmit, and store the
sampled data in the framework. Then, an efficient cluster-sparse
reconstruction algorithm is proposed for in-network compression
aiming at more accurate data reconstruction and lower energy
efficiency. Performance is evaluated with respect to network size
using datasets acquired by a real-life deployment.

Index Terms—Compressed Sensing, Wireless Sensor Networks,
Industrial Informatics, Internet of Things, Information Systems,
Enterprise Systems

I. INTRODUCTION

Researchers found that in information systems, wireless
sensor networks (WSNs), and Internet of Things (IoT), many
types of information has a property called sparseness in trans-
formation process which allows certain number of samples
enabling capturing all required information without loss of
information [1], [2], [3], [4]. IoT has been emerged as a
technological revolution in the information industry [1], [2].
IoT is expected to be a world-wide network of intercon-
nected objects, and its development depends on a number
of new technologies, such as WSNs, cloud computing, and
information sensing [2], [3], [4]. In IoT-based information
systems, a low-cost data acquisition system is necessary to
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effectively collect and process the data and information at IoT
end nodes [2], [3], [5], [6]. WSNs have the potential of a
wide range of applications in many industrial systems. WSNs
can be integrated into the IoT, which consists of a number of
interconnected sensor nodes [3], [4], [5].

An IoT can involve thousands of independent components
including computers, sensors, RFID tags, or mobile phones, all
are capable of generating and communicating data, in which
many techniques are involved for data collection, transmission,
and storage [2], [4], [7]. In IoT, a desirable data compression
ratio is very important, which cannot be obtained by current
methods without introducing unacceptable distortions [8], [9].
Furthermore, for most data compression solutions in IoT, three
main problems must be solved: resolution, sensitivity, and
reliability [2], [10], [11], [12].

Recently, an emerging theory named compressed sensing
(CS) has been extensively investigated, with which the data or
signals can be efficiently sampled and accurately reconstructed
with much fewer samples than Nyquist theory [3], [4], [8],
[13]. CS relies on the facts that many types of information
has a property called sparseness in transformation process. The
required information could be obtained from these compress-
edly sampled signals as well as the whole signals sampled
by Nyquist theory [14]. The CS changes the rule of data
acquisition game in information systems by exploiting a priori
data sparsity information [5]. The applications of CS for data
acquisition in WSNs have been studied recently [4], [15], [16],
[17]. In [4], Haupt investigated the compressed sensing for
networked data in WSNs through considering the distributed
data sources and their sampling, transmission, and storage.
In [15], Fazel proposed a random access compressed sensing
scheme for long-term data gathering in large-scale sensor
networks, which is expected to prolong the life-time of a
sensor network. In [16], Pudlewski et al. applied the CS
theory to the jointly control of the video streaming rates to
reduce the communication cost and increase network capacity.
In [17], Mamaghanian investigated CS for energy-efficient
signals gathering in a wireless body sensor network.

However, for the first time, our work studies information
acquisition in IoT and WSNs with CS from the perspective of
data compressed sampling, robust transmission, and accurate
reconstruction to reduce the energy consumption, computation
costs, data redundancy, and increase the network capacity. A
common task of an IoT end node is to transmit the sensed
data to specific node or fusion center (FC), however, how to
efficiently acquire, store, and transmit among a large number
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of source nodes remains a challenge [4], [14]. This paper
considers a particular situation that involves with distributed
information sources of data and their acquisition, transmis-
sion, storage, and processing in a large-scale IoT [18]. The
contributions are summarized as follows:

1) We formulate the problem of data acquisition based on
compressed sampling in IoT and WSNs. This is the first
time to apply compressed sampling scheme in IoT with
a theoretical basis.

2) A CS-based information acquisition framework is pro-
posed for IoT, which involves the compressed sampling
at IoT end node, information transmission over IoT, and
accurate data reconstruction at FC. In this framework,
the noise model, communication load, and recovery
accuracy are considered for its industrial applications.

3) By taking the correlation of sensing data over IoT and
WSNs into consideration, an adaptive sparse representa-
tion and corresponding signal reconstruction algorithm
are proposed which offer a higher accuracy and lower
computational complexity compared with pre-existing
group/cluster-sparse reconstruction algorithms.

In the following sections, we will propose a compressed
sensing-based data gathering scheme, in which the compressed
sensing is able to provide a compressed sampling stage with
low computational costs. In Section II, we introduce the main
idea of data compression using compressed sensing. In Section
III, we propose a flexible data acquisition framework for IoT
based on compressed sensing. Experiments of data acquisition
and reconstruction are proposed for IoT to demonstrate the ef-
fectiveness of the proposed approaches in Section IV. Section
V concludes the paper.

II. COMPRESSED SENSING

In a network with n nodes, each node collects or generates
data xj , j = 1, . . . , n. For simplicity, we assume that each
sample xj is a scalar data (such as temperature, pressure,
etc.) and the collected data is a vector x = [x1, . . . , xn]

T ,
namely measurements. Thesemeasurements are distributed and
can be shared over the network. IoT may be very large,
and the collection of x at an IoT node might be inefficient
and unreliable. However, compressed sensing theory makes
it possible to accurately reconstruct x based on a highly
compressed decentralized measurement of x [4], [19], [20].

Compressed sensing-based data acquisition is very differ-
ent from the decentralized data acquisition in IoT networks.
Considering a data acquisition model: y = Φx, in which
Φ denotes an m-by-n measurement matrix with m far less
than n. The measurement y is an m × 1 vector, with the
number of elements being far fewer than that of the original
data x. Therefore, y can be transmitted, processed, and stored
with much lower resource requirements than x. In compressed
sensing theory, with a properly designed measurement matrix
Φ, it is possible to recover x from y within a reasonable
accuracy whenever x is compressible.

y = Φx (1)

Compressed sensing is able to measure the data without
requiring any specific prior knowledge [4], [21], [22]. The

required data over the whole network can be reconstructed
based on the measurements as described in Eq.(1), providing
its size m is much smaller than n [23]. In compressed
sensing-based WSNs and IoT, two features can be obtained
for effective data analysis: (1) The compressed sensing-based
method is able to work cooperatively between the nodes,
which means that the collected or generated data by each node
can be distributively processed even without a fusion centre
(FC); (2) The data can be sampled and reconstructed without
prior knowledge. These two features make the compressed
sensing easier to be used for applications where gathering data
is expensive.

A. Conditions for Compressed Sensing

Definition 1: If a signal x = [x1, . . . , xn]
T can be repre-

sented over a set of orthonormal n × 1 vector {ψi}ni=1, then
it can be said sparse

x =
n∑

i=1

θiψi, or, θ = ΨTx, (2)

in which θ is an n× 1 vector that denotes the weights vector,
and θi =< x, ψi >; Ψ = [ψ1, . . . , ψn] is the basis matrix. If
there are k (k ≪ n) nonzero coefficients in θ, then the signal
can be said as k-sparse.

A signal might be compressible if it can be represented in
terms of a sparse expansion. In fact, compressible signals are
rather ubiquitous which allow compressed sensing in many
far-reaching applications such as data acquisition, data com-
pression, network coding, and others [24]. The sparse signal
or data is measured by taking a smaller number of samples
(m) from the original x using a linear/convex programming
operator Φ, hence Eq.(1) can be rewritten as

y = Φx = ΦΨθ = Aθ (3)

where Φ = [ϕ1, ϕ2, . . . , ϕm]T , A = ΦΨ, k ≤ m ≪ n,
and the n × 1 vector x is compressed into an m × 1 mea-
surement vector y. Eq.(3) admits many to an infinite number
of solutions. In order to find the sparsest solution, it can
be easily solved as an optimization problem by maximizing
“measurement of sparsity” while simultaneously satisfying
Eq.(3). To find a unique sparse solution of Eq.(3), the mea-
surement matrix needs to be successfully designed. Two main
categories of measurement ensembles can be directly applied
in compressed sensing [4], [25], [26], [27]:

Random measurements, Φ is not explicitly used, in which
the measurement y is random linear combinations of the
entries of x. The measurement matrix can be Fourier, Binary
or Gaussian. In compressed sensing framework, the incoherent
measurements can be obtained by random ensembles. Ran-
domness is likely to provide incoherent projections [25], [26].

Incoherent measurements, in which Φ is deterministic that
is assumed to be incoherent with Ψ. The incoherence between
Φ and Ψ can be measured by their mutual coherence [26].

Definition 2: The coherence of two vectors ϕi and ψk can
be defined as

µ = max
i,k
| < ϕi, ψk > | (4)
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The lower the µ is, the more incoherent Φ and Ψ are. Actually,
in most WSNs or IoT, the network data can be sparsely
represented on a wavelet basis ψ.

In compressed sensing-based framework, signal can be
sampled as y = Φx = ΦΨθ. The backbone of compressed
sensing is two-fold: (1) data is compressible, only a few entries
of θ have a significant amplitude; x is then almost entirely
determined from only a few entries θ; (2) measurements are
incoherent: The measurement matrix A = ΦΨ is incoherent.
In other words, the information carried by a few entries of
θ will spread all over the m entries of y. Each sample yk
is likely to contain a piece of information of each significant
entry of x.

In order to find the unique sparse solution, it is crucial to
construct a measurement matrix that satisfies conditions such
as null space property, restricted isometry property (RIP), and
some coherence property [25].

Definition 3: For the m-by-n measurement matrix Φ, it is
said to satisfy the RIP (Restricted Isometry Property) or some
coherence property of order K to look for sparse solutions
if there exists a 0 < δk < 1 simultaneously for all k-sparse
signal x ∈ Rn.

(1− δk)
m

n
∥x∥22 ≤ ∥Φx∥22 ≤ (1 + δk)

m

n
∥x∥22 (5)

In practice, we can deterministically construct the measure-
ment matrices using random entries ϕij as i.i.d realization from
some probability distributions that satisfy RIP.

B. Reconstruction Algorithms

RIP can be one of the sufficient conditions for accurately
reconstructing the compressed signals, which guarantees near
optimal reconstruction of the solution of Eq.(2). RIP requires
that the reconstruction algorithm should be able to find the
sparest vector. Fortunately, this problem can be easily solved.
For Eq.(2), the unknown k-sparse x can be reconstructed
exactly by solving Eq.(6)

min
θ
∥θ∥p s.t. y = ΦΨθ (6)

where ∥·∥p =
(∑n

i=1 | · |
)1/p

denotes the ℓp-norm. Numerous
results have demonstrated that ℓp(0 < p ≤ 1) satisfies RIP
condition. For ℓ1, the restricted isometry constants satisfy
δk < 1, which can guarantee the reconstruction conditions.
The reconstruction of x can be seen as a linear or convex
programming problem and many methods are available to
easily solve this type of problems.

Extensive research efforts have been made to develop var-
ious sparse recovery algorithms, in which there are usually
two groups of methods to perform the sparse recovery. One is
convex relaxing-based recovery algorithms, such as the famous
basis pursuit (BP) that aims at solving the ℓ1 minimization,
Dantzig Selector, and so on; Another group of commonly used
algorithms are greedy pursuit algorithms based reconstruc-
tion algorithms, such as Matched Pursuit (MP), Orthogonal
Matched Pursuit (OMP), Stagewise OMP (StOMP), Compres-
sive Sampling Matched Pursuit (CoSaMP), Subspace Pursuit
(SP), and so on. Both of the convex programming-based
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Fig. 1. Compressed sensing scheme over IoT.

and nonparametric greedy-based algorithms have advantages
and disadvantages when applied to different applications. An
advantage of the nonparametric greedy algorithms is that it can
produce a good approximation with a small number of itera-
tions. Meanwhile, the convex programming-based algorithms
have a better reconstruction accuracy. In contrast to BP, basis
pursuit de-noising (BPDN) (also called LASSO) has additional
de-noising performance [27], [28], [29], [30].

C. Noise and Reconstruction Accuracy in Compressed Sensing

In practice, as the data has noise, LASSO is able to
minimize the usual sum of square errors, with a bound on
the sum of the absolute value

min
θ
∥θ∥1 s.t. ΦT(y −ΦΨθ) ≤ λ1 (7)

Actually, Eq.(7) can also be reformatted as a penalized least
squares estimate problem

argmin
θ
∥y −ΦΨθ∥22 + λ2∥θ∥1 (8)

By appropriately choosing constants λ1 and λ2, Eq.(8) can
be solved. Therefore, it is possible to accurately reconstruct the
compressed signals without requiring prior knowledge when
the signals are compressible over some domains. One can
accurately reconstruct the sparse vector θ from compressed
y using the reconstruction algorithms mentioned above and
the compression rate can be defined as

ρ =
∥x− x̄∥22

n
(9)

III. CS-BASED FRAMEWORK IN WSNS AND IOT

In this section, a compressed sensing framework for signal
or data acquisition in WSNs and IoT will be introduced. It
acquires a user-defined continuous packets sequence of data
per interval, and after a compressed sensing-based encoding
procedure the encoded packets are transmitted by wireless
communications. The compressed sensing IoT (CSI) system
simplifies all edge components as IoT nodes, as shown in
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Fig.1. CSI contains of three phases: (1) The design of com-
pressed sensing information end-node (CSIE), which aims to
reduce the sampling rate and the number of samples without
losing the essential information; (2) The compressed data
delivery scheme, compressed data is delivered to IoT networks
to minimize the received data distortion and communication
burden; and (3) Data reconstruction and analysis at fusion
center(s). The CSI is a flexible architecture to implement a
range of different information acquisition in IoT and WSNs.

A. System Architecture

The essential goal of WSNs and IoT is to accurately acquire
the information about events of interest. The information
acquisition networks usually consist of three core components:
(1) Information sensing system, which can detect and com-
pressively sample the signals of events; (2) Compressed sam-
pling, the systems sample information that are preconditioned
and transmitted over the networks; and (3) Reconstruction
algorithms, the system accurately reconstructs the original
signal from the compressed samples. Inadequate sampling may
cause aliasing in signal reconstruction when the measurement
matrices are not properly selected.

In contrast to conventional sensing and sampling systems,
the compressed sensing can extend them to a much broader
class of signals. The compressed sensing-based sampling
process works by taking a small number of samples of a
compressible signal on a sparse basis to reconstruct the origi-
nal signals by using linear/convex optimization methods. The
compressed sensing theory typically requires the projection
matrix to be random, though in practice researchers have often
found that the same idea can be used in other conventional
sampling scenarios [2]. In this section, we summarized the
signals or data that is collected by three models.

1) Node-dependent signal or data acquisition: Each node
acquires i.i.d. signals. In this scenario, the compressed sensing
can be used to effectively reduce the sampling rate without
degenerating the reconstruction performance. A k-sparse sig-
nal x ∈ Rn can be completely described by the k nonzero
components. x can be sampled with a diversifying matrix and
a measurement vector y can be obtained. The sampling process
can be described as Eq.(10)

y = Ax+ ϵ (10)

in which A denotes an m-by-n measurement matrix and ϵ is
noise.

The benefits of this model are: (1) the number of samples
generated by each node can be significantly reduced without
losing the reconstruction accuracy; (2) it may cause the
significant reduction of communications over the networks;
and (3) the computation cost at nodes can be reduced.

2) Cooperative signal or data acquisition between nodes:
In networks (WSN, IoT, etc.), the measurement y can be
represented as

y = [y1, · · · , ym]T =

n∑
j=1

Ai,jxj (11)

in which yi can be easily represented as a linear combination
of the sparsely represented signal xi.

Each node is able to compute xj by multiplying the corre-
sponding element of matrix Ai,j , which can be constructed by
choosing the entries as i.i.d realizations from some probability
distribution [2]. Then randomized gossip is used to aggregate
the Ai,jxj on a fusion center. By this way, y is available at
the fusion center.

3) Consensus algorithm-based signal or data acquisition
over networks: In a practical network, most nodes keep a
sleeping mode based on a predefined mechanism; therefore,
the topology changes over time [31]. As a result, it is necessary
to take this situation into consideration for signal acquisition
or data collection.

Consider a network with n nodes at location {pi} (i =
1, . . . , n) is monitoring multiple events, assume that Na(t)
nodes are in active mode and Ns(t) nodes are in sleep mode
at time t. Let xi denote the source value at pi, i ∈ n. Then
measurement yi of node i can be represented as

yi =
∑
j∈N

Aj,ixj + ϵi (12)

in which Ai,j = Aj,i is the influence of this event on sensor
point pi, and ϵi is the random measurement noise of zero
mean. Here x is sparse and Ai,j can be learned during the
network deployment stage.

Assume that the influence Aji = 0, if the distance from
j to i is larger than the communication range. Then the
measurement yi becomes yi = xi +

∑
j∈nAj,ixj + ϵi,

furthermore, for the active nodes in the network, we have

ya = ΦAx+ ϵa (13)

where A is the n×n matrix with (i, j)-th element being (Ai,j),
Φ is the m × n measurement matrix that selects the m rows
of A corresponding to the active sensors, and ya and ϵa are
the m× 1 measurement vector and noise vector, respectively.

In compressed sensing theory, we aim to recover the n× 1
sparse signal vector x from m measurements. This can be
solved as an optimization problem

min
x
∥Ax− ba∥22 + λ2∥x∥1 s.t. x ≥ 0 (14)

Let Ni denote the neighboring nodes of i. Assume that each
active sensor i holds the signal xi at its own location as well
as the signals xk occurring at its inactive neighboring node
∀k ∈ Na ∪ Ni. This means node i keeps its measurement xi
and {xk}k∈Ni . Then Eq.(14) can be reformulated as

min
∑
i∈Na

(
yi − x(i)i −

∑
k∈Ns∪Ni

Ak,ix
(i)
k −

∑
j∈Na

Ak,ix
(j)
j

)2

(15a)

s.t. x
(i)
i ≥ 0, ∀i ∈ Na, (15b)

x
(i)
k ≥ 0, ∀k ∈ Ns ∪Ni (15c)

Eq.(15) can be reformulated as a separable convex program,
which can be solved with a consensus algorithm by using the
alternating direction method of multipliers.
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B. Sparse Representation

The CSIE samples the original information based on com-
pressed sensing theory and then deliver the samples through
CSI. The sampling rate (or the number of samples) is de-
termined in this process, while the measurement matrix is
pre-selected and shared between the sender and receiver as
described in Section II.A.

CSIE has two advantages: (1) it runs on low complexity
and can be used over thin-node of IoT; and (2) it takes the
advantage of the temporal correlation between continuous data
matrices. CSIE is able to effectively sample the compressible
signal x on a certain basis. However, a few promising schemes
are available for the design of the CS-based information en-
coder to sparsify/compress bases for information or data. Since
an information system (e.g., wireless sensor network) consists
of many data sources that are able to monitor the information
related to a certain spatially varying phenomenon, if the
nodes are deployed in a random manner such that they cover
uniformly a given surface, then sparsifying transformation
may be readily borrowed from traditional signal processing.
In this case, many well-developed tools such as discrete-
cosine-transform (DCT), discrete-Fourier-transform (DFT) or
discrete-wavelet-transform (DWT) may be used to de-correlate
and sparsify the sensor data [4].

Fig.2 illustrates an example of compressed sensing-based
spatially correlated data acquisition network, where DWT is
used for sparsification. Actually, the non-sparse raw data in
Fig.2(a) can easily be sparsely represented over a wavelet basis
as shown in Fig.2(b).

In IoT, remote data collection involves specific collections
that often provide redundant data which cannot be accounted
for by a standard compression technique. In a general frame-
work, let us consider that N observations of the same moni-
toring area are available: {yi}(i = 1, · · · , N) such that

yi = AΛix+ ni (16)

where {AΛi}(i = 1, · · · , N) are N independent random sub-
matrices of Φ with Card(Λi) = M . It is clear that x
can be reconstructed from the N compressed observations
{yi}i=1,...,N . According to Eq.(5), we propose a substitution
decomposition solution with the following

min
θ
∥θ∥1 s.t.

N∑
i=1

∥yi −Ai,jθ∥22 ≤ ϵ (17)

It can be further recast in the following Lagrangian form

argmin
θ

N∑
i=1

∥yi −Ai,jθ∥22 + λ2∥θ∥1 (18)

For a sensor network with changing topology that the data
is made of N readings {xi}i=1,··· ,N such that each reading
xi is a noiseless observation of the same sensing area x, each
observation is compressed using compressed sensing such that
ρ =M/t. Compression is made by solving the problem in

min
θ

N∑
i=1

∥yi − ϕiΨθ∥22 + λ2∥θ∥1 (19)

(a) Monitoring scenario
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Fig. 2. Illustration of the compressibility of network.

in which λ2 is a regularization parameter, which is a trade-off
between the sparse representation of signals and reconstruction
accuracy.

C. Noise Model, Communication Load, and Recovery Accu-
racy

This subsection will discuss the noise model in compressed
sensing. For compressed problem the measurement noise can
be modeled as

y = Ax+ ϵ (20)

where y ∈ Rn is the measurement, A ∈ Rm×n is the
measurement matrix, and ϵ is assumed to be a Gaussian
random vector with i.i.d. components. Let Im is an identity
matrix of size m, for the normalized measurement matrix A
= [Ai,j ], each component here is assumed to be distributed as
Ai,j ∼ N (0, 1/m), i = 1, . . . ,m, and j = 1, 2, . . . , n.

Similarly, the input noise model can be given by

y = A(x+ ϵ) (21)

where ϵ ∼ N (0, In) is a Gaussian random vector with i.i.d
components.

In multihop networks (such as WSNs, IoT, and so on),
the random projection of sensing data can be computed and
delivered to every subset of nodes using a gossip or consensus
scheme, or they might be delivered to FC(s) using clustering
and aggregation techniques [4]. In some ad hoc networks,
explicit routing information is difficult to be obtained and
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maintained, and each node jointly contributes its measurement
to the FC.

In WSNs or IoT, the nodes transmit packets asynchronously,
which may cause packets collision at the gateway or FC [32].
If one or more bits in a packet are in error, then a packet will
be in error, and the probability of a packet in error can be
modeled as [32], [33]

PE = 1− (1− Pe)
L (22)

where Pe denotes the probability of bit error and L denotes
the number of bits of per packet which is related to the SNR,
e.g., Pe = 1/2e−SNR for DPSK. Actually, in IoT, Poisson
process can be used to model the useful packet generation,
transmission, and arrival at each node. For an IoT network
(or WSN) with N nodes, we assume that the arrival of useful
packets follows a Poisson process with an effective average
arrival rate at FC

σ =
N(1− eηT )e−2NηTp(1− PE)

T
(23)

where η denotes the average packet-generation-rate at a node,
T denotes a data frame collection interval, and Tp denotes the
packet duration [32], [34]. Then, the number of useful packets
for the reconstruction algorithm can be described as

Prob{K(η, T ) = k} = PK(k; η, T ) =
(ηT )k

k!
e−σT (24)

In IoT and WSNs, communication burden is a major
concern for decentralized algorithm design. In the proposed
approach, nodes need to exchange intermediate information in
each iteration, which can be done via local broadcasting. With
compressed sensing, communication load can be reduced from
two sides: (1) The nodes just need to exchange intermediate
information in each iteration via local broadcasting; (2) Only
the data needs to be transmitted is compressed since only a
small part of measurements are needed without the loss of
essential information.

In practice, it is necessary to accurately reconstruct the com-
pressed data, and the recovery accuracy shall be assessed based
on the network goal. The accuracy of recovery is determined
by the recovery algorithm, the communication range, and the
collected data that shall contain adequate information.

D. Adaptive Cluster Sparse Representation and Recovery Al-
gorithm

The sensing data in most applications in IoT or WSNs often
exhibits a certain degree of correlation, therefore there is large
space to compress sensing reports to reduce transmissions. In
this section we will propose an adaptive cluster sparse recovery
algorithm by taking both the sparsity and correlation of data
into consideration. Actually the correlation of data is always
ignored by most pre-existing CS reconstruction algorithms. At
first, we introduce a definition for adaptive cluster sparsity as

Definition 4: Cluster-sparse. If a signal x can be accurately
represented with k ≪ n nonzero components (or over some
transform domains), these k nonzero elements can be clustered
into c ∈ {1, · · · , k} clusters.

If the size of all clusters is 1, then the c cluster-sparse
representation of signal is exactly the traditional k-sparse rep-
resentation. The ‘adaptive’ means that the number of clusters
c may be unknown and it changes dynamically. It is obtained
according to the geodesic distance between two neighboring
samples as described in Algorithm 1. The prior knowledge
about signal is that x is adaptively cluster-sparse, which is
not necessary to span all k-dimensional subspace in the union
Ωk that is used in conventional compressed sensing. Actually,
the cluster-sparse representation can significantly decrease the
degree of signals than in k-sparse case. By doing so, the
minimal measurement number m can be decreased for robust
signal reconstruction [2], [21].

It is clear that cluster-sparse scheme can effectively reduce
the number of measurements required for robust signal re-
construction to m = O(k + c · log(nc )). Compared with the
number of measurements m = O(klog(nk )) that is acquired by
conventional CS recovery algorithm, it significantly improves
the compressibility of signal.

In this section we will propose an adaptive cluster sparse
reconstruction algorithm (ACSRA), which can better balance
the scales of the components and computation complexity
among existing algorithms such as CoSaMP and dynamic
group sparse (DGS) [35]. ACSRA includes following five
main steps in each iteration:

1) Estimate the residual of each iteration;
2) Compute the best clusters Ck,c support set of the errors

(index set);
3) Merge the strongest support set;
4) Reconstruct the signals according to the given support

sets;
5) Prune x and computer residual for the next round.
Different from point-sparse approximation algorithms, in

ACSRA we prune the reconstructed signal and residue based
on a cluster sparse approximation. Here we only need to search
the sparse cluster subspace Ck,c, which causes the reduction
of measurements for stable signal recovery.

Algorithm 1: Adaptive cluster sparsity sensing
Input: x ∈ Rn, k, Nx ∈ Rn×τ , ω = {w(i, t)} ∈ Rn×τ , τ
Output: support set of supp(x, k): Γ
for i = 1 · · · c do

for t = 1 · · · τ do
w(i, t) = min||xi −

∑
wijxj ||, s.t.

∑
wij = 1;

end
z(i)←

∑τ
t=1 w

2(i, t)N2
x(i, t) + x2(i) ;

end
Ω ∈ Rn ← the indices of the k largest elements in z;
for i = 1 · · ·n do

Γ(i) = Ω(i);
end
return supp(x, k)← Γ;

Details of the ACSRA cluster-sparse sensing scheme can
be found in Algorithm 1, where two parameters τ and w are
applied to tune the number of neighbours and its weights.
In the cluster-sparse scheme, τ can adjust the number of
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neighbours in sparse data and w can balance the cluster prior-
knowledge and the sparsity of signal. Here w is the local
combination weights vector that is determined by solving a
least squares problem. In Algorithm 1, the weights can be
obtained by solving a linear local embedding problem based
on the pairwise distance between two data points.

In practice, it is difficult to obtain the sparsity number k in
signal recovery. Fortunately, in many practical applications,
the sparsity number may range from kmin to kmax [35].
In continuously signal acquisition, the [kmin, kmax] can be
estimated depending on the sparsity of signal. The step size
can be the acquisition resolution. Let △k denote the step size
of sparsity number and the reconstruction of signal or data can
be obtained by Algorithm 2, in which ϵ bounds the amount of
noise in the signals.

Algorithm 2: Adaptive Cluster Sparse Recovery Algo-
rithm (ACSRA)
Input: Φ ∈ Rm×n, y ∈ Rm, [kmin, kmax], △k
Output: Recovered signal x∗.
Initialization: l = 0, residual y0 = y, Γ is set as
supp(x), and Γ = ∅, x = 0, k = kmin;
repeat

Apply Algorithm 1 to find support set Γl with
sparsity number k;
update Γ; xl = Φ†

Γy
l;

yl+1 = yl, Γl+1 = Γl;
k = k +△k, l = l + 1;

until xl+1 − xl ≤ ϵ;
x∗ = Φ†

Γy
l+1

IV. PERFORMANCE EVALUATION

This section provides extensive simulation results to demon-
strate the effectiveness of the proposed sparse signal recovery
algorithm in WSNs and IoT. At first, a small IoT network
is built to acquire ECG signals, which can demonstrate the
basic properties of the proposed algorithm. Then, a large IoT
network is simulated to demonstrate the scalability of the
decentralized algorithm.

A. Nodes-Dependent Signal Acquisition

For node-dependent signal or data acquisition in wireless
sensor networks or IoT, we assume each node in the network
is able to acquire an ECG signal, which is very common in
healthcare systems. In this simulation experiment, as signal
source, the dataset is obtained from the archives at the Univer-
sity of California (http://www.cs.ucr.edu/eamonn/discords/),
we consider seven real ECG signals datasets (SAX) from
different movements of subjects.

We compare the performance of the reconstruction ac-
curacy and reconstruction speed for different compressed
recovery algorithms. All of them significantly decrease the
volume of sampling comparing with conventional Nyquist
sampling scheme. Table.I also shows the recovery error and
the CPU times that used by the proposed algorithm for
different measurements and K-sparse ECG signals. Table I

shows that the recovery accuracy of seven ECG signals in
datasets, in which the ‘Recovery Error’ can be calculated by√∑N

i=1 (x̂i − xi)2/N .
It is clear that when k is properly selected, the signals can

be recovered perfectly, however, the number of samples is
much smaller than that of Nyquist. For real time monitoring
over WSNs or IoT, this scheme can significantly reduce the
power consumption and communication loads over the whole
networks.

TABLE I
DATASETS EXPERIMENTS PARAMETER AND RECOVER PERFORMANCE

No. ECG Datasets Size(N ) Recovery Error CPU Time (s)
1 chfdb1 3750 0.0360 2.22690
2 chfdb2 3750 0.0280 1.50751
3 ltstdb1 3750 0.1066 1.30932
4 ltstdb2 3750 0.0691 1.48217
5 mitdb 5400 0.0426 3.69623
6 stdb 5400 0.1193 2.10079
7 xmitdb 5400 0.0139 3.42036

Notice that the ECG signals themselves are not sparse in the
time-domain. We need to transform the ECG signals into other
sparse domains, such as the wavelet domain. We contracted
the signal as a 1 × 4096 vector. The size of the observation
matrix for the nearly perfect reconstruction should be at least
larger than M × 4096 where M is calculated by M = O(k+
c · log(N/c)) (k is the sparse level, in our experiment k =
128, c denotes the number of clusters. The length of signal is
2048), which is a significant improvement than m = O(k +
k · log(n/k)). The latter is widely used in existing compressed
sensing recovery algorithms. In our experiments the minimal
M is 256. Actually we relaxed this minimal value to 384 to
obtain more reliable results. It means that only 18.75% of the
original data needs to be transmitted over WSN, with which
the original signal can be perfectly reconstructed. Under this
situation, the communication load over WSN can be decreased
by 81.25%.

For comparison’s sake, we tested three commonly used
recovery algorithms: GPSR, LASSO, OMP, and proposed AC-
SAR by simulations on the ECG signal (chfdb chf −1) with
length of 2048. The GPSR is proposed for bound-constrained
optimization to find the sparse solution, which shows a fast
and accurate performance for data with group/cluster sparsity
structure, such as image or continuous signals. LASSO is the
most well-known ℓ1 minimization in CS, which performs well
in a broad range of circumstances. The performance of OMP
has proven to be effective in solving sparse solution to reverse
problem arising in overcomplete representation.

Fig.3(a) and 3(b) show the original ECG signal
(chfdb chf − 1) with length of 2048 and its sparse
representation of ECG signal, which includes 1974 entries
less than 0.5. Fig.4(a), (b), and (c) compare the reconstructed
ECG signals by the algorithms GPSR, LASSO, and OMP
that are widely used in compressed sensing recovery; Fig.4(d)
gives the reconstructed ECG signal by proposed ACSAR.
The average recovery errors shown in Fig.4(a), (b), and (c)
are 0.3883, 0.2634 and 0.3239, respectively. The average
recovery error of proposed ACSAR shown in Fig.4(d) is
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Fig. 3. ECG signal and its’ sparse representation (chfdb chf-1)
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Fig. 4. ECG original signal (chfdb chf−1) and reconstructed signals with
GPSR, LASSO, OMP and ACSAR (k = 74,M = 512).

0.0878. It can be seen that proposed recovery algorithm can
achieve more accurate performance than GPSR, LASSO, and
OMP when the same measurements are used.

B. Cooperative Signal and Data Acquisition

To visually illustrate the cooperative signal acquisition pro-
cess, we employ a WSN to sense a 5×5 unites field as shown
in Fig.5(a) and 5(b). Each node acquires a measurement that
may, for instance, be the humidity or temperature. Actually,
the Fourier transform of the measurements shows a sparse
representation with sparsity k = 16. For a 1000s interval, a
packet size L = 1000 bits, and a packet duration Tp = 0.5s.
Packets are sent to the fusion center at a bit rate of 5kbps and
a packet error probability PE = 0.1.

A number of sensors monitor the signal and periodically
report the readings by wireless communications to the FC.
Each node senses the environment with a CS framework
and transmits the readings to the FC. When FC receives the
compressed projections of readings from the nodes, the signal
at each node can be reconstructed by using the proposed
ACSRA algorithm. Employing the proposed ACSRA algo-
rithm, a compressible rate of 26% can be obtained, and the
reconstructed map can be available in Fig.5(b) in which the
original signals can be reconstructed with high probability as
great as 95%.

(a) Original map of the sensing area. (b) Reconstructed map of the sensing
area.

Fig. 5. The original map and reconstructed map with ACSRA algorithm

V. CONCLUSION

In this paper, we first proposed a compressed sensing frame-
work for WSNs and IoT and introduced how the framework
could be utilized to reconstruct the sparse or compressible
information data into a variety of information systems in-
volving with WSNs and IoT. The compressed sensing-based
framework provides a promising approach for compressible
signal and data in information systems by employing a priori
data sparsity information, which makes it an effective new
information and data gathering paradigm in networks and
information systems.

This work has shown that compressed sensing can be a
powerful data acquisition tool for saving energy and com-
munication resources in networks and information systems. It
further strengthens the connection between information theory
and compressed sensing. As part of our ongoing work, we are
investigating the best achievable compressed sensing recon-
struction schemes over information systems and networks.

REFERENCES

[1] Lida Xu, “Enterprise Systems: State-of-the-Art and Future Trends”,
IEEE Transactions on Industrial Informatics, vol.7, no.4, pp.630-640,
September 2011.

[2] Jun Zheng David Simplot-Ryl Chatschik Bisdikian Hussein T. Mouftah,
“The internet of things”, IEEE Communications Magazine, vol.49, no.11,
pp.30-31, November 2011.

[3] Luigi Palopoli, Roberto Passerone, and Tizar Rizano, “Scalable Offline
Optimization of Industrial Wireless Sensor Networks”, IEEE Transactions
on Industrial Informatics, vol.7, no.2, pp.328-329, May 2011.

[4] Jarvis Haupt, Waheed U.Bajwa, Michael Rabbat, and Robert Nowak,
“Compressed Sensing for Networked Data: A different approach to
decentralized compression”, IEEE Signal Proceesing Magazine, vol.25,
no.2, pp.92-101, March 2008.

[5] Alphan Ulusoy, Ozgur Gurbuz, and Ahmet Onat, “Wireless Model-
Based Predictive Networked Control System Over Cooperative Wireless
Network”, IEEE Transactions on Industrial Informatics, vol.7, no.1,
pp.41-51, February 2011.

[6] M. Jongerden, A. Mereacre, H. Bohnenkamp, B. Haverkort and J.P.
Katoen, “Computing Optimal Schedules of Battery Usage in Embedded
Systems”, IEEE Transactions on Industrial Informatics, vol.6, no.3,
pp.276-286, August 2010.

[7] Konstantinos Kakousis, Nearchos Paspallis, and George Angelos Pa-
padopoulos, “A survey of software adaptation in mobile and ubiquitous
computing”, Enterprise Information Systems, vol.4, no.4, November 2010.

[8] Jerome Bobin, Jean-luc Starck, and Roland Ottensamer, “Compressed
Sensing in Astronomy”, IEEE Journal of Selected topics in Signal
Processing, vol.2, no.5, pp.718-727, October 2008.

[9] Shancang Li, Lida Xu, Xinheng Wang, and Jue Wang, “Integration of
hybrid wireless networks in cloud services oriented enterprise informa-
tion systems”, Enterprise Information Systems, vol.6, no.2, pp.165-187,
January 2012.



9

[10] Vehbi C. Gungor, Dilan Sahin, Taskin Kocak, Salih Ergut, Concettina
Buccella, Carlo Cecati, and Gerhard P. Hancke, “Smart Grid Technolo-
gies: Communication Technologies and Standards”, IEEE Transactions
on Industrial Informatics, vol.7, no.4, pp.529-539, November 2011.

[11] Chuan Fu, Guoqing Zhang, Jing Yang, and Xiaona Liu, “Study on the
contract characteristics of Internet architecture”, Enterprise Information
Systems, vol.5, no.4, pp.495-513, November 2011.

[12] Sameer Kumar, Brooke Kadow, and Melissa Lamkin, “Challenges
with the introduction of radio-frequency identification systems into a
manufacturer’s supply chain for a pilot study”, Enterprise Information
Systems, vol.5, no.2, pp.235-253, May 2011.

[13] Hossein Mamaghanian, Nadia Khaled, David Atienza, and Pierre Van-
dergheynst, “Compressed Sensing for Real-Time Energy-Efficient ECG
Compression on Wireless Body Sensor Nodes”, IEEE Transactions on
Biomedical Engineering, vol.58, no.9, September 2011.

[14] Maxim Raginsky, Sina Jafarpour, Zachary T.Harmany, and Robert
Calderbank, “Performance Bounds for Expander-Based Compressed
Sensing in Poisson Noise”, IEEE Transactions on Signal Processing,
vol.59, no.9, September 2011.

[15] Fatemeh Fazel, Maryam Fazel and Milica Stojanovic, “Random Ac-
cess Compressed Sensing for Energy-Efficient Underwater Sensor Net-
works”, IEEE Journal of Selected Areas in Communications, vol.29, no.8,
pp.1660-1670, September 2011.

[16] Scott Pudlewski, Tommaso Melodia, and Arvind Prasanna,
“Compressed-Sensing-Enabled Video Streaming for Wireless Multimedia
Sensor Networks”, IEEE Transactions on Mobile Computing, vol.11,
no.6, pp.1060-1062, June 2012.

[17] Hossein Mamaghanian, Nadia Khaled, David Atienza,and Pierre Van-
dergheynst, “Compressed Sensing for Real-Time Energy-Efficient ECG
Compression on Wireless Body Sensor Nodes”, IEEE Transactions on
Biomedical Engineering, vol.58, no.9, pp.2456-2466, September 2011.

[18] Lida Xu, “Information Architecture for Supply Chain Quality Man-
agement”, International Journal of Production Research, vol.49, no.1,
pp.183-198, January 2011.

[19] Scott Pudlewski, Arvind Prasanna, and Tommaso Melodia,
“Compressed-Sensing-Enabled Video Streaming for Wireless Multimedia
Sensor Networks”, IEEE transactions on Moble Computing, 2011.

[20] Carlo Caione, Davide Brunelli, and Luca Benini, “Distributed Com-
pressive Sampling for Lifetime Optimization in Dense Wireless Sensor
Networks”, IEEE Transactions on Industrial Informatics, vol.8, no.1,
pp.30-40, February 2012.

[21] Richard G. Baraniuk, Volkan Cevher, Marco F. Duarte, and Chinmay
Hegde, “Model-Based Compressive Sensing”, IEEE Transactions on
Information Theory, vol.56, no.4, pp.1982-2001, April 2010.

[22] Emmanuel J. Candes and Michael B. Wakin“An Introduction To Com-
pressive Sampling”, IEEE Signal Processing Magazine, vol.25, no.2,
pp.21-30, March 2008.

[23] Xi Chen, Zhuizhuan Yu, Hoyos S., Sadler B.M., Silva-Martinez J., “A
Sub-Nyquist Rate Sampling Receiver Exploiting Compressive Sensing”,
IEEE Transactions on Circuits and Systems I: Regular Papers, vol.58,
no.3, pp.507-520, March 2011.

[24] Chong Luo, Feng W, Jun Sun, and Changwen Chen, “Efficient Mea-
surement Generation and Pervasive Sparsity for Compressive Data Gath-
ering”, IEEE Transactions on Wireless Communications, vol.9, no.12,
pp.3728-3738, October 2010.

[25] Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael
Wakin, “A Simple Proof of the Restricted Isometry Property for Ran-
dom Matrices”, Constructive Approximation, vol.28, no.3, pp.253-263,
December 2008.

[26] Lihi Zelnik-Manor, Kevin Rosenblum, and Yonina C. Eldar, “Sensing
Matrix Optimization for Block-Sparse Decoding”, IEEE Transactions on
Signal Processing, vol.59, no.9, pp.4300-4312, September 2011.

[27] Michael A. Lexa, Mike E. Davies, and John S. Thompson, “Reconciling
Compressive Sampling Systems for Spectrally Sparse Continuous-Time
Signals”, IEEE Transactions on Signal Processing, vol.60, no.1, pp.155-
171, January 2012.

[28] Zhaorui Liu, A. Y. Elezzabi, and H. Vicky Zhao, “Maximum Frame
Rate Video Acquisition Using Adaptive Compressed Sensing”, IEEE
Transactions on Circuits and Systems for Video Technology, vol.21, no.11,
pp.1704-1718, November 2011.

[29] T. Blumensath and M. Davies, ”Sampling theorems for signals from
the union of finite-dimensional linear subspaces”, IEEE Transactions on
Information Theory, vol.55, no.4, pp.1872-2882, 2009.

[30] Arian Maleki and David L. Donoho, “Optimally Tuned Iterative Recon-
struction Algorithms for Compressed Sensing”, IEEE Journal of Selected
Topics in Signal Processing, vol.4, no.2, pp.330-341, April 2010.

[31] Qing Ling and Zhi Tian, “Decentralized Sparse Signal Recovery for
Compressive Sleeping Wireless Sensor Networks”, IEEE Transactions
on Signal Processing, vol.58, no.7, pp.3816-3828, July 2010.

[32] Fatemeh Fazel, Maryam Fazel and Milica Stojanovic, “Random Ac-
cess Compressed Sensing for Energy-Efficient Underwater Sensor Net-
works”, IEEE Journal of Selected Areas in Communications, vol.29, no.8,
pp.1660-1670, September 2011.

[33] David Wang, Jun Liu, and Rajagopalan Srinivasan, “Data-Driven Soft
Sensor Approach for Quality Prediction in a Refining Process”, IEEE
Transactions on Industrial Informatics, vol.6, no.1, pp.11-17, February
2010.

[34] Sooyeon Shin, Taekyoung Kwon, Gil-Yong Jo, Youngman Park, H.
Rhy, “An Experimental Study of Hierarchical Intrusion Detection for
Wireless Industrial Sensor Networks”, IEEE Transactions on Industrial
Informatics, vol.6, no.4, pp.744-757, November 2010.

[35] Shaoting Zhang, Junzhou Huang, Hongsheng Li, and Dimitris N.
Metaxas, “Automatic image annotation using group sparsity”, IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
vol.42, no.1, pp.1-12, January 2012.


