
SABRE: A bio-inspired fault tolerant electronic

architecture

P Bremner 1, Y Liu 2, M Samie 1, G Dragffy 1, A G Pipe 1, G

Tempesti 2, J Timmis 2, A M Tyrrell 2

1 Bristol Robotics Laboratory, University of the West of England, Coldharbour Lane,

Bristol. BS16 1QY.
2 Intelligent Systems Research Group, University of York. Heslington, York, UK.

YO10 5DD

E-mail: paul.bremner@brl.ac.uk

Abstract. As electronic devices become increasingly complex, ensuring their reliable,

fault free, operation is becoming correspondingly more challenging. It can be observed

that, in spite of their complexity, biological systems are highly reliable and fault

tolerant. Hence, we are motivated to take inspiration for biological systems in

the design of electronic ones. In SABRE (Self-healing Cellular Architectures for

Biologically-Inspired Highly Reliable Electronic Systems) we have designed a bio-

inspired fault tolerant hierarchical architecture for this purpose. As in biology, the

foundation for the whole system is cellular in nature, with each cell able to detect

faults in its operation and trigger intra-cellular or extra-cellular repair as required. At

the next level in the hierarchy, arrays of cells are configured and controlled as function

units (FUs) in a transport triggered architecture (TTA), which is able to perform

partial-dynamic reconfiguration (PDR) to rectify problems that cannot be solved at

the cellular level. Each TTA is, in turn, part of a larger multi-processor system which

employs coarser grain reconfiguration to tolerate faults that cause a processor to fail.

In this article we describe the details of operation of each layer of the SABRE hierarchy,

and how these layers interact to provide a high systemic level of fault-tolerance.

1. Introduction

The demand for increasingly more ‘intelligent’ equipment has to be viewed through the

explosion of their complexity. An important knock-on effect of increased complexity,

however, is degradation in reliability: more complex systems are more prone to

failure. For the vast majority of electronic devices, long-term fault free operation is an

important requirement. Moreover, there are many systems for which correct operation

is imperative, e.g. anti-lock braking systems, medical systems, space exploration,

industrial control and shutdown systems. Hence, systems must be designed that are

able to detect erroneous states and handle them such that they can operate correctly in

the presence of errors and be fault tolerant.
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The primary source of faults that effect digital systems is ionizing radiation. The

two most common faults caused by radiation are single-event upsets (SEU), and single-

event transients (SET), accounting for around 90% of faults [1]. SEU change the data

stored in registers, while SET cause spurious data to appear within combinational logic

affecting data calculations. Although both types of fault are temporary they have serious

consequences for unprotected digital systems. There are also permanent single-event

effects (SEE), but these only acount for some 10% of errors.

The ability of an electronic system to either carry on operating as normal in the

presence of malfunction, or to ‘roll-back’ to a simpler safe mode is a well-established

methodology, which focuses on replication of resources at the system or sub-system level.

In nature, a similar situation does pertain; we have two lungs, two kidneys, two arms,

and so on. However, nature achieves a great deal of its functional integrity by solving

the reliability problem at the level of its primitive constituents: the cells. Multi-cellular

systems develop from a single cell through the processes of cellular division and cellular

differentiation. Differentiation is manifested by instantiating different functionality in

each cell even though, at a fundamental level, any cell is capable of performing any of

the functions (e.g. stem cells). Although local failures are common, and the body is

under constant attack from harmful pathogens and environmental conditions, biological

organisms protected by their immune system are highly reliable. The quite spectacular

abilities that nature often displays, in this case via the immune system, drive us to

attempt to replicate some of its features. If we can design systems that, like their

natural counterparts, can withstand the occurrence of faults, and still function with

little or no degradation in their performance, then it could also open up avenues for the

application of electronic systems in more hostile environments than hitherto.

Prior work targeting this goal, Embryonics [2][3][4], POEtic [5] and related works

[6][7], has adopted certain features of cellular behavior and organisation, transposing

them to the two-dimensional world of integrated circuits on silicon. Fundamental

artificial cells and systems with ‘universal’ cellular architectures have been created.

These artificial systems have, like their biological counterparts:

(i) Cellular organisation, where an artificial system is formed by a homogeneous,

initially identical, ‘sea of cells’, each containing the description of the system (the

genome or DNA).

(ii) Cell division that ‘creates’ the number of cells required to define an organism

(system) [7].

(iii) Cell differentiation that configures the functionality of each cell so that together

they will provide the overall characteristic requirement of the organism (system)

[7][3].

(iv) Error detection and correction at the intracellular level. Any mutation or fault in

parts of the cell must be repaired to avoid erroneous system operation.

(v) Error detection and correction at the extra-cellular level. If repair at the

intracellular level is not possible, then the cell must be replaced by a fault-free
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cell.

The work presented here builds upon the solid foundation of this prior work,

varying from, and extending it, in several fundamental ways. In Embryonics, despite

the interesting bio-inspired features, there are a number of engineering problems that

have been under-estimated. Among them, cost-efficiency is the first and foremost

issue: enormous electronic resources are required to achieve a maximally bio-plausible

architecture, which prohibits Embryonics from being utilised for real world applications.

This paradigm is overthrown in the SABRE project, where an artificial organism is

created rather than an electronic copy of biology. Although (in a similar manner to

Embryonics) the SABRE project utilises a hierarchical structure, with fault tolerance

being initiated at the base substrate level, hierarchical divisions and the mechanisms

employed are driven by the electronic system requirements. Thus, while biological

inspiration is used for various mechanisms within the SABRE project, each layer is

treated as a separate entity for the purposes of where the biological inspiration is drawn.

In the next section the features of each layer, and their various biological

inspirations, are introduced. This is followed by details of the operation of the

mechanisms that operate at the base substrate layer of SABRE, the Unitronics cells

(section 3) and SMove, the transport-triggered architecture we have implemented on the

second layer (section 4). Next, we look at the practical implications from instantiating

a test application on an SMove processor (section 5). We then describe the top, multi-

processor layer of SABRE (section 6). We then consider the issue of faults in the

protection mechanisms, and how the hierarchical structure of SABRE might be leveraged

to protect these systems (section 7). Finally we present conclusions and suggestions for

future work (section 8).

2. Fault Tolerance Hierarchy and Biological Inspiration

SABRE has a 3 layered fault tolerance hierarchy: cellular layer, organ layer and

organism layer, as shown in figure 1. This layered structure is inspired by the self-repair

hierarchy in biological systems [8]. Cells are always under attacks from pathogenic

beings and processes, and contain mechanisms to perform intracellular repair. However,

if an infected cell cannot repair itself, it will perform apoptosis and release certain

biochemicals to the surrounding tissue environment. When the concentration of these

biochemicals is strong enough, it will trigger extra-cellular repair to replace the damaged

cells in that tissue. Further, the immune system will also sense the abnormal local

chemical level and help recruit stem cells to this damaged site.

In SABRE, each layer is a composed of a number of building blocks, each comprised

of a set of components from the layer beneath. Each layer identifies, and deals with,

faults at its level of granularity: when a building block is no longer able to deal with the

degree of faults occurring within it, a message is sent to the layer it is a part of, the higher

layer then tries to resolve the situation. It is important to note that the layer divisions
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Figure 1: Hirarchy of the 3 layers of SABRE

are determined by the structure of the electronics, and thus not directly bio-inspired,

different biological inspiration is however applied to the layers independently.

At the cellular level, we have used prokaryote cells as our biological inspiration, as

opposed to the eukaryote cells used in Embryonics and related work [2][3][4][5][6][7]. The

novel prokaryotic model which we have applied, uses the concepts of gene-compression

and horizontal gene-transfer (HGT) found in colonies of prokaryotes [9] to provide a

high degree of fault-tolerance, with much less redundant genetic information in each

cell (than in Embryonics). In Embryonics the complete genome for the individual is

stored in each cell, though only a small amount is expressed (by each cell); with any

non-trivial circuit the amount of memory in each cell is prohibitively large. Conversely,

our gene-compression method means that the redundant genetic information is the same

size as the expressed genes, while still providing a high level of redundancy.

At the organ level, rather than a fully homogeneous sea of cells, we have utilised

a transport-triggered architecture (TTA) we term SMove (SABRE Move), whereby the

cells are pre-segmented into islands, managed by a controller, and hence facilitating

efficient partial-dynamic reconfiguration (PDR). The organism level of the system, is a

multi-processor array, in this layer each TTA processor is the building block, and the self-

repair mechanism used is inspired by the development process and the innate immune

system in vertebrates; it is important to note that because of the chosen bio-inspiration,

SMove processors are also considered analogous to cells, i.e., when something is referred

to as a cell it is important to note the context of the reference.

2.1. Unitronics Cells

Prokaryotes, such as bacteria, are single-celled microorganisms that are relatively simple

in structure. A prokaryotic cell only has a single DNA molecule, which is a circular,
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super coiled, double-helix structure that has no ends. When only one of the two strands

of a double helix has a defect, the other strand can be used as a template to guide the

correction of the damaged strand, providing intracellular repair.

Although prokaryotes are single cell organisms, they have the ability to form

cooperating communities such as colonies and biofilms, and hence perform tasks

impossible for a single organism [9]. Of particular interest to the work presented here,

is that biofilms have improved resistance to biocides when compared with single cells

[9]. One cause for this is a form of acquired immune system by means of horizontal

gene transfer (HGT); genes endowing a cell with resistances to biocides can be copied

and transferred to other cells in the biofilm [10]. Additionally, extra-cellular repair of

cells in a biofilm becomes possible by means of healthy cell duplication or recruitment

of new cells.

Unitronics cells (unicellular electronics), the primitive elements from which our

system is comprised, utilise mechanisms which are inspired by the aforementioned

biological characteristics, structures and behaviours of prokaryotes. The redundant

genetic information stored in Unitronics cells for intracellular repair acts somewhat

analogously to the second strand of the DNA double-helix in natural cells, guiding

repair of a damaged configuration register. Similarly, an array of Unitronics (UX)

cells is somewhat analogous to a biofilm, containing multiple species of cells, which

use a process inspired by HGT to aid repair of damaged cells. HGT also facilitates

a form of extra-cellular repair of the colony. New cell genesis is clearly not possible

with electronics, so we must use redundant blank cells, which, using our HGT inspired

process, are used to replace irreparable cells. It can thus be considered that utilisation

of spare cells is recruitment of a replacement cell of the correct species, which is then

modified using artificial HGT.

2.2. SMove, Transport Triggered Architecture

The transport triggered architecture (TTA) was created in the 1980’s [11] and usually

contains an instruction decoder, an interconnection network and a number of functional

units (FUs), as shown in figure. 2 [12]. Functional units and the decoder are connected

through data buses and address buses, a single data/address bus pair is called a slot,

and a processor can have multiple slots to allow parallel processing to occur. Functional

units have a single, usually globally addressable, input/output interface called a port.

The connection of a port to the slot(s) is called a socket, the number of ports in a socket

is flexible.

A TTA only has one instruction, which is: move(destination, source). Operations

are not explicitly expressed within the instructions, but implicit from the addresses of

destination ports. Once the decoder retrieves the addresses from the instruction, it will

open the corresponding source and destination ports; hence, the structure of a decoder

is generally very simple.

In SMove there is a single slot, and each FU consists of an array of UX cells, and is
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Figure 2: Schematic of a transport-triggered architecture

thus reconfigurable. Although not biologically inspired, the SMove forms an important

part of the hierarchy, providing control of the UX arrays, and an additional biologically

inspired fault-tolerance mechanism which we term the reclaim algorithm. The principle

behind the reclaim algorithm is that a given fault will affect distinct configurations of a

fabric differently; i.e., a fault that is detrimental in one configuration may be disregarded

in a different one, due to the different utilisations of the available hardware. Hence, in

the reclaim algorithm, different FU configurations are tested to see whether they might

operate correctly on a damaged FU. The operation of this reclaim algorithm is somewhat

inspired by, and analogous to, the degenerate nature of the immune system: degeneracy

can be defined as ”the ability of elements that are structurally different to perform the

same function or yield the same output” [13]. Degenerate elements within systems

have been observed to produce different contexts, thus making degenerate systems

extremely adaptable to changes in their environment. Within the framework of the

reclaim algorithm, the different contexts are the configurations of the fabric elements

(cells), and the changes in the environment are the consequences of damage to the fabric.

2.3. Multi-Processor Array

In a multi-cellular organism, development is the process of cell division and

differentiation, be it in embryonic cells, or stem cells in an adult individual. This intrinsic

ability is encoded in the genome, and operates by means of a gene regulatory network

(GRN), a network of chemical interactions that control gene expression [14]. One result

of this lifelong developmental process is the immune system, embedded in the genes of

which is the ability to not only remove harmful agents (i.e., a self-protection system),

but also to influence the growth and repair of the organism by the inflammation response

(i.e., a self-maintenance system) [15]. Hence, the two processes are intrinsically linked,

with the developmental process being influenced by, and determining the behaviour

of, the immune system. The main means by which this intrinsic link operates, is

by cytokines (messenger proteins) produced by many immune cells, which act upon

the system GRN [16]. The self-repair mechanism at the multi-processor array level is

inspired by the biological development process, the immune system, and the mechanisms



SABRE: A bio-inspired fault tolerant electronic architecture 7

that operate within these systems.

We term our multi-processor array an artificial development substrate (ADS),

whereby each processor is analogous to a cell in a multi-cellular organism, and

can be used to instantiate either part of the system task or part of the artificial

immune system (AIS), resulting in two subsystems. In the task subsystem, tasks are

allocated to processors dynamically, and in such a way as to leave spare processors

available, providing an intrinsic self-repair capability; when a processor is faulty, its

role is dynamically assigned to a spare processor. The AIS subsystem detects errors

and handles exceptional situations, providing additional protection inspired by the

inflammation response in a biological immune system. Further, the two subsystems

communicate using the same information exchange pathways that are analogous to the

biological signaling materials, e.g. cytokines.

Previous approaches using similar inspiration [17][18] have focused on a much finer

granularity, using configurable logic blocks as the cell analogues rather than micro-

processors; doing so reduces the relative hardware overhead caused by the requirements

of the developmental process. Further, their means of fault tolerance has relied on row

and column elimination which is far less efficient than our immune inspired dynamic

routing approach.

3. Unitronics Cell Array

In this section we describe the base substrate for our system, Unitronics, an array of

digital electronic cells with mechanisms inspired by unicellular life. A Unitronics (UX)

cell array is made up of two different types of cells; core cells comprising the main body

of the array, which are surrounded by peripheral cells around the perimeter (figure 3).

Core cells (section 3.1) are configured to implement specific data routing and processing

functions, as defined by the genes stored in their configuration registers; additionally

they are used to configure the internal data bus. Peripheral cells (section 3.2) manage

the data flow to and from outside the array via a peripheral bus. The following sections

contain a summary of the operation of a UX cell array, see [19][20][21] for more detail.

3.1. Core Cell Architecture

Core cells are the main component in the base layer of the SABRE fabric, they have 8

inputs and 4 outputs, and are made up of three elements:

(i) Memory: The memory consists of two independent banks of registers: configuration

registers and repair registers. This is somewhat analogous to the double-helix

structure of DNA, as the data in the configuration registers (the cells genes)

determines the behaviour of the cell, and the data in the repair registers provides

the required support in order to repair faults in the contents of the configuration

registers. The contents of both sets of registers is verified by parity checkers, both

during configuration and normal operation.
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Figure 3: Schematic of a Unitronics cell array, see text for full description. Core cells

are denoted C, and peripheral cells P.

(ii) Communication Unit: The Communication Unit controls data flow into and out of

the cell, and allows configuration of the data bus that travels through it. Data

can be routed into the cell not only from the data bus, but also from direct

connections with neighbouring cells. This arrangement allows for highly flexible

routing throughout the cell array.

(iii) Bit-Slices: The functionality of the cell is performed by two identical structures we

term bit-slices (BS), which can operate independently or in concert depending on

the task requirements. The available bit-slice operation modes are:

• Routing: A slice can be configured to route data from its inputs directly to

its outputs. This can serve two purposes: firstly, data can be switched from

one data bus-line to another for use by other cells; secondly, the data routing

could be internal to the cell, as a routing slices outputs can be connected as

inputs to the other slice.

• Function: The slice can undertake algebraic or logical functionality. In

algebraic mode each slice can be a full or half adder. In the case when both

slices are being used as full adders, the carry output of one slice can feed the

carry input of the other slice. In the logical mode, the slice can realise any

arbitrary three variable Boolean function. Additionally, the outputs of both

slices can be combined to operate as a four variable Boolean function; this slice

output multiplexing can also be performed between two cells to aid routing,

and allow the composing of more complex logic functions.

• Data: Some of the configuration registers can be used to store input data.

Reading and writing of this data can be controlled by another cell or one of

the bit slices depending on the amount of data to be stored.
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3.2. Peripheral Cells

Peripheral cells are much simpler than core cells, their role is simply to provide a

configurable connection to external I/O channels via a peripheral bus. They also fulfill

a vital role within the built-in self test mechanism used in the UX array described in

the next section.

3.3. Built-in Self test (BIST) Mechanism

The BIST used in Unitronics cells utilises the fact that the bit-slices within the cell

are a paired structure, using each bit-slice to verify the result produced by its partner.

Allowing for checking of SET and permanent SEE occurring in the functional logic of the

cell. This is achieved by each cell having a normal operational mode (NOM) and a test

operational mode (TOM), which alternate during every system clock cycle by means of a

control signal; the configuration register is a shift register, and the control signal triggers

data shifting. In NOM the inputs of both slices are processed and their results are stored

in an output register. In TOM the genes in the configuration register are shifted, and

control inputs to the peripheral cells are changed, such that slice 1 will receive the

signals that slice 2 had in NOM, and vice versa. At the same time the behavioural and

mode genes are shifted such that the two slices alternate the functional role they are

performing. The outputs of both modes are compared to verify that the cell is operating

correctly. This continuous checking mechanism ensures faulty outputs are never sent

to the outputs of the cell array, and transitory faults will be detected. Further, the

swapping procedure ensures that all of the functional components are tested, including

the bus lines which are loaded with different information by the peripheral cells in the

two operational modes.

Transient faults on a bus line will be detected as TOM/NOM mismatch by each

cell receiving inputs from that line. To prevent this causing erroneous cell repairs, each

cell’s communication unit contains a set of flip-flops and comparators for each input

line; a comparison mismatch causes the data to be refreshed and the cell to repeat its

calculation on the next clock cycle. This detection hardware also allows a cell to verify

that data which is unmodified by the cell has not been altered by a SET on the bus

lines, hence full bus test coverage is provided by the cells.

This BIST mechanism has a number of advantages over more conventional

approaches. The main advantage, is that there is a greatly reduced hardware overhead

compared to the conventional modular redundancy approach, whereby each functional

module is duplicated (or triplicated) and the outputs of both are compared [22]; in UX

the only additional hardware requirement is that needed for the switching operation.

However, this advantage comes at the expense of a reduction in operating rate of the

hardware due to the alternating between NOM and TOM, i.e., time redundancy rather

than hardware redundancy is employed. Traditional approaches to time redundancy use

some means of encoding and decoding the inputs to generate data for a comparison that

will detect faults [23][24]. They operate on the premise that the encoded data exercises
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the device in a different way to expose faults. However, they rely on the structure

of the tested circuit being such that the encoding method exposes any faults, which

(particularly when evolutionary computation is used for synthesis) is not guaranteed to

be the case; our BIST method on the other hand, has no such requirement.

3.4. Self Repair Mechanism

When a cell is detected as being faulty a repair algorithm is executed by a controller

external to the array (UXC) in conjunction with internal cell controllers (ICCs) present

in each cell; to ensure fault free operation of the UXC and ICC they are both designed

with a TMR structure, with self-testing voters. The repair algorithm that is used

depends on whether a hard fault (i.e., damage to the hardware) or soft fault (i.e.,

flipping of a bit in the cell’s genes) is detected. Soft faults are detected by means of

parity checkers, and if such a fault is detected then the genes simply need to be reloaded

into the cell; however, if a parity error persists after reloading, then the fault is deemed

to be hard instead. The integrity of the parity checker result is ensured as the two halves

of the genome (controlling the 2 slices) are separately parity checked, and the results

compared in TOM and NOM.

The majority of hard faults are detected by means of the BIST mechanism

previously described. The hard fault recovery algorithm proceeds as follows:

• All cells following the faulty cell are shifted along the bus, with the end one

occupying a spare cell, and thus a spare cell directly after the faulty cell is created.

• Recover genes of faulty cell (detailed in the following paragraphs).

• Load genes into new cell; the bus width of the cell array is such that all genes can

be loaded in parallel.

• Apoptosis of old cell by setting the bus lines to bypass it.

In either fault case, the genes (i.e, cell configuration vector, CCV ) of the faulty cell must

be recovered, and this is done by means of correlated redundancy. We use the term

correlated redundancy to describe the method used to store multiple redundant copies

of each cell’s genetic information throughout the UX cell array; in spite of the fact that

the repair register in each cell is only the same size as the configuration register. In order

to do so, the correlation between similar genotypes is used, effectively compressing the

information. The first stage of this compression is to group the cells in an array based

on the similarity of their genes, i.e., cells with similar genes should be grouped together,

we term these groups clusters ; clusters are purely for self-repair, and ignore the physical

location of cells. Each cluster is distinguished by a shared value (CSV ) which the genes

of cells within the cluster are within a hamming distance threshold of. Hence, each cell

stores a differential value (∆g) in its repair register, which is its difference to the CSV ,

and it is calculated by:

∆g = CSV ⊕ CCV (1)
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This differential value is also used for another grouping, we term colonies, cells with

the same ∆g (irrespective of CSV ) are said to be in the same colony, (as with clusters)

this is purely for self-repair, and ignores the physical location of cells. In order to recover

the CCV of a damaged cell, the CSV of the cluster to which it belongs is calculated by

one of the other cells in its cluster using 2, then its ∆g is copied from another cell in its

colony; hence, the CCV can be calculated using 3, and loaded into the prepared spare

cell. Each cell contains the required hardware to carry out 2 and 3 (largely consisting

of a set of XOR gates).

CSV = CCV ⊕∆g (2)

CCV = CSV ⊕∆g (3)

It is a requirement to have multiple copies of each ∆g across multiple clusters,

with each cluster containing several individuals. This is done by specifying a hamming

distance threshold of a shared value which an individual must be within for cluster

membership, a lower threshold increases the chance of colony formation but reduces

the chance of cluster formation; hence, the threshold must be carefully selected and is

largely application dependent. A consequence of defining a threshold is that some cells

within a design have a CCV that is not sufficiently similar to any other cell to form

part of a cluster. For such cells, direct redundancy is used. In this case two cells are

paired, and each stores the others CCV in its repair register, i.e., the CSV is all zeros, and

the ∆g is the other cell’s CCV . However, the gene recovery sequence operates largely

unchanged. One method we have investigated to aid cluster and colony formation is

to divide the genome into subsections that can be compared separately, i.e., fewer bits

means an increased chance to find commonalities (section 5.1.1).

Cells in a cluster can be considered to belong to the same species, varying from

the base genotype (CSV ) by small genetic differences (∆g); in nature this occurs due

to adaptations to the cell’s environment (i.e., genetic learning), whereas in an artificial

system the differences are inherent. In bacterial colonies, these genetic differences can

be transferred between cells by means of horizontal gene transfer (HGT), modifying the

genes of cells in which HGT occurs. In natural systems, this process is thought to be

part of the reason behind the increased antibiotic resistance of biofilms [9]. Within a

UX array, an analogue of HGT occurs by means of the intra-colony transfer of ∆g as

part of the repair process, ensuring that newly recruited cells are differentiated from

their base species to perform the appropriate function.

In order to acquire the CCV and ∆g, from the cluster and colony respectively,

tags are assigned to each cluster (TSV ) and each colony (T∆g), and hence, by locating

matching tags within the array the values can be acquired; TSV is stored in the

configuration register, and T∆g is stored in the repair register. In order to ensure that

the tags (upon which the repair system depends) have not been damaged, they are

monitored using parity checkers and, if they are error free, repair proceeds as described.

In the event that an error is detected in the tags, a content addressable memory (external
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Number of NAND

gates in design 1

Overhead in

design 2

Overhead in

design 3

Overhead in

design 4

3593 180.2% 78.1% 49.2%

Table 1: Synthesis for a single UX cell. Design 1 is only the functional components.

Design 2 is the functional components, the BIST, and the UXC. Design 3 is design 2

without the flip-flops and comparators in the communication unit. Design 4 is design 3

without the UXC.

to the cells) is used, within which the tags are stored sequentially, thus, the faulty tags

are recovered by using the values of those in the adjacent cells as a reference.

3.5. Hardware Overhead of Test and Repair Mechanisms

In order to investigate the hardware overhead associated with the proposed self-test

and self-repair mechanisms, and their associated controllers, we have synthesised a

Unitronics cell with and without those mechanisms using the Synopsys Design Compiler.

The results shown in table 1 are using the UMC 90nm LL Low leakage library, with

a clock constraint of 100MHz. In this library, the width and length of a NAND gate

(ND2RX1) is 1.12µm ∗ 2.8µm, giving an area 3.136µm2. This area of the NAND cell

is used to divide the total area of each design to give the number of equivalent NAND

gates.

In table 1, design 1 is a Unitronics cell with only functional components. The

other designs exclude certain components, and these are compared with design 1 so

percentage hardware overhead can be calculated. To put these figures in context, triple

modular redundancy (TMR, the most prevalent testing method currently used, where

each system is triplicated and the results combined using majority voting hardware [22])

requires 200% overhead plus a non-trivial amount of extra for the voting circuitry; if

voting is done at a functional (as opposed to system) level, overheads as high as 700%

are reported [25]. Further, in Unitronics, only one external controller (UXC) is needed

for several arrays of cells, so its overhead of 28.9% (found by comparing design 3 and

4) relative to one cell can be considered negligible when compared to several arrays of

several hundred cells each. Hence, we suggest that the overheads for UX compare highly

favourably with those for TMR. It can also be observed that the bus line testing in each

cells communication block requires around two thirds of the overhead in each cell (design

2 - design 3 + design 4); this observation motivates us to seek a more efficient solution

for safe guarding the buses in future work.

The spare cells required to allow replacement of faulty cells must also clearly be

considered overhead. The percentage of overhead they incur is clearly dependent on how

many spare cells need to be provided, i.e., the number of faults that can be recovered

from. It should be noted that our cell replacement algorithm requires fewer spare cells

for a given level of fault tolerance, than the significantly more costly row or column



SABRE: A bio-inspired fault tolerant electronic architecture 13

elimination previously applied in cellular systems [2].

3.6. Unitronics Arrays Within the Fault Tolerance Hierarchy

A UX array has a fixed number of cells, as they are encapsulated by a peripheral

bus; hence, the number of spare cells within an array (after a desired functionality is

configured) determines the number of faults that can be tolerated. The UXC, that

operates the cell level fault repair algorithm, is able to detect whether any spare cells

remain within a UX array; when no spare cells remain in the UX array any further

faults cannot be repaired, thus endangering system integrity. Consequently, when no

spare cells remain, a signal is sent to the next level up in the hierarchy, i.e., the SMove

controller, in order that this situation can be handled.

While unlikely†, permanent faults in the bus lines cannot be recovered from. These

unrecoverable faults are detected by persistant error detection in the comparitors in

a cell’s communication unit, i.e., repeated retransmission of data does not correct the

error. This is handled by sending a signal to the SMove controller, triggering its fault

handling procedure. We handle the faults in this way as replicating the communication

bus with the associated multiple voters in each cell’s communication unit would create

a very large overhead, coupled with the low chance of the fault occuring. Details of the

SMove, and the fault tolerance algorithms operating upon it, are described in the next

section.

4. SMove Transport-Triggered Architecture

At the second level of fault tolerance hierarchy we have implemented a TTA processor,

called SMove (SABRE Move). Each FU in SMove is comprised of an array of Unitronics

cells as described previously. However, ports are implemented with dedicated hardware,

i.e., not comprised of UX cells, hence an open port connects to the peripheral cells

of a UX array. In order to test for SET in the bus lines in the slot, each message is

appended with an error detection code and the ports contain parity checkers, parity

mismatch triggers a repeat message request to be sent to the controller. In future

work we will investigate the use of error correction codes and the relative hardware and

time overheads associated with the two methods. Additionally, in SMove the simple

decoder in a standard TTA is integrated into a device control unit that also includes a

UXC (which monitors and controls all the cells in all the FUs in that processor), and

self-diagnosis logic.

In the SMove, there are two working modes, the execution mode and the self-test

mode, which are running cyclically. The entire program is sliced into a number of pieces

and the length of each piece is decided by the empirical data of the mean time to failure

(MTTF) of each FU. Running at the end of each piece, the SMove saves the current

states and evokes a self-test routine. In this routine, the SMove polls the statuses of all

† SEU account for only 10% of faults, and of those, only electro-migration will affect the bus lines
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FUs (whether there are any spare cells) and if there is no fault reported, it will restore

the previously saved states and jump back to the normal execution mode. If a fault is

reported, then the reclaim algorithm is triggered (see section 4.1), and its operations

are divided up such that they may be performed when the operational mode is inactive;

the system clock cycle is assumed to be faster than the required machine cycle, with a

duty cycle of less than 100%.

4.1. Reclaim Algorithm

As the number of cells within an FU is finite, the ability to reuse areas where faults

have been detected will allow fault tolerance with a considerably reduced amount of

additional resources, and enable a larger number of faults to be tolerated, extending the

lifespan of the system. The basis for doing so is that a given fault will affect distinct

configurations of a fabric differently; i.e., a fault that is detrimental in one configuration

may be disregarded in a different one, due to the different utilisations of the available

hardware. This new procedure is termed the reclaim algorithm (summarised in figure 5).

It is triggered by a function unit running out of spare cells (figure 5b), or a permanent

fault being detected in the buses. When this occurs, an associated flip-flop is set to

indicate the vulnerable status of the functional block to the SMove controller.

The reclaim algorithm then proceeds in three stages:

(i) Address reassignment

To begin the reclaim process the functionality of the damaged FU must be assigned

to an available spare function unit (figure 5c) by remapping its address. The

addresses of ports, which are called PID (port ID), are physically determined

during fabrication, and the addresses used in the instructions, which are called

VID (virtual ID), refer to a lookup table, where the content of each memory

location in the table is the PID. By simply swapping the content in the address-

mapping table, the data flow between FUs could be altered without re-writing the

program (figure 4). The process operates in two stages: firstly, the configuration

strings for the damaged block are used to configure the spare FU; secondly the

addresses of the two FUs are reassigned, the address of the original function unit is

assigned to the newly configured spare FU, and an address utilised in the program

memory for the reclamation process is assigned to the damaged FU. This address

reassignment process means that the reclaim algorithm can be performed online,

i.e., correct function is ensured by the configured spare FU and configuration testing

is performed concurrently (the duty cycle is assumed to be such that configuration

testing instructions may be transmitted without affecting performance).

(ii) Configuration testing

The second stage of the reclaim algorithm is to sequentially test different

configurations of the FU to find out whether they are able to operate in a fault

free manner on the damaged FU (repetition of figure 5d for each configuration).

Multiple distinct configurations are possible for a given FU functionality, and there
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Figure 4: Schematic of the address-mapping mechanism used to dynamically assign

ports to function units.

is likely to be more than one FU functionality in the system. For each available

configuration, the appropriate genes are used to configure the FU, next a sequence

of test vectors are sent, and faults are detected and responded to as previously

described. When a fault is detected, the response signals the restarting of the

test vector sequence following successful repair. Hence, if a configuration has no

spare cells due to repair of detected faults, it signals to the controller in the normal

manner. If a configuration is found that requires less cell excision than there are

spare cells, the reclaim is found to have been successful and the algorithm progresses

to the third stage. If all configurations have been tested with no success, reclaim is

not possible and the algorithm is halted; in this case, the damaged FU is assigned

a null address, and thus is permanently removed from the system.

(iii) Final address assignment

In the third stage, addresses are assigned to the FUs in order to return one FU

to spare status (figure 5e), the procedure followed depends on the functionality

of the successful reclaim solution. If the successful reclaim solution is of the

same functionality as the faulty FU’s original configuration, then the faulty FU

is reassigned its original address, and the spare FU is returned to spare status. On

the other hand, if the successful solution differs from the original functionality, then

the current FU utilised for that functionality will become the spare block, and its

address will be assigned to the reclaimed block; the previous spare FU will remain

assigned the address of the previously damaged FU functionality.

4.2. Hardware Overhead of Test and Repair Mechanisms

The hardware in the SMove controller that can be considered as overhead is the

controller, the parity checkers in each port, the configuration memory and the spare

function units. The controller is of a similar complexity to the UXC so, while we have not

synthesised it, it is clear that it represents a similar amount of hardware overhead, i.e.,

negligible, at less than a third of a UX cell in terms of area for control of likely hundreds

of cells in the processor as a whole. Similarly, the parity checkers used in each port are

significantly less complex than a UX cell so again they represent negligible overhead.
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(a) (b) (c)

(d) (e)

Figure 5: Reclaim Procedure. In the initial state (a) there are no faulty cells and 2 spare

cells in the configured FU, and 1 spare FU available. 2 faults occur (black cells) causing

use of the spare cells (b). Reclaim is triggered, and the functionality of the damaged FU

is shifted to the spare FU (c). Alternate configurations are tested (d), repeated until a

working configuration is found. Addresses are reassigned to free up the spare unit (e).

Hence, the main overhead of the system is the required additional SRAM to store the

program instructions and configuration information for fault recovery, but this is highly

application dependent so difficult to quantify. The reconfiguration information is equal

in size to the configuration registers for all configured FU times the number of alternate

configurations required for each. As an example consider that the (configuration and

repair) registers in a single UX cell total less than 13 bytes, so a small 128Kb SRAM

could contain configuration for around 10K cells; we envision a typical FU being around

100 cells, so that is around 100 FU configurations. The overhead incurred by the spare

FUs is dependent on the size of an FU and the number of spare FUs that are to be

made available, regardless this is still significantly less than using duplicates of the whole

system, as in TMR, to allow repair of the system.

Another important feature of SMove is the reclaim algorithm, which increases the

efficiency of the amount of overhead compared to the number of faults that can be

tolerated before the whole system is unable to cope. This is particularly relevant as

typically around 90% of faults are of a transitory nature [1] (either SEU or SET), so by

reconfiguring an FU, cells killed as the result of transitory faults are likely to be returned

to use. Additionally, in different configurations the bus lines are utilised differently, so

permanent faults in the bus lines may be able to be masked.
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4.3. SMove Within the Fault Tolerance Hierarchy

In an SMove processor there are a finite number of reconfigurable FUs, at least one of

which must be left spare to enable PDR and the reclaim algorithm. Hence, an individual

processor will be able to tolerate a finite quantity of faults. In its test cycle, the

SMove controller is able to detect the number of spare FUs remaining, and if any spare

cells within configured FUs remain. When there are no more spare resources available

subsequent faults are not repairable and will cause the processor to fail. Consequently,

a signal will be sent to the next level up in the hierarchy, i.e., supervising processors in

a multi-processor array.

While unlikely, permanent faults in the bus lines cannot be recovered from. These

unrecoverable faults are detected by repeated parity mismatchs in the error detection

codes of messages from a port. These faults are also reported to supervising processors.

Methods for implementing redundant slots, and using time redundancy in a multi-slot

system to ensure fault recovery are the subject of future work. Details of the multi-

processor controller, and the fault tolerance algorithms operating upon it, are described

in section 6.

5. Example Application of a Single SMove Processor

We have instantiated a simple robot controller on an FPGA simulation (on a Xilinx

Virtex-5 LX110T FPGA) of an SMove processor as a proof of principle for the first two

levels of the hierarchy. The robot is an e-puck [26] operating as a simple Braitenberg

vehicle [27] with distance sensors cross coupled to provide inhibitory signals to the drive

wheels so that it produces an obstacle avoidance behaviour (figure 6); the sensor values

must be thresholded, and multiplied by a gain to provide suitable inhibitory values, and

these tasks are undertaken by SMove FUs. The FPGA based simulation of the SMove

processor consists of FUs for both the thresholding and scaling of the sensor signals,

one of which is made up of 15 UX cells and the others use the standard FPGA logic. In

order to reduce the required FPGA resources, only 4-bit data is utilised; consequently,

4-bit sensor data will produce an 8-bit drive value, and the calculation is broken down

into two FUs, one providing the 4 least significant bits of the answer, and the other the

4 most significant bits (most significant nibble, MSN). Hence, the FU that is utilised for

this example (i.e., that runs on the simulated UX cells) provides the MSN of a simple

scaling of the sensor data by a factor of ten. Communication between the FPGA and

e-puck is over Bluetooth via a PC.

5.1. Implementation

In order to generate multiple novel configurations for each function unit, as required

by the reclaim algorithm, we have utilised an evolutionary computation approach; by

contrast, traditional design approaches will typically yield very few alternative solutions.

The task is decomposed into functional and routing evolution. For functional evolution
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Figure 6: The e-puck robot [26].

we have used a version of Cartesian Genetic Programming (CGP) modified in order to

accommodate the Unitronics cell design [28][29]. The evolution of the data routing (for

a functional solution) is performed using a simple generational GA. The final routed

solution for the MSN uses 11 cells. Details of these processes are omitted here for

brevity, but can be found in our earlier papers [28][29].

5.1.1. Cluster and Colony Formation In order for the repair mechanisms to function

on the implemented program, the genes of the cells need to be correlated, and hence

form clusters and colonies. A simple heuristic (Algorithm 1) has been designed in order

to find clusters. As Algorithm 1 states, the gene-string with the lowest total hamming

distance to all other members of GS (the gene-string array) is removed from GS and

used to start the first cluster as the CSV ; all cells with a hamming distance (H) to

the CSV below a threshold (Hthresh) are also moved from GS into the cluster. In any

given cell’s configuration, some of the bits in its gene-string are not used and hence

these are assigned don’t care symbols, for the purpose of hamming distance, they are

considered to match any symbol. However, once a cluster has been formed the don’t

cares must be resolved. This is done by examining the frequency of 1s and 0s at each

bit location, and the most frequently occurring symbol is used to resolve the don’t cares,

if there is no majority a 0 is assigned. When this has been done, the ∆g values are

calculated for each member of the cluster. This process is repeated until all members

of GS have been moved to a cluster, and had ∆gs calculated. As previously stated

(section 3.4), some gene-strings may be too different from the others to form part of a

cluster and, in this case, direct redundancy is used; pairing of genes for this purpose is

performed after all cluster assignment is completed. In implementing the MSN FU, it

is immediately apparent that a very high threshold is required in order to form clusters

and as a consequence, no colonies are found. This is a result of the low number of cells

in the FU (11), and the large number of bits in the genome (46). In order to address
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ALGORITHM 1: Frequency Number Computation

Input: Cell gene-string array GS in ascending order of total hamming distance

to all other GS members, some bits in the gene-strings may be don’t

cares

Output: Cell gene-strings with resolved don’t cares and assigned to clusters,

∆g for each gene-string

index = 0; Hthresh = 5;

repeat

α = GS[0];

Add α to Cluster[index] and remove from GS;

for Each string β in GS do

H = bitcount(αCCV
⊕ βCCV

);

if (H < Hthresh);

then

Add β to Cluster[index] and remove from GS

end

end

for Each string β in Cluster[index] do

Resolve don’t cares ;

β∆g = αCCV
⊕ βCCV

;

end

index ++;

until All gene-strings assigned to a cluster ;

this issue, we bisected the genome for the purpose of generating CSV s and ∆gs, i.e.,

each cell effectively has two 23-bit gene-strings for the purpose of fault detection and

recovery. Hence, using an empirically established Hthresh of 5, five clusters were formed,

with three colonies. In order to improve colony formation, shared values were adjusted

by hand to ensure repeated difference values; in the future we plan to develop a method

for automating this post-hoc adjustment.

5.2. Fault Injection and Recovery

The length of time that it takes for the system to recover from a detected fault is critical

to the utility of the SABRE fabric, i.e., faults must be repaired fast enough for system

operation not to be detrimentally perturbed. The length of time a fault takes to be

repaired depends on the nature and number of faults injected. The length of time in

clock cycles for soft and hard faults can be calculated using 4, and 5 respectively. FCCV

is the number of faulty gene-strings, and F∆g is the number of faulty difference values;

the additional term S in 5 is the number of shifts that must be done, and is equal to the

number of faulty cells. For example, to repair a soft fault takes 7 clock cycles, and it
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takes 8 clock cycles for a hard fault. In the case where the data tags in a cell have become

damaged, it takes an additional clock cycle for each tag that must be retrieved. On our

test system the FPGA clock is running at 20MHz, so repair of a single hardware fault

takes 0.4ms. The update frequency of the e-puck is (due in large part to communication

delays) only 5Hz, hence the robot was observed to operate unperturbed, even when 4

simultaneous faults were injected (the maximum number of hard faults from which the

system can recover in this example).

threp = ((2 ∗ FCCV
) + 1) + ((2 ∗ F∆g) + 1) (4)

tsrep = (S + 1) + ((2 ∗ FCCV
) + 1) + ((2 ∗ F∆g) + 1) (5)

5.3. Reclaim of the Damaged FU

The island we have instantiated on the FPGA simulation of a UX cell array has 15 cells,

hence when 4 faults are injected the reclaim algorithm is triggered, i.e., the implemented

function uses 11 cells, so recovery from faults in 4 separate cells means there are no

more spare cells. During reclaim the functionality of the damaged FU is assigned to a

copy implemented using the standard FPGA logic. For clarity we have only considered

one of the faults injected to be permanent, and the other 3 are transitory, i.e., when

alternative configurations are tested a fault only remains in one cell. A permanent

stuck-at-1 fault is injected on the output of bit 4 in the right hand bit-slice (shown

in red in figure 7b), these genes control routing for lines into the full adder performed

by the other slice; hence, the fault causes incorrect data lines to be routed, and TOM

outputs differ from NOM outputs. The faulty FU is successfully reconfigured using an

alternative evolved configuration that uses 12 cells. In the cell where the fault occurs,

in the new configuration, the left-hand slice is still a full-adder, but different lines must

be routed, consequently the behavioural genes are 10010001; the different genes mean

that the fault does not affect the operation of the cell. It is important to note that the

reclaim algorithm allows cells subject to transitory faults to be reused by the system.

Without its use they would be permanently excised, despite the temporary nature of

the faults.

6. Multi-Processor Array

The top level of our fault tolerance hierarchy is a multi-processor array, upon which we

have implemented a dynamic, self-organising, task allocation algorithm (section 6.1),

and an artificial immune system (section 6.2). The dynamic task allocation mechanism

is inspired by two biological networks: a protein diffusion network operating across

the whole organism, and a gene regulatory network within each single cell [30].

Correspondingly, in the processor array, there is an inter-processor configuration status

diffusion network (CSN) and an array of configuration regulatory networks (CRNs). The

CSN requires configuration status messages (anologous to cytokines and other messanger
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(a)

(b)

Figure 7: In BIST the behavioural genes controlling the two bit-slices are swapped (NOP

on left, TOP on right) to test that the functionality performs identically on both slices.

In (b) a stuck at 1 fault occurs on the output of gene 4 in the right-hand behavioural

genes register (red), and hence the cell-outputs in TOP mode differ from NOP mode.

Figure 8: The task selection mechanism

proteins in the biological system) to be regularly broadcast, and be processed differently

from workflow data, hence we have implemented two dedicated buses.

The CRN in each SMove processor, is a dedicated FU that processes incoming

network messages in order to determine the role that it should undertake, and the

messages it should transmit (figure 8). Each processor can undertake a workflow or

immune task (i.e., an active proccessing-unit, AU), or to maintain a non-configured

state (i.e., a dormant proccessing-unit, DU); in order to do so each processor must store

all possible tasks.

6.1. Task Allocation

Task allocation on an unconfigured processor array, analogous to specialisation of stem

cells in biological development, is initiated by configuration of some of the required

AUs (typically the input and output processors). The configured AUs broadcast

status related Task-ID messages (TIDs) to neighbouring processors with an associated
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Figure 9: Two types of networks in the SABRE array

transmission amplitude (ta). A TID that is received by a processor, in addition to being

interacted with, is also transmitted to adjacent cells; importantly when this transmission

occurs the ta is reduced. Hence, there is a diffusion gradient for a processors transmitted

TID (figure 9). The distance over which a TID diffuses is termed its zone of influence, and

is determined by its initial ta, it is a key component in determining network behaviour.

When a processor receives a TID it adds to the ’concentration’ (total ta) of that

TID, and the resultant behaviour of its CRN is dependent on the concentration of the

TIDs it has received. Concentration thresholds are used to determine if one of the tasks

may be expressed, or if the processor will remain dormant; too high concentrations also

cause dormancy to ensure sufficient DU for fault recovery. If a task is expressed, that

AU begins transmitting its TID, leading to further task allocation. The result of this

developmental process is the emergence of a stable solution with all the required tasks

allocated.

A faulty AU will only transmit configuration status messages that signal its faulty

state, and thus the system will no longer be stable, resulting in that AU’s task being

allocated to a DU, and returning the system to stability. It is important to note there

is a temporal component to the interactions, i.e., TIDs are produced at intervals, adding

to their concentation in each recieving processor, and that decays over time. The

consequence of this is that, even if a required task should not be expressed due to

DU requirements, then the protein levels will eventually decay sufficiently for the task

to be expressed anyway.

The desired behaviour of both networks has two main contributing factors: firstly,

the data dependencies of each task, i.e., dependent tasks should be close to one another;

secondly, ensuring there is sufficient DU for recovery from fault situations. The solution

to these conflicting requirements needs to be embedded in the dynamics of the identical

CRN in each SMove processor, and the way they interact as nodes in the CSN.The

underlying mathematics behind the SRN generation and task allocation process has

been omitted here for brevity, for the detailed description see [31].

6.1.1. Worked Example In order to better illustrate the mechanisms described in this

section, we provide a worked example of a program we have instantiated on a simulation



SABRE: A bio-inspired fault tolerant electronic architecture 23

Figure 10: A partitioned task graph

(a) Layout 1 (b) Layout 2 (c) Layout 3

Figure 11: Three stable solutions

of a 5×5 processor array. The program is partitioned into five workload-oriented tasks,

which are denoted as I, O, A, B and C, and one status-oriented (immune) task, denoted

as M; the data-dependancies of these processes are shown as a task-graph in figure 10.

The weight of each data connection (which determines the degree of dependancy) is

the same. Among them, tasks I and O, as an input and an output of the system, are

pre-allocated to two processors on the edges. By optimising the parameters in the ADS

for the given pre-partitioned task graph, the remaining four tasks, A, B, C and M were

expected to emerge from this initial setup. The parameters defining the behaviour of

the CRNs and CSN were optimised using a simple genetic algorithm (GA), in order to

produce developed solutions that best matched the network criteria.

From 100 independent runs of the GA, 3 stable solutions were observed, as shown in

figure 11. Except for the input and output tasks, all other tasks have at least two copies

in the array; this is a result of the symmetric nature of our dynamic task allocation

algorithm. Each copy of a task can be seen as a hot back-up, that allows the system to

continue to operate while repair takes place (at a slower rate if both task copies were

operating in parallel). Further, hot back-ups provide additional fault tolerance to the

system: if the task on a faulty AU is not able to be reallocated, there is at least one hot

back-up still working and the system can continue to operate.

We have used layout 1 (figure 11a), to demonstrate system behaviour when faults

are injected. A fault is injected into a processor running task A (figure 12a). This causes

the system to no longer be stable, and as a result of the current local TIDs amplitudes

one of the DUs in the original layout begins to run task A instead (figure 12b). A

subsequent fault is injected into a processor running task B (figure 12c), and this is

repaired in a similar manner (figure 12d). It is important to note that, in both cases,

the desired exclusive zones of some of the processors is compromised in order for repair

to occur, hence, the subsequent stable configuration of the array is dependent on the

initial configuration, and the pattern and sequence of faults occuring in the array.
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(a) t=0 (b) t=10 (c) t=20 (d) t=30

Figure 12: Intrinsic fault tolerance capability of the ADS

6.2. Artificial Immune Units

In light of the fact that when an AU is faulty at runtime the reallocation is dependent

upon the configuration prior to the fault, it can be concluded that there will exist

sequences of faults from which the system will be unable to recover, even though more

spare resources are available to the system. This occurs as a consequence of the fact

that the network parameter optimisation process only considers the initial system set-

up. However, for any non-trivial system the number of possible fault sequences is very

large, so if taken into consideration would make the optimisation process infeasably

complex. For instance, suppose there are N processors and M AUs. AUs become faulty

one after another, and at each time, a new AU will emerge to replace the failed AU.

Maximally, there are NM−N possible fault-recovery sequences (with length of M −N).

In order to address this issue, and improve the system stability, we have added

an artificial immune system (AIS) to provide extra on-line assistance. This mechanism

is inspired by the inflammatory response of the innate immune system [16]. During

inflammation, various specific cytokines are generated to induce adult stem cells to be

differentiated and replace the injured tissues. Analogously, we expect that the AIS not

only actively monitor the health status of the AUs (as reported by the SMove controller

in each processor), but, more importantly, the AIS will also be able to passively recognise

anomalous events when an AU fails, and contribute to the recovery. Namely, the AIS

should help reallocate the missing task to a DU, and avoid unrecoverable situations.

In order to do this, in addition to work-load AUs (WUs), the array also contains

immune AUs (IUs), formed as part of the development process, that monitor the system

and deal with exceptional situations. The operation of IUs is memory based, which is

primarily inspired by the innate branch of the immune system. A memory table records

the anomalous events and their corresponding responses. When an AU is faulty, if

there is no replacement AU emerging and thus compensating the change of diffusion

amplitudes, other AU(s), which have data dependencies with the faulty AU, will be

adversely affected. An affected AU reports its current status to the IUs. The IUs

receive this report and look up the anomaly-response table for a solution. If there is

a corresponding entry, the IUs will cooperatively allocate the required task to a target

DU (by altering TID messages within the array) and drive the system back to a new

stable state. Notably, only when a DU receives more than one IUs command, it will be

initiated to perform the required task.



SABRE: A bio-inspired fault tolerant electronic architecture 25

The response table is predefined and deterministic, and thus the response is very

fast. One of the simplest ways to create such a table is to inject faults into every AU

sequentially and check the diffusion amplitudes every time, until an anomalous event is

triggered. As discussed, when the scale of the system increases, the number of possible

sequences will exponentially increase. So, a statistical sampling method, with respect

to the fault probability, would be applied to reduce the computational overhead. The

higher the fault probability, the higher priority that an AU has to be tested in the

sequence.

It is important to note that IUs not only monitor WUs, but also themselves. This

mechanism has two advantages over the conventional centralised inspection mechanism.

Firstly, processors are monitored by more than one IU, and thus error detections are

performed using a voting system. IUs work in a decentralised and collective way,

so that they can avoid false positive diagnoses, which have lower chance to happen

simultaneously to all IUs than any single one. Moreover, this mechanism prevents

hierarchical inspections. There is no need to presume the monitor on top of the

inspection hierarchy being fault free. In other words, when an IU fails, the system

will re-create a new one, by the cooperation of the ADS and the AIS.

6.2.1. Worked Example Continuing the example from section 6.1.1, figure 13a-13d

shows the final stages of a sequence of faults from which the system was unable to

recover. Both of the processors performing task C become faulty in quick succession,

and the network response is unable to place a replacement; additionally, as the expression

of task A relies on transmission of the task C TID, those cells revert to being DUs. In

figure 13e-13h, 3 of the IUs (M tasks) act to place the C task in a suitable DU, after

receiving anomaly reports from the task A processors. In order to generate this response

we trained the AIS with 50 randomly generated 5-fault sequences, after which 100 further

random test sequences were generated to test the response of layout 1 with and without

AIS support; a sequence was generated by the system choosing a random ’alive’ cell to

’kill’ at each time step, until the system failed. We found that even with this simplistic

anomaly-response table generation method, significantly more fault sequences could be

recovered from than without the AIS [31].

6.3. Hardware Overhead of Test and Repair Mechanisms

At the multi-processor layer of the hierarchy, there are four sources of hardware overhead

related to the fault tolerance methods employed: the SRN function unit running on each

processor, the program memory for all task configurations, the immune units, and the

spare processors. The complexity of the SRN function unit is dependent on the data

length of the TIDs and tas that must be multiplied and the result compared; multiply and

compare operations in general are not overly complex so, while we have not synthesised

an SRN unit using UX cells, we believe it should require fewer cells than we envision

being present in an FU. The additional SRAM required for the dynamic task allocation
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(e) t=80 (f) t=90 (g) t=95 (h) t=100

Figure 13: System response to faults, with ((a)-(d)) and without ((e)-(h)) the AIS

mechanism is dependent on the number of tasks that are present in the system, but

as SRAM is relatively cheap in terms of manufacturing cost this does not represent a

problematic overhead; particularly as a typical SMove processor configuration is likely

to require less than 128Kb of memory.

The percentage overhead incurred by the immune units is dependent on their range

of influence, and hence the density that is required to protect the task related units.

Discussion of how this might best be optimised is beyond the scope of this paper.

However, as is evident from the worked examples, a low density is sufficient (in the case

of the examples incurring a 16% overhead).

The number of spare processors that are required by a design is dependent on the

failure rate of the individual processors. Assuming a relatively low failure rate due to

the inherent fault tolerance of SMove processors composed of UX cells, a low ratio of

dormant to active units should be required (much lower than that shown in the worked

examples). In the future we plan to analyse the failure rate of different tasks on SMove

processors, so as to calculate the required number of spare processors.

7. Methods for Fault Detection in the Test and Repair Systems

An obvious issue with any fault detection and repair system is how to deal with faults

within that system (referred to from hereon as secondary faults). For example, in

biological systems, faults in DNA repair and the immune system can have serious

consequences, such as premature apoptosis (cell death) or cancer [8]. Some secondary

fault protection is inherent in the SABRE system as described here, and in the future

we will be investigating other techniques.

At the top level of our fault tolerance hierarchy, inspired by the operation of the

human immune system, the immune units protect each other as well as the operation

of the other functional units. Further, by requiring signals from multiple immune units

to trigger reconfiguration (akin to build up of chemical concentrations in a biological
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system), the system is protected against faults in a single unit causing harmful system

reactions. This high level protection could be extended by enabling the immune units

to perform pattern recognition on the functional outputs of the active processors (in

addition to the configuration status messages currently monitored); thus, the task of

an SMove processor that appears faulty could be reassigned to a spare unit, and the

damaged unit could run self diagnostic routines to try to identify (and possibly repair)

the fault. Integrity of the high level protection system is tested as it is implemented

using UX cells in the SMove controllers, i.e., the low level mechanisms ensure the high

level is operational and vice-versa.

An important part of the SABRE system, for which we have not developed a

bio-inspired protection mechanism is the SRAM that stores the program instructions,

and configuration information in each SMove controller. There exist a number of fault

detection methods, with a low hardware overhead, that might be applied to ensure

the integrity of this vital resource, for example Wang et al. [32] suggest a BIST

circuitry that requires less than a 3% overhead; a low overhead implies that there

will be a reduced chance of errors due to the lower surface area for radiation impacts.

Further, as all processors contain the same memory, faulty data could be restored from

another processor. Alternatively memory may be implemented using radiation hardened

techniques, e.g. using MRAM [33].

Another key component of SABRE for which we have not designed a biologically

protection mechanism, is the SMove controller (that also contains the UX controller).

While the fact that it represents a negligible amount of hardware overhead compared to

the other functional components in an SMove processor, significantly reduces its chance

of error, it is vital that it remains fault free to safeguard the whole system. We already

employ TMR in the UXC and so it seems reasonable to suggest doing so for the SMove

related parts of the controller would not incur an enormous amount of overhead. In

TMR the voting circuitry must be ensured to be error free, Kim et al. suggest using a

radiation hardened voter [34], while a self-checking voter is suggested in [35]. Applying

such techniques to the whole circuit can be prohibitive in terms of cost and hardware

overhead (an area overhead of 33.1% using 100nm technology was reported in [36] for

radiation hard logic gates), but as the controller is a small component of the system

and a voter is very small compared to the controller, doing so should not incur a lot of

overhead. Similarly, in the SMove ports we can employ TMR with self-checking voters,

and a traditional fault tolerance approach for the parity checkers such as self-checking

parity checkers [37].

The hardest area in which to apply fault-tolerance is the mechanisms within each

UX cell. Faults in this system can be considered as two types: those that generate false

positives (reporting a fault when there is none), and those that generate false negatives

(registering fault-free when there is a fault). Faults that generate false positives, while

they may be considered as triggering premature apoptosis, do not actually present a

problem, as cells with faulty BIST mechanisms are equally detrimental to the system

as those where the fault occurs in the functional circuitry. While false negative faults
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only represent a very small percentage of faults that may occur, requiring two faults in

separate parts of the cell (what percentage they actually represent is beyond the scope

of this paper), they are extremely detrimental to system operation. The fault tolerance

mechanisms we currently employ are TMR for the ICC with a self-checking voter, and

separate parity checkers for each half of the genome (such that the BIST algorithm

verifies their operation). In order to protect the comparators used in BIST we could

triplicate them with triplicated voters to connect them to the triplicated ICC, or use

radiation hard logic gates as suggested in [36]. In any case, the comparator and voter

circuits are significantly smaller than the functional circuitry they are protecting, so are

less likely to be faulty.

Evaluating the efficiency of different techniques for each area of our system

that biologically inspired protection mechanisms are not suitable, and investigating

additional biological mechanisms will be the subject of future work.

8. Conclusions and Further Work

In this article we have described SABRE, a biologically-inspired, fault-tolerant,

reconfigurable electronic architecture. The underlying structure of the system is, as

in biological immune systems, hierarchical, with fault tolerance beginning with the

primitive constituents, the cells. However, despite the cellular basis for our system,

the divisions of our hierarchy are determined by the capabilities and requirements of

the electronics, rather than those found in biology. Further, different biological immune

inspired mechanisms have been employed at each layer of the hierarchy, in a bottom-

up approach to artificial immune system creation; previous work has utilised a more

top-down approach in an effort to more closely match the features of a single biological

system [2][7]. This bottom-up approach has enabled us to utilise the most suitable

mechanisms at each level of granularity, and provide a high level of fault-tolerance with

a lower hardware and software overhead than heretofore.

The hierarchical cellular architecture of the SABRE system gives a number of

advantages over more traditional complex electronic systems. These advantages stem

from the fact that a fault in one cell (UX cell, SMove function unit, or SMove processor)

is dealt with by the system in which it is contained. Hence, an irreparable fault in a cell

results in it being excised from its system and replaced, with a minimal amount of backup

resources being utilised, and minimal impact on the system as a whole. Furthermore,

the hierarchy allows faults of increasing severity to be handled appropriately, i.e., with

a greater amount of hardware and computational resources.

The base level of SABRE, Unitronics cells, are a novel prokaryote inspired cell

structure, employing mechanisms inspired by the immune-like behaviours of colonies of

prokaryote cells. The BIST mechanism operating within each cell, combined with fault

recovery algorithms, ensure that faults in both the hardware and cell configuration data

are detected and recovered from, without erroneous data being sent to the outputs of

any cell. When errors are detected in a cell’s configuration data (genes), it is reloaded,
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while detection of hardware faults causes the cell to be bypassed, and its role undertaken

by spare cells in the cell array. Additionally, our novel gene-compression method means

that sufficient redundant information is stored within an array of cells to facilitate

recovery, without the need to store prohibitively large amounts of data in each cell.

At the second level of SABRE, we have utilised a transport-triggered architecture,

SMove, whereby the reconfigurable function units in the TTA are comprised of arrays of

Unitronics cells. This architecture is highly suited to partial-dynamic reconfiguration,

and our extension of it, the reclaim algorithm, as an additional layer of fault tolerance.

Each FU has a fixed number of cells, and can therefore tolerate a number of hardware

faults (which use up the spare cells in the FU) dependent on the size of the task

instantiated upon it. When an FU exhausts its spare cells, the reclaim algorithm is

used to test whether other configurations can run on the damaged FU without being

affected by the faults, and thus increase the number of faults that can be tolerated.

Additionally, the repeated testing of an FU that was detected as being faulty gives

additional protection against transitory faults that occurred during a previous test cycle.

At the top level of SABRE is a dynamic task allocation algorithm operating on

an array of SMove processors, the operation of which is inspired by the developmental

process and innate-immune system in biological systems. Task allocation is implemented

using a network of artificial protein interactions between processing networks operating

in each SMove processor. It is ensured that some processors remain dormant to act as

back-ups, to which tasks are dynamically assigned when a processor fails. In addition,

some processors are assigned immune tasks, and these monitor the other processors to

aid recovery from fault situations which the array is unable to recover from.

In future work we intend to further investigate the idea of training an immune

response to operate at the different levels, i.e., providing an acquired immune system;

additionally, such a system would be able to identify erroneous processor behaviour,

and learn successful responses to faults it encounters during operation. At the SMove

processor level, it will be investigated whether fault signatures, created by recording

the erroneous results from a damaged FU, can usefully be associated with solutions so

that the correct solution can be more quickly recalled. It may be possible that faults

with similar signatures have the same solution, and hence the immune system would

respond more swiftly to faults similar to those seen before. At the top level we will

investigate whether different training regimes for the development network and AIS

can be used to create a more robust system. At both these hierarchical levels, we

will investigate whether an AIS with associative memory (or similar pattern matching

algorithm) might allow an AIS to be trained with a few representative fault examples

and provide an improved immune response, i.e., a form of artificial vaccination.

Another key area for future work is to investigate biologically inspired approaches

for the areas of the design where we currently rely on more traditional ones. In

particular, fault-tolerance mechanisms in the test and repair systems, where we rely

in large part on TMR with self-checking voters.
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