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Chapter Twelve

Individual, Social and Evolutionary
Adaptation in Collective Systems

Evert Haasdijk, A.E. Eiben, Alan ET. Winfield

12.1 Introduction

This chapter focusses on adaptivity as a pivotal enabler of future robotic systems.
It is the fundamental premise of our vision that future robots will have to be capa-
ble of autonomous adaptation, that is, able to change their control systems without
human intervention. This vision has also been articulated by Nelson et al., cf. [Nel-
son et al. (2009)], who phrased it as follows:

Advanced autonomous robots may someday be required to negotiate environments
and situations that their designers had not anticipated. The future designers of
these robots may not have adequate expertise to provide appropriate control algo-
rithms in the case that an unforeseen situation is encountered in a remote environ-
ment in which a robot cannot be accessed. It is not always practical or even possible
to define every aspect of an autonomous robot’s environment, or to give a tractable
dynamical systems-level description of the task the robot is to perform. The robot
must have the ability to learn control without human supervision.

To define adaptation —“learning control without human supervision”- clearly,
consider a robot’s controller as a process that maps inputs, read from the
robot’s sensors and internal states, to outputs, typically actuator and state set-
tings. Adaptation is then defined as any changes to this mapping process,
including the setting of its parameters.

According to this definition, changing the output threshold on some artificial
neural net controller constitutes adaptation because the mapping from in- to out-
puts changes, but varying outputs due to some internal state does not, because
the mapping remains the same, even though behaviour changes. Adaptation is
necessarily on-line and without human intervention: the robot controller changes
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on-the-fly, as it goes about its tasks. We can distinguish two stages in the robot
life-cycle: design time and operational time, separated by deployment. In these
terms, adaptivity amounts to changing robot controllers autonomously during op-
erational time. There are various optimisation and design techniques based on
adaptive systems, e.g., evolutionary algorithms, particle swarm optimisation, neu-
ral networks, etc., that can outperform traditional methods. Such techniques can
be used, and often are to great effect, during design time to find (near-)optimal
robot controllers. However, these adaptive techniques fall outside of the scope of
this chapter if the controllers remain static after deployment.

The vision that underlies this chapter is that adaptivity is a necessary feature in
collective robotic systems to cope with a number of fundamental challenges:

(1) Unforeseen environment The environment where the robots operate may not
be fully known during the design process. Therefore, the robot controllers at
the time of deployment are only approximate solutions that need to be adapted
to the real requirements during operational time.

(2) Changing environment The environment may change to such an extent that
the given skill set of the robots is not adequate anymore. In a robot collective
this environment might include the robots” social environment. Hence, con-
trollers must adapt to the new situation.

(3) Reality gap Even if the environment is known in advance and is not changing
during operational time, it is very likely that the design process is based on
approximations and simulations of the real operational conditions. Hence, the
robot controllers have to be fine-tuned after deployment.

In this chapter we elaborate on the notion of adaptation and place adaptive
systems into one conceptual framework, called Population-based Adaptive Systems
(PAS). The notion of PAS serves as the unifying concept and the name PAS as an
umbrella term. Within this framework we further distinguish different types of
adaptation. One of the fundamental distinctions we make is based on differenti-
ating learning and evolution. In turn, this is based on distinguishing phenotypes
and genotypes regarding robot controllers [Eiben et al. (2010)]. Simply put, this
distinction means that:

o We perceive the controllers with all their structural and procedural complexity
as phenotypes.

e We introduce a (typically structurally simpler) representation of the controllers
as genotypes.

e We define a mapping from genotypes to phenotypes, that might be a simple
mapping or a highly complex transformation.

For example, a robot controller may consist of two artificial neural nets (ANNSs)
and a decision tree, where the decision tree specifies which ANN will be invoked
to produce the robot’s response in a given situation. This decision tree can be as
simple as calling ANN-1 when the environment is lit and calling ANN-2 when
the environment is dark. This complex controller, i.e., phenotype consisting of a
decision tree and two ANNSs, could be represented by a simple genotype of two
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vectors, showing the weights of the hidden layer in ANN-1, respectively ANN-2.
A technical distinction between learning and evolution is now straightforward if
we postulate that learning acts at the phenotypic level, while evolution only affects
the genotypes.

This chapter is structured as follows. Section 12.2 establishes a framework that
identifies three main forms of adaptation (evolution, individual learning, and so-
cial learning) in the context of population-based adaptive systems, ranging from
artificial life systems to robot swarms. Section 12.3 presents a case study carried
out in a system where individual learning and evolution are combined in such a
way that they can directly influence each other, rather than acting independently
on the agent/robot population. We demonstrate that in such a system learning —
that optimises for the benefit of the individual — can effectively kill the population
by ignoring the group level benefits of reproduction. In Sec. 12.4 we investigate so-
cial learning as a mechanism to disseminate ‘knowledge nuggets’ —bits of adapted
controller- in a population of agents/robots. Thus we show how the results of
individual learning efforts (that would normally disappear if the individual dies)
can be kept. In other words, here we demonstrate how social learning can facilitate
the emergence of a knowledge reservoir in a population. While the experiments re-
ported in these sections were conducted in an artificial life setting, the conclusions
are just as pertinent to robot swarms that implement combinations of these forms
of adaptation. Section 12.5 presents a case study of robots implementing social
learning through embodied imitation. Here we show that (real) embodiment gives
rise to variation in socially learned behaviours (which we refer to as memes). In a
robot collective we have the three evolutionary operators: variation, selection (be-
cause robots choose which memes to enact) and inheritance (because we see inher-
ited characteristics in n-th generation memes). This, we suggest, demonstrates the
possibility of population-level social learning in collective robotic systems through
memetic evolution. Finally, Sec. 12.6 concludes the chapter.

12.2 Population-based Adaptive Systems

We coin the phrase “Population-based Adaptive Systems” (PAS) to label systems such
as robot swarms or artificial life systems that have adaptive behaviour at agent
and/or population level. Such systems can be characterised by two essential fea-
tures:

e A group of basic units (agents or robots) that can perform actions, e.g., com-
putation, communication, interaction, etc. By acting, these units exhibit be-
haviour — individual behaviour at unit level, as well as collective behaviour at
the group level.

e The ability to adapt at individual and/or group level. If the exhibited be-
haviour is generated through behavioural rules! inside the units, then adap-
tation implies that these rules change. For instance, a change can take place

1We do not necessarily mean a set of IF-THEN rules, but any representation, including, for instance,
neural nets, decision trees, etc.
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inside an existing unit by replacing an existing rule by a new one, or a change
can take place on population level by creating a new unit with a new set of
rules.

There is a large variety of PASs with quite different examples. For instance, a peer-
to-peer computer system where each node (peer) is able to improve its workings
through experience, a genetic algorithm seeking an optimal solution to the travel-
ling salesman problem, a group of learning robots collectively gathering red rocks
on Mars, or a simulation of socio-economic processes by means of adaptive agent
society. Such systems have received increasing interest over recent years with an
increasing number of related papers. However, the lack of a common underlying
framework of terminology means that the presentation of related problems and so-
lutions shows a large (application dependent) variation. This forms an obstacle for
identifying similar concepts, problems, solutions, etc. over various publications
and implies the risk that individual researchers reinvent the wheel. A common
conceptual framework describing a large class of PASs forms a helpful stepping
stone towards futher developments in the area.

We introduce the notion of Population-based Adaptive Systems and identify
related concepts and research issues in this section. We focus our study on a class of
PAS where adaptation occurs through three fundamental adaptation mechanisms:
evolution, individual learning and social learning.

In the remainder of this section, we present a conceptual framework that cap-
tures a wide class of adaptive systems and identify research issues of general rele-
vance in PAS.

12.2.1 Three Tiers of Adaptation

We use an agent-based metaphor, where the group of basic units is perceived as a
population of agents (be they software agents or robots) whose behaviour is con-
trolled by themselves — subject to environmental constraints, of course. That is,
we assume that each agent has a controller that takes observations regarding the
environment and the agent’s internal state as input and generates actions to be ex-
ecuted by the agent as output. Furthermore, we assume that two levels of change
can occur:

(1) Changes at agent level: the controllers of the agents can change;
(2) Changes at population level: it is possible to delete existing and to add new
agents. In common parlance, this amounts to birth and death in the system.

As mentioned above, we see adaptation as change of controllers in a population
of agents and distinguish three fundamentally different adaptation mechanisms.
Denoting the set of all possible controllers by C, we can perceive adaptation mech-
anisms in PASs as search algorithms traversing the space C in a volume oriented
manner — maintaining a population of controllers P = {cy, ...,¢,} C C simultane-
ously. Adaptation or learning then amounts to taking search steps, moving from
the presently given set P of controllers to a new set P’ and we distinguish adapta-
tion on agent level (cf. property 1) and adaptation on population level (cf. property
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2). We will call these lifetime learning and evolution, respectively. Furthermore, we
make an additional distinction between two types of lifetime learning. In individ-
ual learning, an agent adapts its controller through a purely internal procedure, not
through some oracle or other agents. If agents adapt their controllers by commu-
nicating controller information to each other and incorporating (good) pieces of
knowledge from each other, we speak of social learning. Figure 12.1. illustrates this
taxonomy and the corresponding terminology.

Adaptation
Evolution Lifetime Learning
Individual Learning Social Learning

Figure 12.1. Taxonomy of adaptation mechanisms in PASs

To delineate this framework, consider a few examples. (1) A genetic algorithm
solving the Travelling Salesman Problem has birth and death, but the agents (in-
dividuals, candidate solutions) do not have a controller because they are not sup-
posed to do anything other than producing offspring. Reproduction, moreover,
is not actively controlled by the individuals themselves. Rather, they undergo it,
arranged by an “oracle”-the outer loop of the evolutionary algorithm procedure.
Thus, in this example we have no controllers and changes occur only at popula-
tion level. (2) In embodied evolution [Ficici et al. (1999); Watson et al. (2002)], the
robots broadcast (possibly mutated) genes at a rate proportional to their fitness
(measured as the number of batteries collected). Robots also resist “infection” at
a similar rate. A good individual, collecting many batteries by virtue of its supe-
rior controller will infect many others before being replaced (i.e., infected) itself.
If we see infection as death and immediate replacement, the robots in such a sys-
tem do not adapt individually and changes occur at population level. (3) As a
third example consider a single Web-agent serving a single user by selecting news
items every morning using some given set of rules that are continuously improved
through reinforcement learning. Here, the agent does have a controller (the rule
set) that can change, but the population is a singleton and there is no death — no
changes at population level. (4) Finally, consider the AEGIs artificial life system
[Buresch et al. (2005); Eiben et al. (1999)], where a population of agents exists in an
artificial habitat. The agents can move, eat, mate, fight, etc. as determined by their
controllers and they undergo adaptation of their body characteristics (by evolution
from generation to generation) and their controllers (by evolution from generation
to generation or by learning during lifetime). In this system, we have controllers
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and changes occur at both individual and population levels.

As an example of a PAS with adaptation through evolution as well as indi-
vidual and social learning, we consider the NEwW TIES systemz, which we will
describe before we elaborate on the three adaptation mechanisms (Sec. 12.2.3)
and their interactions (Sec. 12.2.4) and research challenges these raise. Note, that
NEW TIES serves as an example only and that, although we describe many design
choices that were made for this particular system, the interactions between adapta-
tion mechanisms that we describe are not specific to this example implementation
and mostly do not depend on the design choices described.

12.2.2 The Environment and the Agents

The NEW TIES system provides a simulation platform in which a cultural society de-
velops through evolution, individual learning and social learning of autonomous
agents [Gilbert et al. (2006)]. The artificial, virtually embodied agents that make up
this artificial society live in a grid world containing objects such as food sources
(plants), tokens, places and building bricks.

In this world, time passes in discrete steps. Every time-step, the agents receive
stimuli regarding objects (including agents) that they see or carry, messages from
other agents that they hear and their internal state (e.g., their own energy level).
The agents process these stimuli to select actions such as move or turn, pick up or
put down objects, eat, communicate or interact otherwise with other agents (e.g.,
mating, or giving or taking objects to/from other agents). To process these inputs
and arrive at a decision about which action to take, the agents use their individual
controllers.

The project models agents anthropomorphically, thereby imposing strict au-
tonomy, (virtual) embodiment and situatedness. This limits our options when de-
signing agent interactions (e.g., agents cannot communicate unless they are within
each other’s vicinity), perception (e.g., they cannot see inside each other’s heads)
and learning mechanisms (e.g., no supervised learning).

Agents have to husband their energy: performing the selected action, even if
that amounts to inactively surviving a time-step, costs energy. Should an agent
run out of energy, it dies. To gain energy, an agent must eat food (plants). Other
than that, agents die when they reach a certain maximum age. There is no other
selection mechanism: as long as an agent lives, it can act—and therefore, engage
in mating or social learning. To gain energy, an agent must eat food (plants). The
laws of nature governing the environment determine the preconditions and the
results of actions, e.g., specifying the amount of energy a plant yields when eaten
and the costs of movement, the maximum lifetime for agents, or a minimum age
and energy level at which agents can mate. Agents decide on their actions using
a controller. In other words, the controller is the decision making unit inside an
agent that maps inputs, i.e., perceptions of the agent regarding the world and its
own internal state, to outputs, i.e., the agent’s action.

2New and Emerging World models Through Individual, Evolutionary and Social learning (NEW
TIES), EU FP6 Project, http://www.new-ties.org
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12.2.2.1 Decision making and agent controllers

At every time-step, the agent processes the incoming information and describes
the situation it finds itself in in terms of concepts. Then, based on this description,
the agents decides on an action to perform.

Categorisation and conceptualisation To reduce the dimensionality of the ob-
servation space (the raw data where attributes are the elementary attributes of
all possible entities in the world), a process of categorisation and conceptualisa-
tion map it onto another space, where the attributes are the so called concepts.
Raw data is aggregated in two steps. First, it is aggregated to form categories
that are then further aggregated to concepts. The incoming information is pro-
cessed by categorising the raw data-bundle of features. Each feature concerning
objects in the world, like color or shape, can be regarded as an axis in the fea-
tures space; a category is defined by a range of possible values within the whole
range of a feature. For example, for the feature colour everything between 1, ..., 10
could be considered green. Concepts are (multi-dimensional) entities composed
from (one-dimensional) categories. For instance, plants could be the green and
triangular objects while agents could be pink and circular. Concepts are
stored in an agent’s ontology and are used to provide a characterisation of a given
situation on a higher level than the original raw data.

Decision making The agents’ controllers are implemented as special kinds of
decision trees, decision Q-trees (DQTs). The 'Q’ refers to the fact that they can be
adapted through Q-learning [Sutton and Barto (1998a)], the NEw TIES implemen-
tation of individual learning. With crossover and mutation operators inspired by
those used in genetic programming [Koza (1992)], these trees can also be adapted
through evolution when two agents mate to create offspring.

eat
see plant?

y
pick up / 2 \

( move J( tun ]

Figure 12.2. A simplified example of a decision Q-tree (DQT).

DQTs consist of test, bias and action nodes (Fig. 12.2.; depicted as lozenges,
trapezoids and rounded rectangles, respectively).

A test node evaluates a Boolean query based on concepts known to the agent,
e.g., “Is there a plant ahead?” or “Is there an agent nearby?”, and depending on
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the answer (Yes or No) the tree is further traversed through either of the two child
nodes. Thus, a full path from the root to a leaf (an action to be performed) node
forms a conjunction of statements that together provide a partial situation descrip-
tion in terms of the agents’ concepts.

To traverse a bias node, the agent probabilistically selects one of multiple
branches for further traversal — each of these branches has a bias that determines
the likelihood of it being selected. These biases are determined genetically through
evolution and onto-genetically through individual and social learning.

The leaves of the DQT are action nodes that select an action. Action nodes, like
bias nodes, are probabilistic: the actual action is stochastically chosen according
to a weight distribution over all possible actions. The available actions are simple
actions — such as move, turn-left or turn-right —, unary — such as eat(x) or hit(y) —,
and binary actions such as give(a,0). The arguments for the higher arity actions are
implied by the tests that were traversed to select an action —e.g., testing for visible
agents implicitly selects all agents in sight— and can be any object, but if, e.g., an
agent attempts to eat a non-food item, this action will fail in the world.

12.2.3 Adaptation Mechanisms

As outlined in Sec. 12.2, we envision adaptation as the change of controllers in a
population of agents. In NEw TIES, this amounts to changing DQTs. In this subsec-
tion we discuss how the general trinity of adaptation is instantiated in NEw TiES. To
begin with, we note that all three adaptation mechanisms work in the same search
space — that of all possible DQTs.

12.2.3.1  Evolution

NEW TIES deliberately adopts a non-Lamarckian notion of evolution[Lamarck
(1809)], so inheritable material cannot change during an agent’s lifetime. This
means that an agent created with a controller c seeds its descendants by exactly
this controller c, regardless of any changes brought by lifetime learning.

The two pillars of evolution are selection and variation; variation is realised
by straightforward tree-crossover and tree-mutation operators, much as in genetic
programming. Viewing adaptation as search through the space of controllers, one
elementary search step in this context amounts to combining two existing con-
trollers ¢1 and ¢, into a new one c3.

It is an essential aspect of this system that selection is not based on some ob-
jective function to be maximised [Menczer and Belew (1996); Mitchell and Forrest
(1994)]. Survivor selection is strongly environmental: agents die if they run out of
energy or reach the maximum age. As for parent selection, an agent can decide
any time to mate (subject to some constraints). If the controller chooses to mate,
the agent selects itself as a would-be parent. To procreate, it needs to find and
“convince” another agent: it sends a special message, a mate proposal. Only if the
other agent accepts this mate proposal do the two agents become actual parents
and produce a child. To make the child viable, each parent donates a portion of its
current energy, consequently incurring a cost.
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The NEW TIES evolutionary system differs from usual evolutionary algorithms
in a number of essential aspects.

(1) Fitness is not an a priori utility measure that determines the number of off-
spring. One could say there is no notion of fitness at all, or rather, that in NEW
TIES fitness is a secondary, observable measure determined by the number of
offspring rather than vice versa — a truly Darwinian notion.

(2) Reproduction is not orchestrated by some central authority. Individuals au-
tonomously and asynchronously decide to mate.

(3) Reproduction is detached from survivor selection. Newly produced individu-
als can be added to the population without removing old ones. Likewise, an
individual can die without being replaced by a new one. As a side-effect, there
is no clear definition of a generation here.

These properties have two prominent consequences. Firstly, in the absence of
an explicit objective function the selection probabilities (that embody the system
bias for quality) must be based on indirect quality indicators. In general, the age
and the energy level of agents can be used here: an agent that survives for a long
period and/or has accumulated much energy must be well adapted, hence worthy
of being reproduced. In this respect, PAS of this kind are closer to natural selection
than, for instance, Genetic Algorithms where selection probabilities are calculated
from an objective function.

The second effect is that points 2 and 3 imply a kind of reproduction —“natural
reproduction”— where the population size inherently changes over time. Users of
such systems face a tough challenge concerning the calibration of the system to
avoid unlimited population growth (explosion) or complete extinction (implo-
sion). In a particular system, such as NEW TIES or AEGIS, ad hoc solutions can
work, based on balancing energy supply (number of plants, energy of plants, re-
production rate of plants) and energy consumption (costs of actions). From a gen-
eral evolutionary point of view, population size can be controlled by tuning the
selection mechanisms. For instance, the parameters specifying the minimum age
or energy required for mating. At the moment, there are no general guidelines or
design heuristics available to cope with this problem.

12.2.3.2 Individual Learning

A newborn agent, and with it individual learning, starts with the controller that is
provided by (one of) its parents. The most appropriate learning type for individual
learning is reward based: supervised learning is difficult, because agents can be in
an environment of which the most optimal (set of) action(s) is unknown. Unsuper-
vised learning is inappropriate, because information present in the environment is
wasted if not used as feedback for learning.

NEW TIES implements reward based individual learning as reinforcement learn-
ing [Kaelbling et al. (1996); Sutton and Barto (1998a)]. Reinforcement learning can
change the DQT by policy change. An agent’s policy is —in the context of reinforce-
ment learning— represented by its DQ tree. Any path in the DQT leading to an
action is a result of the policy. Policies can be altered by changing the values of the
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edges that change the likelihood of taking a specific path. NEW TIES uses SARSA,
one of the variants of Q-learning[Sutton and Barto (1998a)].

In NEW TIES, the reward is usually based on energy, but other types of ‘currency’,
e.g. something based on emotions or some mix of simpler currencies, are possible.
The currency must in any case be accessible to the agent, or the agent would not
able to use it for computing rewards. Such a mixture is probably needed for the
problem described in Sec. 12.2.4.1, where agents would unlearn to reproduce if
reward is only based on energy — this is investigated in detail in Sec. 12.3.

An important challenge for reinforcement learning is that the state-space cre-
ated by the perceptual input is huge. To illustrate, the state-space for the visual
field is #typeO fObjects*srideellsVisualField Giyen that NEw TIES has at least 3 types of
objects and that the visual field is 50 grid cells, it is obvious that the state space is
very large, probably intractably so. Moreover, the state space is further extended
by non-visual perceptual input of auditory, internal and reproductive stimuli. To
cope with the size of this state-space, it is not partitioned by the input stimuli, but
by the tests in the test nodes of the DQT. The tests in a test-node test for certain
concepts, for instance green agent. This divides the state space in agents that
are green and all other coloured objects. The test-node uses the input, only testing
for particular aspects of the environment.

12.2.3.3 Social Learning

Many studies have focussed on social learning with approaches including imita-
tion (as described in Sec. 12.5), copying behaviour as well as using socially pro-
vided corrective feedback [Dautenhahn and Nehaniv (2002); Acerbi et al. (2008)].
In NEW TIES, by contrast, agents communicate explicitly and social learning entails
an agent modifying its controller by incorporating a piece of knowledge it receives
from another agent. Social learning requires at least two agents a; and a; with con-
trollers ¢; and cy; one search step amounts to changing ¢ into ¢} (assuming that a;
learns from a;), where ¢} is some combination of ¢; and .3

Agents communicating in this manner implies a multi-faceted set of features
and parameters that govern issues such as (social) networks of knowledge ex-
change, levels of trust and relative merit of knowledge, etc. In general, they con-
cern:

e when and with whom to exchange knowledge;
o the selection of knowledge to send or elicit;
e when and how to accept offered knowledge.

Obviously, a general consideration when designing these features is including
a bias for quality. In other words, at least some of the choices involved in importing
a “knowledge nugget” from another agent must favor learning from a better agent.
Similar to introducing a bias for quality in evolution (cf. Sec. 12.2.3.1), the age and
the energy level of agents can be used as quality indicators here. Apart from any

3Remember the non-Lamarckian nature of NEW TIES’ reproduction: these controller changes do not
affect the genetic material (which in effect is a copy of the initial controller with which an agent is
created).
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specific quality-driven social learning scenario, there is always qualitative pressure
as described in Sec. 12.2.3.1: agents with poor controllers die sooner and therefore
cannot participate in social learning exchanges (“teach”) as often as agents with
good controllers.

Note, that communication introduces a “social dimension”; an overlay network
in technical terms. The properties of this network depend on the given implemen-
tation, but in general, the network changes over time. In NEw TIES, this is realised
by a protocol similar to gossiping in peer-to-peer systems. Every agent maintains
a (fixed length) list of acquaintances — agents it has seen and talked to before. This
list is updated with new observations (encounters with other agents) using a FIFO
policy. The construction and maintenance of this social network can also be influ-
enced by quality indicators of peers.

A knowledge nugget in our system is represented by a sub-DQT (extracted
from the sender’s controller). In the current implementation, this sub-DQT is in-
cluded in the tree of the receiving agent by inserting —at some appropriate location
in the DQT- a bias node that has two children: the foreign sub-DQT and the al-
ready existing native sub-DQT. These alternatives are weighted by newly defined
biases based on the ratio between the sender and recipient’s age and energy levels.

Section 12.4.2 provides a more detailed description of the social learning mech-
anism in NEW TIES.

12.2.4 Relationships Between Adaptation Mechanisms

To position evolution, individual learning, and social learning it is helpful to con-
sider them from the knowledge transfer perspective, where knowledge is seen as
(good) pieces in the agent controllers. From this point of view, knowledge is trans-
ferred vertically by evolution, down along the line of descendants. (Recall the note
from Sec. 12.2.3.1 that we do not have a clear notion of generations here, because
agents residing on different levels of the family tree can live at the same time in
the same population.) On the other hand, individual learning is a sink: in the ab-
sence of social learning, individually accumulated knowledge simply disappears
when the agent carrying it dies. Social learning can alleviate this, since it amounts
to horizontal knowledge transfer, passing knowledge nuggets within the current
population. In this respect, social learning makes the population into a knowledge
reservoir, reducing (at least potentially) the risk that knowledge must be rediscov-
ered over and over again.

12.2.4.1 Evolutionary and Lifetime Learning

A marked distinction between evolution and lifetime learning is that evolutionary
operators do not change the controllers of agents during their lifetime, while life-
time learning operators obviously do. If evolution were the only adaptation mech-
anism, agents would die with the controller they were born with. Hence, evolution
does not take place on an individual, but strictly on a population level. From this
perspective, the death of an agent represents a contribution to the evolution pro-
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cess, because the population adapts with each death.* This is particularly not the
case for individual learning, where the death of an agent terminally destroys the
results of the learning process.

In our example, evolution also differs from lifetime learning in the entity that
initiates a learning step: individual learning and social learning steps are initiated
without the influence of the agent’s controller — by an oracle, or subconsciously, if
you will. This is not the case for evolution search steps, because the agent has to de-
cide itself to reproduce by sending or accepting a mate proposal. As a compelling
consequence, agents can unlearn reproduction through lifetime learning because
the individual reward for mating is negative: it costs energy without any miti-
gating personal benefit. To counteract such tendencies, one can introduce some
specific reward for mating (orgasm), make mating a subconscious process or take
population-level benefits into account in lifetime learning.® Section 12.3 investi-
gates this consequence in detail.

Memetic algorithm research has pointed out positive interactions between evo-
lution and lifetime learning, by showing that combinations of evolution and indi-
vidual learning are particularly beneficial[Krasnogor (2002)]. An interesting and
promising interaction between evolution and lifetime learning is described in [Best
(1999)]. This study finds that lifetime learning decreases the need for evolution to
get it spot-on: the chance of finding the optimal solution is much greater with
lifetime learning and evolution combined.

12.2.4.2 Individual and Social Learning

As noted above, the non-Lamarckian nature of evolution in NEW TIES entails that
knowledge that an agent acquires through individual learning cannot affect in-
heritable material, and therefore is lost when that agent dies. By proliferating
knowledge over the population of agents, social learning preserves such knowl-
edge pieces that would otherwise disappear. Thus, social learning turns the popu-
lation into a reservoir of (individually acquired) knowledge.

A system that combines individual learning and social learning can be thought
of as having division of labour: individual learning generates novel knowledge
nuggets and social learning disseminates these. Social learning can also be seen as
an accelerator making the system more efficient. Think, for instance, of agent a;
learning x, agent a, learning y and a; and a; telling x and y to each other, rather
than having to learn these knowledge pieces themselves. In general, efficiency
improves if the costs of, respectively, time needed for and learning through com-
munication, are lower for the agents than the costs/time of acquiring knowledge
individually — an assumption that holds in a great many systems. As a net effect,
combining social learning and individual learning allows agents to possess knowl-
edge regarding situations they never encountered themselves, acquired at greater
speed and at lower costs. Such constellations have been shown to outperform ei-
ther adaptation mechanism by itself, e.g. in [Bull et al. (2007b)].

*Supposedly changing for the better, cf. survival of the fittest.
5Taking a learning step in both individual learning and social learning could also be made into a
conscious action, in which case similar considerations would apply.
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Section 12.4 investigates this interaction in detail.

12.2.4.3 Individual and Social Learning as Evolution

Recall from Sec. 12.2.3.3 that knowledge nuggets are sub-DQTs. Incorporating such
sub-DQTs into an agent’s controller amounts to an operation similar to crossover
in GP. Similarly, one can see an analogy between a learning step in individual
learning and a GP mutation operator: both turn some controller ¢ into ¢’. From
this perspective it is quite natural to see the combination of individual learning
and social learning as an evolutionary process. Similar observations can be found
in e.g. [Bull et al. (2007b)], [Smith et al. (2000)] and [Richerson and Boyd (2005)].

The selection components for this evolutionary system consist of the mecha-
nisms regulating when two agents engage in sending/receiving knowledge pieces
(parent selection)® and the policies to accept and incorporate a received piece of
knowledge (survivor selection).

It should be noted that this constitutes an evolutionary process quite differ-
ent from the one described in Sec. 12.2.3.1. The most visible difference lies in the
replacement strategies: in the lifetime learning-based evolutionary process, repro-
duction and survivor selection are coupled: a new controller, whether made by
mutation or crossover, immediately replaces an existing one: its parent and the
population size remains unaffected. Another difference is that here, a new con-
troller is created by either crossover (social learning step) or mutation (individual
learning step), while in evolution this happens by crossover and mutation (which
occurs sequentially in the reproduction procedure). Furthermore, we should note
that here we do have an explicit fitness measure, used in at least some parts of
the system. For the parent selection component this is not necessarily the case; an
agent can perform a mutation (do an individual learning step) regardless of the
quality of its present controller ¢ — making c the parent of the new ¢’ — and the
same holds for an agent a; deciding to talk to a; — selecting their controllers c; and
cp as would-be parents. We can distinguish two cases of survivor selection: in the
case of mutation (an individual learning step), survivor selection does not involve
fitness either: the old c (the controller being improved by individual learning) is
simply deselected and replaced by ¢’ (the improved controller). However, if a new
controller is created by crossover (an social learning step), a utility function is used
to determine the relative merit of the received knowledge when integrating it with
the already known ¢ to create the new c}. This utility is related to the relative ages
and energy levels of the two agents involved.

Section 12.5 examines social learning as evolution in a robot collective. In that
case study the property of the population that evolves is the set of socially propa-
gated (by imitation) behaviours, which we refer to as memes (equivalent to knowl-
edge nuggets); thus we have a PAS of memes. Memes are replicated (by robot-
robot embodied imitation), mutate (because of imperfect fidelity imitation), are
selected (because robots choose which memes to enact) and have inherited charac-
teristics across several generations of memes. In this population the overlay net-
work (Sec. 12.2.3.3 is provided by the physical position and proximity of robots,

6Combined with Darwinian survival of the fittest as described in 12.2.3.1
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which of course changes as the robots move. Thus here we see an evolutionary
process at the behavioural or meme-level, that we can label memetic evolution”.

Considering individual learning and social learning in this light raises two
prominent research questions. First, how does existing evolutionary computing
knowledge, e.g., regarding variation, selection and their balance, translate into
these contexts? Second, how do the two evolutionary processes, genetic evolu-
tion on the one hand, social learning and individual learning on the other, interact
in one system?

12.2.5 Discussion

Most of the technical details we introduced are merely illustrative in the sense
that they do not restrict the generality of our discussions. Using trees to represent
agent controllers is one such detail. Our line of thought about variation operators
in evolution and merge operators in social learning can be repeated for other data
structures as well. A similar argument holds for the categorisation and conceptu-
alisation mechanism to pre-process sensory input of the agents; the general point
here is dimensionality reduction. This is critical when using reinforcement learn-
ing algorithms, because they scale very badly with the size of the state-space, but
this aspect is likely to occur in many systems.

The main contribution of this chapter is the definition of a system where three
different adaptation mechanisms — genetic evolution, individual learning, and so-
cial learning — can work simultaneously, yet clearly distinctly. The separation of
the learning mechanisms is based on a differentiation between inheritable and
learnable agent characteristics.® Designating agent characteristics as inheritable
or learnable is one of the major design decision when implementing PASs. Inher-
itable properties can undergo evolution through appropriate variation operators
and environmental selection, learnable properties can undergo lifetime learning
through individual and social learning. By the clear separation between evolution,
individual learning, and social learning, particular adaptation mechanisms can be
switched on and off independently, thus allowing research on their effects sepa-
rately or in various combinations. This allows us to gain insight in their mutual
effects on each other and on the adapting population. Research in this area of-
fers great benefits by the high potential of “fully powered” adaptive systems. In
general:

e Social learning can act as an accelerator for individual learning in each agent
and can preserve the individually discovered knowledge nuggets for the pop-
ulation that would otherwise be lost after the death of the individual that
learned them;

e The combination of individual learning and social learning can be seen as an
evolutionary system, creating an opportunity to use existing knowledge in
evolutionary computing when designing such combined systems.

"Memetic evolution is distinct from memetic algorithms [Krasnogor (2002)] since, in memetic evolu-
tion only the memes (which we can think of as extended phenotypes) evolve, the genotypes do not.

8In the system we described, these are the same, but our considerations are still valid if this is not the
case.
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The specific choices concerning evolution in NEW TIES are reflected in our treat-
ment of evolution. In particular, we focus on systems with natural reproduction,
cf. Sec. 12.2.3.1. In many applications, e.g., ALife, social simulations, peer-to-peer
systems, this is the obvious choice of reproduction scenario, so we can safely state
that the subset of PAS with natural reproduction is large and interesting. Consid-
ering such systems we observed that:

e In an evolutionary process relying on natural reproduction, population size
is inherently volatile. This creates a tough challenge for designers and users
of such systems: to design (selection) mechanisms that prevent explosion and
implosion of the population;

e While, in general, combining lifetime learning and evolution is a powerful
combination (cf. memetic algorithms), in PAS with natural reproduction life-
time learning can counteract evolution by unlearning mating.

In many instances of PAS, one is mainly interested in emergent phenomena,
particularly in emerging behaviour and emerging structures, such as the con-
trollers of the agents (world models) or the social network generated by social
learning, or the emergence of ‘traditions’ in the socially learned behaviours across
the population. It is characteristic that the experimenters can influence system
properties only indirectly, via the adaptation mechanisms. Given some demand-
ing world where agents only survive if they adapt to the particular challenges
of that world, the experimenter’s task is to engineer an appropriate mix of the
adaptation mechanisms so that these mechanisms will generate the desired emer-
gent behaviours and structures. It is this aspect that makes understanding the
trichotomy of evolution, individual learning, and social learning crucial to apply
them successfully in any PAS, be it NEW TIES or a robot swarm.

12.3 Learning Benefits Evolution

This section considers the interplay between two of the three levels of adapta-
tion introduced in Sec. 12.2, namely evolution and individual learning. Combina-
tions of evolution and learning have been investigated before [Belew and Mitchell
(1996)], cf. the hundred years of the Baldwin effect [Turney ef al. (1996)]. Prominent
related work can be found within memetic algorithms, or hybrid evolutionary al-
gorithms [Moscato (1999); Krasnogor (2002)], evolutionary robotics [Nolfi and Flo-
reano (1999); Ijspeert et al. (1998)] and ALife [Todd and Miller (1990); Belew et al.
(1990); Munroe and Cangelosi (2002); Curran and O’Riordan (2006); Buresch et al.
(2005)].

As described in Sec. 12.2.3.1, the combination of features in NEW TIES implies
that the population size can change, even to extinction. This property is typically
absent in related work’, even some work that claims to model natural systems
[Ruppin (2002)], although it is evident that in nature populations can and do die
out. Past research has focussed on the costs and benefits of learning in evolu-

9Research on predator-prey phenomena is not usually concerned with combinations of evolution and
learning.
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tion [Hinton and Nowlan (1987); Mayley (1996); Munroe and Cangelosi (2002);
Nolfi and Floreano (1999)] and on identifying factors that influence this relation-
ship [Mayley (1996); Nolfi and Floreano (1999)]. This section continues research in
this direction, but specifically in the context of a changing population size.

Remember that in NEw TIES, the evolutionary mechanism is under the control of
the agents, because it is the agents themselves who decide if and when to create off-
spring. This means that the development of agent controllers (through evolution
and/or learning) can lead to intensively reproducing agents or just the opposite:
the evolutionary mechanism itself is subject to changes over time.

Evolution and individual learning act in a common search space: that of the
set of all possible agent controllers. Hence, an agent can be born with controller
C, created by some evolutionary operators applied to its parents’ controllers, and
can change C into C’, C”, etc., during its lifetime through individual learning. Evo-
lution is non-Lamarckian: when this agent reproduces, only its original controller
C is used for creating a child, any individually learned modifications in C’ etc.
are disregarded as inheritable material. As noted in Sec. 12.2.3.2, individual learn-
ing is implemented as reinforcement learning. In essence, reinforcement learning
changes the controller by regulating agent preferences for actions based on a re-
ward system. It is important to note that reinforcement learning can strengthen or
weaken preferences for any agent action, including the mating action required for
offspring creation. Thus, it is possible that individual learning unlearns reproduc-
tion and effectively counteracts evolution.

The questions we have to ask ourselves, then, are these:

(1) What is the effect of adding individual learning through reinforcement learn-
ing?
e On the viability of the population?

e On the performance of the population?
e On the evolutionary engine?

(2) How does this depend on the rewards used by reinforcement learning? In
particular:

e When rewards are energy-based.
e When rewards are hard-wired by the user.

12.3.1 The Experiments

As noted above, the system is not meant to set the agents any specific task other
than to win the struggle for life. The environment can, of course, be set up to
challenge the agents in specific ways. The agents then have to deal with these
challenges in order to survive and prosper. In other words, an experimental set-
up in NEW TIES represents a particular challenge or learning task that agents must
solve through adaptation.

In the experiments we describe here, the environment is set up so that agents
can only survive if they successfully tackle the well-known poisonous food prob-
lem [Cangelosi and Parisi (1998); Nolfi and Parisi (1995); Todd and Miller (1990)].
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The agents find themselves in an environment where there are two types of plants,
both of which can be picked up and eaten. One type is nutritious and yields an
energy increase, the other type is poisonous and eating them actually drains en-
ergy. Agents can choose not to, but they can distinguish between the two types of
plant. They do not, however, know a priori that one kind — let alone which kind -
is poisonous. Because agents must eat to replenish their energy level as mentioned
above, they have to learn to disregard poisonous food if they are to survive.

In these experiments, the world is a 200 x200 grid, initialised with 500 agents,
8,000 edible plants and 10,000 poisonous plants. There is a maximum to the num-
ber of agents: agents are unable to reproduce when this limit is reached, but it
may be exceeded through the concurrent creation of a number of new-born agents.
Agents and both types of plants are randomly distributed over the grid. We call
our atomic time step a day and 365 days a year; the minimum mating age for
agents 1,000 days: i.e., they cannot successfully reproduce for the first 1,000 days
of their lives. The maximum age for agents is 7,300 days (7.3 times the minimum
mating age), when they reach this age they die, whatever their energy level. The
experiments run for 30,000 days. Initially, agents are assigned a random age be-
tween zero and one year. The initial controller of all agents is the same; in this
controller some behaviours are pre-wired!?, like looking for food. However, the
behaviour for eating the correct type of food is not present. This can be acquired
by changing the tree structure and/or tuning the biases of bias nodes and action
bias nodes, although the probability that the latter succeeds is small in the tree-
structure of the initial controller. Evolution (without sub-tree mutation) and in-
dividual learning are the only active adaptation mechanisms; social learning is
turned off.

12.3.1.1  Measurements

To answer the research questions we must measure the viability and performance
of the population and provide insights into the evolutionary engine.

To measure the viability, we use the population size. A run is considered suc-
cessful if the population size did not reach zero during that run.

As a behavioural performance measure we use a function based on the ratio of
the different types of food the population eats:

B Yi o eaty,
Zi_l eaty + Zf_l eaty,

g(t) (12.1)

Where Y} _; eat; and ¥ eat, are the number of wholesome and poisonous plants
eaten by the population between t — 1 and t.

Additionally, we measure the total and average energy of the population and
the total and average age.

To measure the performance of the evolutionary system we monitor the aver-
age number of mate-agreements of the population.

10Pre-wired is not the same as hard-wired: pre-wired controllers can be modified by the adaptation
mechanisms.
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12.3.2 Experiment |

In the first experiment, poisonous plants drain twice the energy that an edible
plant yields. We ran two sets of experiments; one where individual learning was
either turned off or used only energy-based rewards and one where we introduced
a specific reward for reproduction. The results are summarised in Fig. 12.3..
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Figure 12.3. Results for experiment [; graphs compare results for evolution by itself (EL), combined
with reinforcement learning based on energy (EL-RL (e)) and combined with reinforcement learning
with different “orgasm” levels (EL-RL (0;10,000;1,000,000)).

12.3.2.1 Evolution only and Evolution-reinforcement learning combina-
tion with energy based rewards

Figure 12.3.(a) shows clearly that evolution only (indicated by the dashed line
“EL”) survives for approximately 1,000 time steps and thus does not yield a viable
population. Adding energy based reinforcement learning to evolution markedly
improves viability, as can be seen in Fig. 12.3.(a) (the dotted line “EL-RL (e)”). In
the long run, however, this is not a viable solution, because after 15,000 time-steps
the population is as good as extinct.

So, the combination with energy based reinforcement learning is thus unable
to make a population viable. This might be because reinforcement learning is un-
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learning reproduction, since it costs energy and therefore produces negative re-
wards. The rewards for other actions, except the eat action, are also negative, but
usually not as bad as reproduction, because that costs a third of the agent’s energy.
The “EL-RL (e)” curve in Fig. 12.3.(c) proves that reward based reinforcement
learning is unlearning reproduction, because the total number of mate-agreements
steadily decreases. Moreover, Fig. 12.3.(d) indicates that agents do not reproduce
enough to sustain the population: agents reproduce once every 3,000 time-steps,
while the average age in the population is only 1,000.

There are two reasons why agents reproduce at all in the face of the negative
reward. Firstly, they have to try to reproduce at least once to learn its negative
effects. Secondly, during exploration agents can still choose the mate-agreement
action, even if they unlearned it. The periodic behaviour of the curve is a side-effect
of the setting of the ages of the initial population and the minimal reproduction
age.

12.3.2.2 Combination of evolution and reinforcement learning with a
hardwired reward

The results in the previous subsection suggest that reproduction is unlearned or
becomes so rare that the agent population is unable to sustain itself. To test the
explanation that this is due to agents receiving negative rewards for reproduction,
we introduce a special reward for reproduction. Its only role is to make mating
actions attractive, so it can be regarded as a kind of pleasure or orgasm. We ran
experiments with three levels of reward: 0, 10,000 and 1,000,000.

The most striking result is that a hardwired positive reward renders the pop-
ulation viable. Note, that even a reward of zero works because all other actions
except eating yield a negative reward.

In terms of population performance, the results show that higher rewards for
reproduction result in better performance. For instance, in the ¢ measure graphs
( Fig. 12.3.(b)), the curve for a reproduction reward of 1,000,000 increases much
more steeply than for a value of 10,000, indicating that the population learns to
avoid poisonous food very quickly.

The intensity of the evolutionary engine is measured by the number of mate-
agreements, displayed in Fig. 12.3.(c). The general trend is that the higher the
mate-reward the higher the number of mate-agreements.

Note that in all different simulations, including that of evolution alone, the g
measure is similar for the first 1,000 time steps. This means that the combination
of reinforcement learning and evolution is unable to learn the task during this
period, implying that individual learning somehow keeps agents alive that would
die in the case of evolution alone. To find out how agents were able to survive,
we analysed the results by tracking the agents’ actions. This analysis showed that
agents often choose to do nothing (the NULL action). Agents thus learn to save
their energy. This suggests a hiding effect: individual learning preserves agents
with a non-optimal strategy [Mayley (1996)].
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12.3.3 Experiment Il

To test whether a hiding effect occurs as suggested above, we change the environ-
ment so that evolution alone can make the population viable. The only change
from the previous experiments is that the levels of nutrition and poisonousness
have been set so that a poisonous plant drains an equal amount of energy that an
edible plant yields. We run experiments with evolution only and with both evo-
lution and reinforcement learning. The average results over 10 runs are shown in
Fig. 12.4..

(a) Population Sizes (b) ¢ Measure (c) Average Agent Energy

WMMNW\A ” a

ererer

(e) Evolution + Reinforcement Learning Ac-
(d) Evolution Actions tions

[ IMATE|
0.9 TURI
[m— o8
[ MOVE]
0.8 I EAT

Actions
Actions

5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000
Time Time

Figure 12.4. Results for experiment II; graphs (a), (b) and (c) compare results for evolution by itself
(EL) and combined with reinforcement learning (EL-RL).

Both the combination of evolution and reinforcement learning and evolution by
itself yield viable populations in this set-up. The soft cap on population size causes
some boundary effects such as the fluctuating population size and the decrease of
energy levels at some point.

The main result, however, is that there clearly is a hiding effect: the combina-
tion of evolution and reinforcement learning hides the ill-adapted nature of non-
optimal agents. The population with only evolution very rapidly learns to eat only
wholesome plants (Fig. 12.4.(b)) and therefore accumulates much more much en-
ergy than the combination of evolution and reinforcement learning (Fig. 12.4.(c)).

With evolution only, the agents accumulate enormous reserves of energy so that
they can get by without any food; this changes the evolutionary pressure from eat-
ing (and preferring edible plants) to reproduction: we see the evolution of agents
that only perform actions involved with reproduction.
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Figure 12.4.(e) clearly shows that the average number of mate-agreements is
much lower with the combination of evolution and reinforcement learning than
with only evolution; reinforcement learning apparently hinders evolution. The dif-
ference in number of mate-agreements already appears within the first 5,000 time
steps, while there us no appreciable difference in g value or population size to ex-
plain the difference. One possible explanation is that the combination of evolution
and reinforcement learning creates another type of agent that doesn’t reproduce
as often because while evolution is mainly focussed on reproduction, the agents
with reinforcement learning try to balance between both eating and reproduction
in order to maximise their rewards.

12.3.4 Discussion

Over the years there has been a fair amount of research into combinations of learn-
ing and evolution, in particular regarding their costs, benefits [Hinton and Nowlan
(1987); Mayley (1996); Munroe and Cangelosi (2002); Nolfi and Floreano (1999)]
and factors that influence this relationship [Mayley (1996); Nolfi and Floreano
(1999)]. We now (re)consider these issues in a context where agents:

o decide autonomously if and when they reproduce (natural reproduction, imply-
ing a dynamic population size);
e can adapt their controllers to unlearn the mating action.

Our experiments show that in such systems learning can counteract evolution.
To be concrete: with a straightforward reward system based on energy, reinforce-
ment learning will cause the agents to lose interest in mating because of the high
individual costs. Hereby the group benefits (maintaining the evolving population)
are lost. This effect can be counteracted by introducing a specific reward for the
mating action that gives positive feedback to the agents, regardless of the related
energy costs. One could of course argue that this trick is known in nature, com-
monly called an orgasm. Allin all, this indicates that we must consider the reward
for reproduction as another factor that influences the effect of learning on evolu-
tion in addition to the list proposed by Mayley [Mayley (1996)].

In terms of the viability and performance of the population, our experiments
show that learning can quite literally be a matter of life and death. In our first
scenario, evolution by itself was not powerful enough to sustain the population.
Adding reinforcement learning changed this, yielding populations that survive
and prosper until the end of the simulations. Simply put: learning keeps the pop-
ulation alive. It can do so by creating controllers that minimise energy expenditure,
a non-optimal behaviour, in the sense that such agents do not learn to eat the cor-
rect plant type. This is one of the costs of learning: learning causes a clear hiding
effect because it allows non-optimal controllers to survive. By contrast, evolution
by itself optimises by harshly cutting out the bad agents, but always with the risk
that there is no population left. In a system allowing a changing population size
this can be lethal.

Further research could show whether there is an optimal value for the repro-
duction reward (i.e., the extent of “pleasure” during mating). A good value would
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not frustrate evolution and still make a population viable when needed. One pos-
sibility is to make this value self-adaptive by adding it to the genome, allowing
evolution to tune itself.

12.4 Social Learning as Enabler of a Knowledge Reservoir

As mentioned in Sec. 12.2.3, agents in the NEW TIES PAS decide autonomically
on the actions they perform by means of a controller that is inherited (for the ini-
tial population: generated) at birth. They implement evolution and reinforcement
learning for individual learning. Through evolution, only the inherited controller
is passed on (i.e. non-Lamarckian evolution [Lamarck (1809)]): agents do not inherit
knowledge (modifications to the controller) that their parents may have gained
through experience; they can only recombine the controllers that their parents had
at birth (with some mutation added). This means that, without some additional
method of spreading knowledge through the population of agents, everything
an agent learns through experience (i.e., through individual learning) will be lost
when that agent dies.

This is where social learning comes into play: with social learning in place,
anything an agent learns during its lifetime can be taught to other agents, so that
this knowledge does not necessarily die with the agent that originally discovered
it. With agents exchanging knowledge pieces —bits of adapted controller— through
social learning, the population as a whole effectively becomes a knowledge repos-
itory — although not a randomly accessible one for individual agents — for indi-
vidually discovered adaptations. Obviously, social learning can also speed up the
learning process at the population level as found in e.g., [Acerbi and Nolfi (2007);
Denaro and Parisi (1996); Bull et al. (2007b)]

Social learning can only play this role if it can effectively disseminate individu-
ally acquired knowledge pieces. The question, then, that we seek to answer is the
following:

Is social learning an efficient mechanism to spread knowledge pieces through the
population, thus creating a knowledge repository for individually acquired knowl-
edge?

In nature, social learning can be achieved through a host of mechanisms rang-
ing from imitation to social guidance in individual learning [Acerbi and Nolfi
(2007)]. Here, we consider the case where social learning consists of agents ac-
tively suggesting behavioural rules (knowledge pieces) for the consideration of
other agents in a peer-to-peer fashion. The recipients of these knowledge pieces
then choose whether or not to integrate them into their own set of rules. The fact
that all agents participate in social learning on an equal footing implies an inherent
parallelism in the spreading of knowledge pieces: all agents that have acquired a
knowledge piece can simultaneously share it with other agents, who can then share
it in turn, and so on.

Cultural algorithms employ belief spaces [Reynolds (1999)], which can be seen
as explicit knowledge repositories that the individuals build collectively. In the re-
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search presented in this subsection, however, knowledge repositories are formed
implicitly by the population and any individual agent can use only that part of the
repository it embodies. It has been shown that social learning through imitation
(sometimes called ‘cultural evolution”) can be beneficial by decreasing the learning
time for individuals, particularly in cases where the required behavioural rules are
difficult to acquire [Acerbi and Nolfi (2007); Denaro and Parisi (1996)]. Such imple-
mentations of social learning typically focus on a limited number of ‘experienced’
individuals instructing uninitiated individuals one by one and thus do not exploit
the inherently parallel ink-stain effect present in the peer-to-peer knowledge ex-
change that we envisage. Similarly, in ensembles of learning classifier systems, so-
cial learning — termed ‘rule-sharing’ — has been shown to boost the learning speed
[Bull et al. (2007b)] of the ensemble. Comparing such ensembles with a popula-
tion of interacting, mortal agents is tenuous, however: the constituent parts of the
ensembles are not considered separately, only the performance of the ensemble’s
aggregated behaviour is taken into account.

12.4.1 Energy and Agent Quality

As mentioned in Sec. 12.2 and contrary to typical evolutionary algorithm or evolu-
tionary robotics applications [Eiben and Smith (2003); Nolfi and Floreano (2000)],
the PAS we use as an example lacks a crisp optimisation criterion as well as a
concrete task to be performed optimally. The agents survive whatever the envi-
ronment throws at them or they do not—that’s all there is. This also entails that
there is no measure of fitness in this system: the only selection mechanism is —truly
Darwinian- the struggle for life in the environment: environmental selection.

To gauge their relative quality, agents can, however, be compared in terms of
their perceivable attributes such as age or energy level. Crucially, such compar-
isons cannot be performed by some central selection mechanism — as would be the
case in traditional evolutionary algorithms — but by the individual agents them-
selves when they autonomously decide to mate, engage in social learning, or other-
wise interact with another agent.

12.4.2 Social Learning in Detail

Social learning is implemented in a push model, where teachers volunteer knowl-
edge pieces that the students then may accept'!. Alternatively, social learning
can be implemented in a pull model, where agents request knowledge from other
agents. A combined model, where agents advertise that they believe that they
have useful knowledge to share and other agents can then request that knowledge
(similar to the plumage concept in [Smith et al. (2000)]) could be implemented as
well. Social learning as described here uses a measure of relative quality R(a, b)
(described below) that compares agents a and b in terms of energy and age, but
could have used, for example, a reputation-based measure just as well.

Generally, this subsection describes the implementation of social learning
within NEw TiES—alternative design choices could be made and implemented at

HGection 12.5 presents an example of this form of social learning by imitation.
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every level described here. As mentioned above, however, some options are in-
feasible because of the anthropomorphic nature of agents in these experiments.
For instance, agents have to be within range (‘earshot,” if you will) to be able to
communicate and hence engage in social learning.

Social learning is implemented in the following sequence for every agent at
every time-step:

(1) An agent chooses to initiate sending (‘teaching’) probabilistically (p = 0.2).

(2) If it decides to send, the agent describes the trace through its DQT that led to
the current action (e.g., “I'm moving because there is no food to pick up”).

(3) Of all the agents in range, the teacher then selects the one with the lowest
energy as the ‘student’.

(4) When an agent receives a knowledge piece, it stochastically chooses to inte-
grate (p = 0.2) or disregard it.

(5) When an agent s incorporates a DQT path P it received from an agent ¢, agent
s selects the most similar path P’ in its own DQT according to the following
criteria:

(a) Percentage of matching tests
(b) The number of tests P but not in P’
(c) The number of tests in P’ but not in P

If the percentage of matching elements in P is 100%, the bias for the action that
P results in is multiplied with the relative quality R(t,s) (see below). Other-
wise, the agent engages in a kind of dialectic: it inserts a bias node at the first
point of divergence between P and P’. The remainder of P’ is inserted as one
option at that node, a sub-tree corresponding to the non-matching entries in P
is inserted as the alternative. The biases for the options are set proportionally
to the relative quality R(t,s). Figure 12.5. illustrates this procedure.

(pickup ] / 2 \[ mate ] [ random ]

( move J( tun ]

Figure 12.5. The result of integrating the path [not carry plant; see agent] = mate into
the DQT from Fig. 12.2..

As described above, this social learning implementation requires some measure
of (relative) quality for agents to be able to assess the merit of received knowledge
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pieces when incorporating those pieces. To that end, an agent a can determine the
relative quality R(a,b) of another agent b from their relative ages A, and A;, and
energy levels E; and Ey, respectively:

Aa Ea
+ )
Ag+ Ay E,+Ep

R(a,b) = 0.5- (

This measure ranges from 0, where agent b devastatingly outperforms agent a
to 1, where the converse is true. If the agents have the same energy and are equally
old, R(a,b) equals 0.5. Note that this measure does not constitute an optimisation
criterion as typically used in evolutionary algorithms: it does — without specifying
any goal — allow for the comparison of the success of adaptation of individuals.

Social Learning as an Evolutionary Algorithm

[Smith et al. (2000)] already showed that an agent-based knowledge exchange
mechanism similar to social learning constitutes an evolutionary algorithm. More-
over, as pointed out in [Eiben and Smith (2003)], an evolutionary algorithm re-
quires:

e Selection as a force to push quality;
e Variation operators to create the necessary diversity and thereby create novelty.

This implementation of social learning achieves the former of these at various
levels. Firstly, ill-adapted individuals tend to die relatively quickly, and hence
cannot further distribute their knowledge, while well-adapted individuals tend to
survive and have ample opportunities to distribute their knowledge. The second
level is that of student selection mentioned above: when an agent has to choose
between potential recipients of a knowledge piece, it selects the one with the lowest
energy. Finally, the integration mechanism uses the relative quality R(a,b) to set
the bias for already known or newly received knowledge.

Variation is provided by the knowledge integration mechanism, which can be
seen as a guided adaptation of crossover such as commonly used in genetic pro-
gramming. Although this suffices, individual learning and social learning dovetail
very nicely in this respect (as well as because of the benefit that we expect from
social learning providing a knowledge repository for individual learning): indi-
vidual learning then plays the part of a mutation-like variation mechanism.

The notion of social learning as an evolutionary process is further developed in
Sec. 12.5.

12.4.3 Experimental Set-up

In this section, we —or rather,the agents— revisit the poisonous food challenge de-
scribed in Sec. 12.3.1 where agents have to learn to avoid poisonous food and eat
only healthy food.

To measure the efficacy of social learning as a mechanism for the proliferation
of knowledge pieces through a population (i.e., for the population as a whole to
adapt from individually learnt adaptations), we ran a series of experiments where
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the population consists of two kinds of agents: knowers and students. The know-
ers have pre-built controllers that allow them to tackle the poisonous food prob-
lem. The students have a partially randomly constructed controller—they know
how to pick and eat plants (regardless of their being poisonous or not) and how
to mate, but the rest of their DQT is constructed randomly. A varying proportion
of the agents with pre-built controllers can send, but not receive social learning
messages (‘teachers’), while students both send and receive social learning mes-
sages. The remaining knowers do not engage in social learning in any way; they
are only there to ensure that the environment contains the same amount of agents
eating away at the wholesome plants across the experiments, so that the results are
comparable.

Another difference between students and knowers is that the former can mate
to produce offspring where the latter cannot. Note, that this does not —in these par-
ticular experiments — constitute evolution: there is no variation operator because it
does not entail recombination, but cloning of either parent. Therefore, there is no
evolution at play to disturb our measurements. Neither kind of agent can perform
individual learning in these experiments.

This set-up serves as an idealised exemplar of a population where some agents
— represented by the teachers — have discovered, through individual learning or
otherwise, a particularly useful bit of knowledge: to eat only wholesome plants.
Note, that these teachers play quite a different role from the ‘experienced individ-
uals” employed by [Acerbi and Nolfi (2007); Denaro and Parisi (1996)]: from the
students’ point of view, they are no different from any other agent they encounter.
We ran the experiment with varying numbers of teachers to compare the rate at
with which the population of students learns to differentiate between nutritious
and poisonous food.

In our experiments, the agents can move in a 200x200 grid. There are ini-
tially 250 students and 100 knowers, of which 0, 1, 5 or 50 individuals are teachers.
Agents can live well beyond the length of the experiments, so agents can only die
of lack of energy. Each experiment was repeated 20 times. Poisonous plants drain
1.5 times the energy that wholesome plants yield, the environment is initialised
with 16,000 plants of each type. Plants regrow practically immediately (within 2
time-steps), even if they’ve been picked, similar to food in SugarScape [Epstein
and Axtell (1996)]. Thus, there is always food (and poison) available and the ratio
poisonous/wholesome plants remains more or less at the initial value of 0.5.

To quantify behaviour, we use the ¢ measure introduced in Eq. 12.1 — the ra-
tio between wholesome and poisonous plants eaten. We also employ a structural
measure that actually detects the presence of the required knowledge. There are,
of course, many different strategies that allow the agents to eat only wholesome
plants—e.g., “only pick up wholesome plants and eat anything you carry”, or
“drop any poisonous plant and eat anything you still carry”. In these experi-
ments, however, we know exactly which knowledge piece we expect to find be-
cause it is the relevant trace through the handcrafted knowers” DQT: it's [carry
wholesome plant] = eat. This allows us to identify, during a run, those stu-
dents that have incorporated this rule by inspecting their DQTs. Thus, we can
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measure the incidence among the students of the appropriate knowledge piece.
Note, that the measurements we present here were taken only over the popu-
lation of students.

12.4.4 Results

Figure 12.6. shows the development over time of g(t) — averaged over 20 runs - for
the students with 0, 1, 5 and 50 teachers. For reasons of legibility we omitted error
bars; the 4 curves do differ considerably, although the standard deviation for 0 and
1 teacher is large, due to the fact that in many of these simulations, the students
didn’t eat at all.
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Figure 12.6. Development over time of g(t) —the ratio between wholesome and poisonous plants
eaten— for the student population for different numbers of teachers.

As can be seen, ¢(t) remains level just above 0.5 for 0 teachers — there is no
learning at all — the slight improvement over fully random behaviour is due to
environmental selection: agents that eat too much poisonous food simply die at
a faster rate than agents that do not or less so, leaving a slightly better set of sur-
viving agents. In the case with a single teacher, the performance of the students
increases substantially: even from so small a seed, a knowledge repository can
grow. For 5 and 50 teachers, the population behaviour improves rapidly until g(t)
reaches a plateau between 0.8 and 0.9—there is no substantial difference between
these experiments after that point. This seems to imply that in both cases the pop-
ulation of students becomes saturated — at least at a behavioural level — with the
appropriate knowledge piece.
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1 teacher

Figure 12.7. Spread of knowledge pieces over the students for typical runs with 1, 5 and 50 teachers
at timesteps 0, 400, 1000 and 4000.

Figure 12.7. shows a series of maps of the world displaying the incidence of the
required knowledge piece ([carry wholesome plant] = eat) geographi-
cally. The three sequences of maps show the spread of knowledge over time for
typical runs with 1, 5 and 50 teachers respectively. Students that contain the re-
quired knowledge show white, those that don’t show dark grey. Teachers and
knowers are not shown. Note the logarithmic time-scale.

Again, it is plain that, even with a single teacher to initiate dissemination, the
decisive knowledge is spread through a significant part of the population—the
population as a whole stores the knowledge effectively and robustly. As could be
expected, the knowledge becomes even more widespread for the experiments with
5 and 50 teachers.

While we have seen the behaviour for the student population reach similar lev-
els for the experiments with 5 and 50 teachers, this is not the case for the incidence
of the expected knowledge piece. With 50 teachers, practically all students have
obtained this knowledge piece after 4000 time-steps, but in the 5 teachers case, a
portion of the students remains unaware of this information at that time. Similarly,
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there is no appreciable difference between g(t) at time-step 1000 and at time-step
4000 for the 50 teachers experiments, but there is a marked difference in incidence
of the required knowledge piece. From this we can conclude that, after a certain
level of prevalence has been achieved, further proliferation of the knowledge piece
has no perceivable effect on population behaviour in terms of g(f).
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Figure 12.8. Development over time of the percentage of students with the crucial knowledge piece.

Figure 12.8. shows how the percentage of students that have learned the requi-
site knowledge develops over time with 1, 5 and 50 teachers, respectively, averaged
over 20 runs. Because the students spread the knowledge they receive, incidence
grows almost exponentially as can be seen from the graph.

Note, that at time-step 0, a portion of the population does contain the knowl-
edge as part of the randomly initialised tree while g(¢) for the runs without any
teachers doesn’t increase over time. This can be explained by the context in which
the knowledge piece may be present (i.e., as sub-clause in a more complex, possi-
bly nonsensical rule) and by the fact that the action node’s weights (as described
in Sec. 12.2.2) aren’t sufficiently biased towards actually selecting the eat action.

12.4.5 Discussion

We asked ourselves the questions of whether social learning can provide a suc-
cessful mechanism to spread knowledge pieces over a population, and is there a
minimum requirement to enable the population to create a knowledge repository
for otherwise volatile individually acquired knowledge.

The results of the poisonous food experiments clearly show that social learning
does provide an efficient mechanism for the dissemination of knowledge pieces
through a population of agents. Even from a single agent, the knowledge can
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spread over the majority of the population like an ink-stain on tissue paper. Within
the framework of PAS in general and the implementation in NEw TIES in particu-
lar, this means that social learning is capable of allowing the population to form
a knowledge repository for individually acquired knowledge so that such knowl-
edge doesn’t necessarily expire with the agent that discovered it.

12.5 Embodied Imitation and Memetic Evolution

This section presents a further and contrasting case study in artificial social learn-
ing. The case study focusses on one particular kind of social learning called ‘em-
bodied imitation’. Here the artificial agents are physically embodied, i.e. they
are robots, and social learning takes place through robot-robot imitation, i.e. one
robot imitating the behaviour(s) of another. The work presented here is part of
a multi-disciplinary research project called “the emergence of artificial culture in
robot societies” whose overall aim is to investigate the processes and mechanisms
by which proto-cultural behaviours, or traditions, might emerge in a free running
collective robot system. However, at the time of writing, this is an ongoing project
and so this section will focus on the processes and mechanisms of embodied robot-
robot imitation, and how socially learned behaviours evolve in a robot collective.

This section is organised as follows. First we outline a definition for embod-
ied imitation and place that in the context of the existing research literature on
robot imitation. Then we present an outline of the “artificial culture” project and
its physical infrastructure, since this also provides essential context for the work
on embodied imitation. Next the section describes an implementation of robot-
robot imitation on e-puck mobile robots and presents experimental results which
focus on variation and the quality of imitation. Finally we describe and analyse an
experiment in open-ended memetic evolution.

12.5.1 Embodied Imitation

We define embodied imitation, or robot mimesis, as: the imitation of one robot’s
behaviour, or sequence of behaviours, by another robot, where the learner-robot
uses only its embodied sensors to perceive the teacher-robot. This definition pre-
cludes robot-robot ‘telepathy’, i.e. one robot transferring part of its controller di-
rectly to another as in the previous section. Our insistence on embodied percep-
tion of one robot by another means that an implementation of embodied imitation
needs to solve the so-called ‘correspondence problem’; a term which refers to the
learner’s problem of translating a set of perceptual inputs to motor actions that
correspond with the perceived actions of the teacher [Nehaniv and Dautenhahn
(2002a)]. This is a hard problem, which begs the question: since robots are capa-
ble of telepathy, why do we insist on solving the correspondence problem? The
answer is that we are not here proposing solutions to real-world robotics prob-
lems but instead interested in modelling and illuminating the processes of social
learning, and therefore biological plausibility is important to us. Furthermore, real
robots and sensors, less-than-perfect-fidelity embodied perception and the estima-
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tion process inherent in solving the correspondence problem, means that embod-
ied imitation will be imperfect and, as we will describe later in this section, im-
perfect imitation is valuable to us because it leads naturally to variation in socially
learned behaviours as they propagate across the population.

The study of imitation and social learning in robots, humans and animals has
received cross-disciplinary attention in recent years [Nehaniv and Dautenhahn
(2002b, 2007)]. Not surprisingly attention has been given to the problem of hu-
manoid robots imitating humans, since this presents a way of programming a
robot by demonstration rather than coding [Scassellati (1999); Mataric (2000)].

There has been less work describing experiments in embodied robot-robot im-
itation. The earliest is perhaps the work of Hayes and Demiris which describes
an approach with one (pre-programmed) robot finding its way through a maze
and another following it and observing its actions (turns). The following (learner)
robot then associates each observed action with its own (time delayed) perception
of the environment and hence learns how to navigate the maze, by imitation; this
kind of imitation is called ‘matched dependent behaviour’ [Hayes and Demiris
(1994)]. In what is perhaps the first attempt to develop a generalisable approach to
robot-robot imitation Gaussier and Moga, et al, proposed a sophisticated approach
to imitation using a neural network architecture able to learn temporal perception-
action sequences [Gaussier et al. (1998); Moga and Gaussier (1999); Moga (2000)].
Also following a connectionist approach Billard and Hayes proposed the DRAMA
architecture (dynamical recurrent associative memory architecture); they provide
one case study that interestingly involves the active participation of the teacher
robot in the process of imitative learning [Billard and Hayes (1999)].

Following their 1994 work, [Hayes and Demiris (1994)] Demiris et al, went on to
propose the HAMMER architecture (Hierarchical, Attentive, Multiple Models for
Execution and Recognition. In an important series of papers Demiris et al, devel-
oped an imitation architecture based upon the building block of paired inverse and
forward models; the inverse model outputs motor commands but when, instead
of actually driving the motors, those commands are fed to the forward model and
the output of the forward model compared with the input of the inverse model the
robot is able to ‘rehearse’ possible actions and compare these with its perception of
the actions it is trying to imitate [Demiris and Hayes (2002); Johnson and Demiris
(2004); Demiris and Khadhouri (2005)]. The idea that these internal models reflect,
in some sense, the simulation ‘theory of mind” are further explored in [Johnson
and Demiris (2005); Demiris and Johnson (2007)].

Alissandrakis et al, developed the ALICE architecture (Action Learning via Im-
itation between Corresponding Embodiments) in order to address the problem of
robot-robot imitation across dissimilar embodiments; although not tested with real
robots, ALICE contributes a powerful generalised solution to the correspondence
problem for agents (or robots) with different morphologies [Alissandrakis et al.
(2002, 2003, 2007)]. ALICE works by creating a correspondence library relating the
actions (and importantly effects) of the teacher to actions (or action sequences) that
the learner is capable of.
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12.5.2 The Artificial Culture Project

The Artificial Culture project aims to address and illuminate the question “how
can culture emerge and evolve as a novel property in groups of social animals?”
by building an artificial society of embodied intelligent agents (real robots), cre-
ating an environment (artificial ecosystem) and appropriate primitive behaviours
for those robots, then free running the artificial society. The aims of the project lie
primarily in modelling the processes and mechanisms by which we might observe
the emergence of “artificial traditions’ in a group of embodied agents (robots). Even
with small populations (a few tens) of relatively simple robots we see, in a short
time, a very large number of interactions between robots. In this project those
interactions will encompass social learning.

In the project we are attempting to create the conditions and primitives in
which proto-culture, or traditions, might emerge in the robot collective. Robots
will, for example, be able to copy each other’s behaviours and select which be-
haviours to copy. Dawkins coined the term ‘meme’ to describe a unit of cultural
transmission [Dawkins (1976)], and we use this terminology here!2. Imitated be-
haviours (memes) will mutate because of the noise and uncertainty in the real
robots” sensors and actuators, and successful memes will undergo multiple cy-
cles of copying (heredity), selection and variation (mutation). Observed measur-
able and sustainable differences in the memes across different groups of robots,
where those memes can be traced back to common ancestral memes, might be in-
terpretable as evidence for emerging ‘artificial traditions” in the robot collective.

The project is inspired by the Copybots thought experiment suggested by Black-
more, [Blackmore (1999)] pages 106-107, and by Dautenhahn’s visionary 1995 pa-
per ‘Getting to Know Each Other - Artificial Social Intelligence for Autonomous
Robots’ [Dautenhahn (1995)]. From a technical perspective the project draws upon
a multi-disciplinary body of literature in imitation [Nehaniv and Dautenhahn
(2007)]; for instance the work of [Alissandrakis et al. (2007)] describing imitation
leading to “cultural transmission of behaviours and emergence of proto-culture”
between two simulated 2D two-jointed robotic arms. However, we argue that a
multi-robot collective is a necessary substrate for this work and bring key concepts
from the field of swarm robotics [Beni (2005); Sahin and Winfield (2008)].

12.5.2.1 The Atrtificial Culture Laboratory

Core to the project is the creation of an artificial environment: the artificial culture
lab. The artificial culture lab comprises a physical space (‘arena’) designed for and
populated by miniature wheeled mobile robots. The arena is closed in the sense
that its physical boundaries define the edges of the robots” world, out of which
they cannot physically stray. The arena is not hermetically sealed, thus robots
(since they have both light and sound sensors) are affected by ambient lighting or
noise levels. Providing that these external environmental influences do not over-
whelm (blind) the robots’ sensors, they are not a problem. Indeed, a certain level of
background noise in the environment is considered essential as it will contribute to

12Equivalent to the ‘knowledge nugget’ of Sec. 12.2
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imperfect robot-robot imitation or communication, and changing light levels (day
and night) might be useful in providing the robots with a circadian rhythm.

The robots, called e-pucks, are wheeled, differential-drive, robots capable of
moving forwards or in reverse, or turning (including turning on the spot) [Mon-
dada et al. (2009)]. They are equipped with a range of sensors, including short-
range infra-red and/or ultra-sound proximity and ranging sensors that allow the
robots to sense the presence, direction and range of obstacles and other robots close
by. Importantly, robots can sense and track the movements of other robots nearby
(albeit imperfectly because of their limited sensors); thus robots have the physical
means for imitation. They have multi-coloured programmable lights (LEDs), and
simple cameras; microphones and speakers. We have a wide range of options for
robot-robot interaction. Robots can signal to each other with movement, light, or
sound, one-to-one or one-to-many, and with or without active consent (i.e. one
robot can eavesdrop on the communication between two others). The robots are
not equipped with manipulators (grippers), thus the only way they can physically
act upon the world is with their own bodies (i.e. by pushing light objects, or co-
operating with other robots to push heavier objects).

The artificial culture lab is fully instrumented. A tracking system allows the
movements of all robots to be captured and recorded for analysis and interpreta-
tion. Wireless communication with each robot allows data logging, allowing the
emerging behaviours to be captured for analysis. Webcams provide video cap-
ture for analysis, and importantly video for project web-pages for open access to
support interpretation; for discussion of interpretation see [Winfield and Griffiths
(2010b)]. Fig. 12.9.(a) shows the artificial culture lab in the Bristol Robotics Lab
(BRL); Fig. 12.9.(b) shows one of the e-puck robots fitted with Linux extension
board and tracking ‘hat’ [Liu and Winfield (2010b)].

(@) (b)

Figure 12.9. (a) Artificial culture lab showing 6 robots in the arena; (b) An e-puck with Linux board
fitted in between the e-puck motherboard (lower) and the e-puck speaker board (upper). Note both
the red ‘skirt’ which allows one robot to see and track another with its camera, and the yellow ‘hat’
which provides a matrix of pins for the reflective spheres which allow the tracking system to identify
and track each robot.
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The use of real physical robots in an artificial ecosystem as described above,
rather than computer simulated agents, is central to the methodology proposed for
this project. The rationale is that real robots provide vastly more scope for emer-
gence in their interactions than simulated agents. The combination of imperfect
sensors; sensing errors that occur because of the distance between robots; multiple
robots sharing the same environment (i.e. occlusion of robots by each other) and
sharing the same communications modality (i.e. all talking at once); small differ-
ences between sensors and actuators (motors) which mean that the robots are not
all identical; real-world physics which means that each experimental run (even
with the same starting conditions) will quickly diverge into a new space of pos-
sibilities; noise in the environment and, unexpected non-fatal faults (i.e. a faulty
wheel which gives the robot a ‘limp”), we argue could not be created in simulation
(to do so each of the factors listed would have to be separately modelled, and those
models would inevitably lead to simplification thus chronically limiting the space
of possibilities). Even in the designed artificial environment we propose here, the
use of real physical robots provides vast scope for unexpected emergence. Thus,
we argue, behavioural artefacts that might be interpretable as artificial memes —
elements of an artificial proto-culture — will emerge for no other reason than that
they can.

12.5.3 Robot-robot Imitation of Movement

We are concerned here with the embodied imitation of behaviour, but ‘behaviour’
is too broad a term. Within embodied imitation we can identify at least three types
of imitation:

e imitation of actions only, i.e. one robot copying another’s sequence of move-
ments, sounds or lights;

e imitation of action and perception, i.e. one robot copying another’s interactions
with objects or other robots: we label this the ‘imitation of interaction’;

e imitation of goals, i.e. one robot copying the goals or intentions of another
using, perhaps, a completely different set of actions.

The third of these categories, the imitation of goals, is outside the scope of this
paper. Because it is the simplest we have firstimplemented the imitation of actions,
and specifically the imitation of movement. We now describe the imitation-of-
movement algorithm and experimental results obtained.

Before outlining the imitation algorithm we first need to describe the ba-
sic setup and some simplifying assumptions. In this approach one robot per-
forms a sequence of movements (the “teacher’) while another robot watches it (the
‘learner’) and then attempts to copy the observed sequence. The roles of teacher
and learner are not fixed but interchangeable and — since we are interested here in
propagation of imitated behaviours — robots alternate between teacher and learner
modes. When in teacher mode a robot is ready to perform a movement sequence
(i.e. ‘enact’ a meme) it will signal this by flashing its red LEDs. There is no hand-
shake between teacher and learner, so any robot(s) in learner mode that see the
red LED signal will start to observe the sequence, but if no robots see the signal
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then the teacher robot will go on to perform the sequence anyway. The learner
robot watches the teacher robot with its onboard camera and, in order to facili-
tate the recognition of the teacher robot and its movements, robots are fitted with
coloured skirts that contrast with the background (i.e. arena boundaries), as shown
in Fig.12.9.(b). Since robots have only one camera and hence monoscopic vision the
learner robot must judge the relative direction of movement and distance of the
teacher robot by tracking the position and size of the teacher’s coloured skirt in its
field of view, rotating if necessary to maintain the teacher in its field of view. Al-
though estimating relative size and position of the teacher robot is straightforward
image processing, it is error prone because of the relatively low resolution camera
(640x480) and the presence of other robots and, furthermore, the learner robot can-
not see the teacher robot’s turns — only infer them from changes in direction, thus
we simplify the correspondence problem by limiting movement sequences to be
composed of turns and straight line segments at a constant velocity.
The imitation of movement algorithm thus has three stages:

(1) while observing captured visual frames, for each frame estimate the relative
position of the teacher robot, storing these positions in a linked list;

(2) after the teacher’s sequence is complete, process the linked list using a regres-
sion line fitting approach to convert the estimated positions into straight line
segments;

(3) transform the straight line segments, and their intersections, into a sequence of
motor commands (moves and turns).

The imitation-of-movement algorithm outlined here does not have the sophis-
tication or complexity of the architectures outlined above in Sec. 12.5.1, although it
does clearly share a number of common elements. There are a number of reasons
for the relative simplicity of our approach. Firstly, we are here imitating move-
ment only and not interaction with objects, or other robots: thus the learner needs
only to deduce action sequences and not perception-action sequences. Secondly
our robots are homogeneous (similarly embodied), thus when the learner robot
transforms its estimate of the teacher robot’s movement trajectory into ego-centric
motor commands it can assume it has the same motion dynamics as the teacher
robot. Thirdly, we are interested primarily in meme propagation across the robot
collective, so our approach to imitation is only as complex as needed to create the
conditions for movement-meme evolution.

12.5.4 Experimental Results

Initial experimental trials have focussed on small numbers of robots, typically 2
or 4, in order that we can test and evaluate the performance of robot-robot social
learning by imitation before then scaling up to larger populations of robots. In this
subsection we first outline a quality-of-imitation metric, then describe and analyse
in detail two instances of robot-robot movement-imitation. Then we show how,
with 2 robots, it is possible to demonstrate open-ended memetic evolution.
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12.5.4.1 A Quality of Imitation Metric

In order to quantitatively assess the fidelity of imitation (i.e. similarity of learned
memes) we need to define a quality-of-imitation function, Q;. Since movement-
memes consist of a series of turn and straight line segments (vectors) we can com-
pare the similarity of two memes by separately estimating three quality indicators:
quality of angle (turn) imitation, quality of length imitation, and quality of seg-
ment imitation. The quality of angle imitation between original meme (O) and
learned meme (L) is calculated as follows:

Zm ‘afn — a%|
Lo
where a,, is the turn angle of move m. Here we determine the ratio of the sum of
angle differences between the moves of original and learned memes, to the total
turn angle of the moves of the original meme. If original and learned memes have a
different number of segments, N© and N respectively, then we sum only over the
number of segments in the smaller: min(N%, N©). A value of 1 indicates perfect
fidelity imitation. The quality of length imitation similarly calculates the length

errors between original and learned memes:

Lol
where [;;; is the length of move m. Again a value of 1 indicates perfect fidelity im-
itation. The quality of segment imitation simply considers the difference between
the number of segments (vectors) between original and learned memes:

Qi=1- (12.2)

Q=1- (12.3)

_INL-NO)

Qs =1 N (12.4)

where N and N© are the number of segments of learned and original memes,
respectively. We now calculate the weighted sum of the three quality indicators, to
arrive at a composite overall quality-of-imitation score:

Qi = AQu+LQ; + 5Qs (12.5)

where A, L and S are weighting coefficients, and A + L + S = 1. In the results
given here we give equal weighting, thus A = L = 5§ = 0.33.

12.5.4.2 Robot-robot Imitation with Variation

Figure 12.10. shows two examples of embodied social learning, of movement, by
imitation. Each of the three subfigures in Fig. 12.10. plots tracking data recorded,
from the experimental infrastructure described in Sec. 12.5.2.1, when an epuck
robot enacts a single movement sequence. Here epuck 9 has been initialised with
a sequence of three turns and moves that describe an equilateral triangle, with 15
cm sides, and Fig. 12.10.(a) shows epuck 9 enacting the triangle. In this trial epuck
12 watched epuck 9 enact the triangle and, using the procedure outlined above,
attempted to learn the movement sequence, by embodied imitation; the result is
shown in Fig. 12.10.(b) and it is immediately clear that this is a poor-fidelity copy.
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Figure 12.10. (a) Meme 1: initial movement meme enacted by epuck 9. (b) Meme 2: imitation of meme
1 by epuck 12, Q; = 0.47. (c) Meme 3: imitation of meme 2 by epuck 9, Q; = 0.94. Units of x and y axes
are 0.1 mm.

Although the copy clearly retains characteristics of the original triangle two addi-
tional short segments have been inserted, one at the start, followed by a u-turn,
and another at the top apex of the triangle. Given these two additional segments it
is not surprising that our quality of imitation score is poor: Q; = 0.47. The quality
of length imitation is much higher: Q; = 0.75.

In this trial epuck 9 then watched Meme 2, enacted by epuck 12, and attempted
to learn it, thus Fig. 12.10.(c) is an imitation of Fig. 12.10.(b). In contrast with the
poor fidelity Meme 1 — Meme 2 imitation, we see that Meme 2 — Meme 3 imi-
tation is much higher fidelity. Meme 3 is of course rotated with respect to Meme
2, but that is exactly what we would expect. Meme 3 retains the rather complex
five segment structure of Meme 2, and gives a very high quality of imitation score
of Q; = 0.94; epuck 9 has certainly learned the complex ‘dance’ of epuck 12. We
have thus demonstrated both robot-robot social learning, by imitation, and shown
that we obtain variation in socially learned behaviours ‘for free’ as a consequence
of embodiment.

12.5.4.3 Open-ended Memetic Evolution

An evolutionary process requires variation, selection and inheritance. We already
have, as demonstrated above, variable degrees of both variation and inheritance;
embodied and noisy sensors together with environmental noise lead to variation
and, depending on the fidelity of imitation, we also see that copied memes may in-
herit characteristics of the original meme. Selection we cannot get ‘for free’ (except
in the trivial sense that our robots might simply imitate any robot that happens to
come into view). Let us now arrange that our robots memorise each meme they
observe and learn, regardless of the fidelity of the learned memes. During an ex-
perimental run each robot’s memory (imeme'? list) will grow, and each time it is
that robot’s turn to enact a meme it will need to select one from its memory. In
this scheme there is no need for a robot to compute the similarity between learned
memes and robots therefore do not ‘recognise’ previously seen memes.

There are clearly many ways in which we could select which meme to enact.
We could, for instance, select on some feature of the stored memes with a fitness
function that favours say memes with a given number of moves, or turn angles less

13Here we use the word imeme as shorthand for ‘internal representation of a meme’
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than a given value (for smoother, less angular ‘dances’), or smaller or larger move
lengths. However, in initial trials we have sought a selection operator that requires
no fitness function in order that we do not constrain the direction of memetic evo-
lution; to achieve — in other words — open-ended memetic evolution. This is of
particular interest because we want to see whether the robots” sensors and mor-
phology (body shape, sensor placement and motors) might influence the direction
of memetic evolution. We report here trials with one such selection operator: select,
from the imeme list, at random, with equal probability.

11
g o : # 12 ppuckl 2
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Figure 12.11. Trajectory plot: two robot movement-meme evolution in which all observed memes are
stored and meme selection is random, with equal probability. The experiment starts with epuck 9 (left)
in teacher mode, following a movement trajectory that describes a triangle with sides of 15 cm.

Figure 12.11. plots the position data captured during a two robot experiment in
which each robot alternates between teacher-mode and learner-mode. Each robot
learns and stores the meme enacted by the other, but then — when in teacher-mode
— chooses which meme to enact using the equal-weighting random-selection oper-
ator. For clarity each movement sequence is shown here in a different colour, and
labelled with the order in which the movement-memes were enacted by the two
robots. In this run each robots memory is initialised with one imeme: a pattern of
movements that describe an equilateral triangle with sides of 15 cm, and epuck 9
is initially in teacher mode.

We now apply the graphical meme-tracking approach proposed in [Winfield
and Griffiths (2010b)], in order to trace the evolution of memes in the experiment
of Fig. 12.11.. Inspection of Fig. 12.11. shows that a ‘figure of eight’ meme appears
to dominate, and the meme evolution diagram in Fig. 12.12. explains why.

Figure 12.12. shows the evolution and heredity of memes in the two robot ex-
perimental trial of Fig. 12.11.. It does not identify robots, but instead traces the
evolution of memes — something which is not obvious from the trajectory plot
of Fig. 12.11. and requires deeper analysis of experimental logs to determine, for
each selected and enacted imeme, which original (parent) meme it is a learned
copy of. Thus, each horizontal grey line in Fig. 12.12. represents a timeline for each
single imeme. When that imeme is selected and enacted there are two possibili-
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Figure 12.12. A visualisation of meme evolution within the (two) robot collective. At the start of the
period just one movement-meme (triangle) is present; horizontal lines represent the ‘life course’ of each
meme from left to right. Events (enaction only or enaction and imitation) are labelled with numbers,
in blue, which correspond with memes in Fig. 12.11.. Enaction and imitation events (blue arrows) are
labelled with the quality-of-imitation score.

ties: one is that the enaction was not, at any time during the experimental trial,
imitated (i.e. learned and enacted) — these are shown as crosses (and labelled in
the key ‘enaction only’). The other possibility is that the enaction was imitated
during the experimental trail — these are shown as blue arrows (and labelled in
the key ‘enaction and imitation’). The enaction only events (crosses) are labelled
with the meme-enaction number in trajectory plot Fig. 12.11.; the enaction and im-
itation events (blue arrows) are labelled with originating (parent) meme-enaction
number, and learned meme-enaction number from Fig. 12.11.. Each enaction and
imitation event is also labelled with the quality-of-imitation score Q;. Note that
each enaction and imitation event results in a new imeme timeline which contin-
ues throughout the trial. This reflects the fact that our robots, in this experiment,
have unlimited imeme memories. If we instead had either a mechanism for robots
‘forgetting” imemes (according to some criteria) or robots themselves ‘dying’, then
some imeme timelines would terminate.

Thus we see, in Fig. 12.12., that Meme 2 is a poor-fidelity copy of Meme 1 (0.47)
— the first ‘figure of eight’ movement pattern. Significantly, Meme 3 happens to be a
high-fidelity copy of Meme 2 (0.94), and furthermore there are no further enaction
and imitation events originating from Meme 1 — just two enaction only events: 5
and 10. Thus, all second and later generation memes have, as an ancestor, Meme
2. This fact, together with the high-fidelity copy of Meme 8 — Meme 13 (0.96)
means that Memes 2,3,4,8 and 13 are all either the same or very closely related and
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we label these Meme group A. Consider now imitation event Meme 3 — Meme 6,
which appears to be relatively poor quality (0.55). However inspection shows that
Meme 6, which has four segments, has lost the initial short segment of Meme 3; if
we ignore the first segment of Meme 3 and re-calculate Q; for Meme 3 — Meme
6, we obtain 0.91 — which more closely reflects the subjective similarity of Memes
3 and 6. By chance imitation event Meme 6 — Meme 7 has inserted a new short
segment so that Meme 7 returns to five segments and, by similarly ignoring the
new segment in Meme 7 and re-calculating Q;, we obtain 0.88. Thus we see that
Meme group B is both quantitatively and subjectively similar to Meme group A,
with strongly inherited characteristics retained across five generations of meme: 2
to 12. We now understand why the emergent figure of eight movement pattern
has become dominant.

Of course this particular meme evolution is highly contingent. The emergence
of the same kind (‘species’) of dominant ‘figure of eight’ movement memes is most
unlikely to happen again (and indeed, in repeat trials, has not). But this is exactly
what one would expect of an embodied evolutionary process. Perhaps what is sur-
prising is that in an open-ended evolutionary system one kind of meme becomes
dominant (at least in this particular trial) — but this is simply explained by the fact
that if there is a group of closely related memes in the robots” memories (because
of high-fidelity learning) then our equal probability random selection operator is
more likely to select one of these. Note also just how important the initial few
imitation events are to the later evolution of the system; the happenstance initial
sequence of a poor-fidelity imitation event followed by a high-fidelity imitation
event strongly (although not completely) determined the later evolutionary course
of our trial system. Again this is strongly characteristic of an evolutionary system.

12.5.5 Discussion and Further Work

This section has presented a case-study in artificial social learning. The project
that this case study draws upon is, at the time of writing, ongoing and it would
be premature to draw any general conclusions with regard to the overall project
aims of illuminating the processes and mechanisms for the emergence of artifi-
cial traditions across a robot collective. However, initial experimental trials have
demonstrated robot-robot social learning, by imitation, and shown that embodi-
ment gives rise to variation in socially learned behaviours. With the addition of a
simple selection operator we have demonstrated promising open-ended memetic
evolution, with just two robots, in which a new behavioural ‘meme’ can emerge
and become dominant (albeit over a short experimental trial), in a “population” of
memes.

The case study described here demonstrates an adaptive system in three differ-
ent respects. Firstly, because individual robots are able to adapt their behavioural
repertoire, by social learning. Secondly, because the whole population evolves and
therefore, in a sense, self-adapts its social environment. And thirdly, the selection
operator could be designed to adapt the robots socially learned behaviours in a
desired direction.

Further work will:
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o run longer trials with larger groups of robots to investigate the dynamics, over
time, of dominant meme-groups and convergent evolution;

o explore the relationship between embodiment, including sensor characteristics
and robot morphology, and the quality of imitation, and address questions
relating to the stability of meme transmission;

e extend the imitation algorithm to implement the imitation of interaction so
that interactions between robots can be imitated and propagated across the
collective, with richer ‘social learning’;

o further explore the mechanisms of meme selection together with environmen-
tal variation, in order to model the spatial and temporal dynamics of meme
propagation across the robot collective and the possibility of the emergence of
artificial traditions.

12.6 Conclusion

We began the chapter by introducing a framework for adaptation in population-
based adaptive systems (PAS), positioning and relating evolution, individual and
social learning.

The chapter showed examples of each type of evolutionary mechanism as im-
plemented in the NEw TiES platform as well as an example of how social learning
can be achieved through imitation among robots.

All this serves to illustrate that there are many ways to set up adaptive be-
haviour in a PAS, be it individually or collectively. The experiments in this chapter
show that evolution, individual and social learning all provide powerful mecha-
nisms for initiating and spreading adaptation. Combining mechanisms may fur-
ther enhance the population’s performance, as indicated by the experiment in
Sec. 12.4. There, we saw that social learning can provide an excellent method
to share individually acquired adaptations among the population, allowing the
whole population to benefit from an individual’s experience and preventing valu-
able knowledge from being lost when an individual -be it a software agent or a
robot- ceases to function.

We saw that social learning can constitute (part of) an evolutionary adaptive
system. The ‘telepathic’ version described in Sec. 12.4 can co-operate with indi-
vidual learning; individual learning provides variation, while social learning im-
plements recombination. Selection is done environmentally (poorly adapted indi-
viduals disappear) and/or in social learning. The embodied imitation case study
of 12.5 illustrated that (slightly) inaccurate copying of behaviour, together with se-
lection of which behaviour to enact, combine to make a full-fledged evolutionary
process.

Indiscriminate combination of adaptive mechanisms, however, carries a dan-
ger: it may lead to the emergence of unwanted interactions as shown in Sec. 12.3.
There, we saw that individual learning can counteract as well as promote evolution
depending on the rewards the learning is based on: a case in point that illustrates
how the goals of the adaptation mechanisms have to be in tune with each other.
Therefore, careful consideration should be given to the interactions between the
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adaptive mechanisms when designing a PAS: one cannot simply design the mech-
anisms in splendid isolation.

Investigating these interactions, then, is one of the challenges that future PAS
research will have to address to understand how adaptive mechanisms can be
combined to enable truly autonomous robots, robots that can indeed learn control
without human supervision.
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