
Formalizing Group Blind Signatures and Practical Constructions
without Random Oracles

E. Ghadafi

Dept. Computer Science,
University of Bristol,

United Kingdom.
ghadafi@cs.bris.ac.uk

Abstract. Group blind signatures combine anonymity properties of both group signatures and blind
signatures and offer privacy for both the message to be signed and the signer. Their applications include
multi-authority e-voting and distributed e-cash systems.
The primitive has been introduced with only informal definitions for its required security properties.
We offer two main contributions: first, we provide foundations for the primitive where we present
formal security definitions offering various flavors of anonymity relevant to this setting. In the process,
we identify and address some subtle issues which were not considered by previous constructions and
(informal) security definitions.
Our second main contribution is a generic construction that yields practical schemes with round-optimal
signing and constant-size signatures. Our constructions permit dynamic and concurrent enrollment of
new members, satisfy strong security requirements, and do not rely on random oracles.
In addition, we introduce some new building blocks which may be of independent interest.

Keywords: Group Signatures, Blind Signatures, Group Blind Signatures, Standard Model.

1 Introduction

Background. Traditional group signatures, introduced by Chaum and van Heyst [19], allow a member of a
group to sign a message anonymously on behalf of the group while ensuring that a recipient of the signature
cannot identify the group member who signed the message. However, there exists an entity called the Opener
who possesses a special key that allows him to revoke anonymity and reveal the identity of the signer in the
case of a dispute. A Blind Signature (BS), introduced by Chaum [18], allows a user to obtain a signature
on a hidden message without the signer learning the message in question. The security of a blind signature
scheme [34, 44] requires that the user is unable to fake new signatures for new messages (unforgeability) and
that the signer does not learn the message he is signing nor be able to link a signature to the protocol run
where it was obtained (blindness). A Group Blind Signature (GBS), introduced by Lysyanskaya and Zulfikar
[37], combines the properties of both a group signature scheme and a blind signature scheme and therefore
it maintains the anonymity of the signer as well as the message to be signed.

Group blind signatures are useful for many applications such as distributed e-cash systems where, for
instance, it is required that a digital coin neither reveals the identity of its holder nor that of the issuing
bank/branch. Another example is in a multi-authority e-voting system where it is required that the vote is
certified by a governing authority without revealing either the actual value of the vote or the identity of the
certifying authority/branch.
Motivation. Currently there is no formally defined security model for the primitive and hence it is important
to provide formal security definitions that include the details of all the security experiments needed to capture
the required security properties. Providing such a model would allow for proving the security of constructions
formally and more rigorously. Some of the previous constructions assumed that the exact security definitions
of group signatures directly translate into this setting. However, such an assumption is erroneous due to the
signing protocol in this case being blind which is different from the group signature case where the message

is public. For instance, one needs to ensure the existence of some mechanism to prevent the adversary from
breaking anonymity by outputting a message-signature pair different from the one it got from interacting
with the challenge oracle as we discuss later in the definition of the anonymity property. Also, the blindness
definition should capture the case that different group members might collude to break blindness which is
again different from the blind signature case where there is only one signer and signatures cannot be traced.

In addition, existing constructions [37, 41] require random oracles [8] and involve many rounds of interac-
tion in the signing phase (some relying on interactive divertible proofs of knowledge [10]) and hence requiring
that the signing authority remains online throughout the signing process. The schemes we propose have a
round-optimal signing phase and their security does not require any idealized assumptions. Therefore, they
are more suitable for practical applications.
Related Work. The concept of group blind signatures was first introduced by Lysyanskaya and Zulfikar
[37], where it was mainly used to design a distributed e-cash system in which digital coins could be issued
by different banks. While there exist a number of group signature schemes, e.g. [16, 7, 13, 4, 14, 31], only a
few group blind signature schemes exist in the literature [37, 41].

The subtlety one faces when designing group blind signatures lies in the dual privacy requirement. On
the one hand, the signer needs to hide his identity and parts of the signature that could identify him (i.e.
anonymity of the signer requirement). On the other hand, the user wants to hide the message and parts
of the signature which could lead to a linkage between a signature and its sign request (i.e. the blindness
requirement). The schemes in [37] are based on variants of the Camenisch-Stadler group signature [16] and
their security requires random oracles. Other schemes, e.g. [41], use divertible zero-knowledge proofs [10, 42]
to realize those conflicting anonymity requirements. A divertible proof allows a mediator to use a proof it
got from a party to prove a statement to a third party. Constructions that rely on such proofs require many
rounds of interaction in the signing protocol and/or the Fiat-Shamir transformation [21] to eliminate the
interaction and hence lying in the random oracle model.
Our Contribution. Our first contribution is the formalization of the security requirements for the primitive.
In the process, we identify and address some subtle issues which arise when defining the different security
notions.

Our second contribution is a generic construction which yields practical schemes in the standard model.
We provide two example instantiations of the construction, the first of which is solely based on non-interactive
complexity assumptions that are falsifiable [39]. The second instantiation is more efficient but makes use of
an interactive assumption. All our constructions are round-optimal, yield constant-size signatures, and allow
for members of the group to join dynamically and concurrently. Moreover, their security is proven in the
standard model. We start by showing how to construct CPA-anonymous schemes and then outline how they
can be extended to provide full anonymity. We also provide a proof of security for our constructions.
Paper Organization. The rest of the paper is organized as follows: In Section 2, we give some preliminary
definitions. In Section 3, we define dynamic group blind signatures. We present the security model for dynamic
group blind signatures in Section 4. We present the building blocks we use in Section 5. In Section 6, we
present our constructions and provide a proof of their security. In Section 7, we outline how we can achieve
full anonymity as well as other instantiations. Finally, we conclude the paper in Section 8.

2 Preliminary Definitions

Notation. We say that a function ν(.) : N → R+ is negligible in c if for every polynomial p(.) and all
sufficiently large values of c, it holds that ν(c) < 1

p(c) . Given a probability distribution S, we denote by
y ← S the operation of selecting an element according to S. If A is a probabilistic machine, we denote by
A(x1, . . . , xn) the output distribution of A on inputs (x1, . . . , xn). By PPT we mean running in probabilistic
polynomial time in the relevant security parameter. By [1, n], we mean the set {1, 2, . . . , n}. We denote by
〈A,B〉 an interactive protocol involving algorithms A and B. Occasionally we will use the notation 〈A,B〉i
for i ∈ N denoting the number of times such an interactive protocol is allowed to take place. If i = ∗, such
an interaction can be invoked unlimited number of times. For a matrix M , MT denotes its transpose.

2

2.1 Bilinear Groups

Bilinear groups are a set of three groups G1, G2 and GT , of prime order p, along with a bilinear map (a
deterministic function) ê. We will use multiplicative notation for all the groups although usually G1 and G2

are chosen to be additive groups. We let G× := G\{1G} and write G1 := 〈G1〉,G2 := 〈G2〉, for two explicitly
given generators G1 and G2.

We define P := (p,G1,G2,GT , ê, G1, G2) to be the set of pairing group parameters. The function ê must
be bilinear where ∀Q1 ∈ G1, ∀Q2 ∈ G2, ∀x, y ∈ Zp, we have ê(Qx1 , Q

y
2) = ê(Q1, Q2)xy. We also require

that the value ê(G1, G2) generates GT and that the function ê is efficiently computable. Following [25], we
categorize pairings into three distinct types (other types are possible, but the following three are the main
ones utilized in practical protocols).

– Type-1: This is the symmetric pairing setting in which G1 = G2.
– Type-2: Here G1 6= G2, but there is an efficiently computable isomorphism ψ : G2 −→ G1.
– Type-3: Again G1 6= G2, but now there is no known efficiently computable isomorphism.

In the remainder of the paper, we will assume that all three groups are cyclic and that there is an algorithm
BGrpSetup which takes as input a security parameter λ and produces a description of bilinear groups P.

2.2 Complexity Assumptions

Definition 1. Symmetric External Diffie-Hellman (SXDH) Assumption: In Type-3 pairings, the
Decisional Diffie-Hellman (DDH) problem is believed to be hard in both groups G1 and G2.

To present the next assumption, we define the subgroup Ĝ of G1 ×G2 as the image of the map

γ :
{

Zp −→ G1 ×G2

x 7−→ (Gx1 , G
x
2)

Note that if we are given an element (A,B) ∈ G1×G2 we can efficiently test whether (A,B) ∈ Ĝ by testing
whether ê(A,G2) = ê(G1, B). The following new assumption is a variant of the standard LRSW assumption
[36]. It is similar to a number of blind-variants of the LRSW assumption, in that the adversary has an
oracle for group elements and outputs “signatures” on group elements as opposed to elements in Zp [20]. In
addition, we assume that the elements being “signed” are in Ĝ, as opposed to either G1 or G2. Apart from
this latter change, the assumption is similar to prior blind-LRSW assumptions [29, 20].

Definition 2 (Dual Hidden-LRSW (DH-LRSW) Assumption). Consider the following experiment.
A challenger picks x, y ∈ Zp and then computes X := Gx2 , Y := Gy2. The tuple (X,Y) is given to an adversary
A which has access to an oracle OX,Y (·). The oracle on input (M1,M2) ∈ G1 ×G2, outputs

– The symbol ⊥ if (M1,M2) /∈ Ĝ.
– Otherwise it outputs a tuple (A,B,C,D) := (Ga1 , G

ay
1 ,May

1 , Gax1 ·M
axy
1) where a← Z∗p.

We let Q denote the set of queries (M1,M2) passed to the oracle OX,Y (·). The adversary eventually terminates
by outputing a tuple (M∗1 ,M

∗
2 , A

∗, B∗, C∗, D∗). We say the output of BGrpSetup satisfies the DH-LRSW
assumption if all PPT adversaries A have a negligible advantage AdvDH-LRSW

A (λ) in the above game, where
the advantage is defined as follows:

AdvDH-LRSW
A (λ) := Pr


(p,G1,G2,GT , ê, G1, G2)← BGrpSetup(1λ);x, y ← Zp;X := Gx2 ;Y := Gy2;
(M∗1 ,M

∗
2 , A

∗, B∗, C∗, D∗)← AOX,Y (·)(p,G1,G2,GT , ê, G1, G2, X, Y) :
∃a ∈ Z∗p s.t. (M∗1 ,M

∗
2) ∈ Ĝ \ Q ∧ A∗ = Ga1 ∧ B∗ = Gay1 ∧ C∗ = M∗1

ay

∧ D∗ = Gax1 ·M∗1
axy

 .

3

Note that the output from the oracle can be checked to be valid by checking whether

ê(A, Y) = ê(B,G2)
ê(B,M2) = ê(C,G2)
ê(D,G2) = ê(A · C,X).

Also, note that only the M1 component of the pair of values (M1,M2) used as input to the oracle are
actually used. However, the fact that the oracle returns ⊥ if (M1,M2) 6∈ Ĝ is crucial to our security proof in
the generic group model, since it implies that the adversary learns nothing if he cannot produce the pair in
Ĝ; which intuitively implies that he “knows” the preimage of the pair under the map γ. Likewise the output
from the adversary must be a pair (M∗1 ,M

∗
2) ∈ Ĝ for a similar reason.

To justify the hardness of this assumption, we prove it holds in the generic group model [50, 38] in
Appendix C.

Definition 3 (AWFCDH Assumption). This assumption was introduced in [23]. We describe this as-
sumption in asymmetric bilinear groups. Given (G1, G

a
1 , G2) ∈ G×1

2 ×G×2 for a← Zp, it is computationally
infeasible to output a tuple (Gb1, G

ab
1 , G

b
2, G

ab
2) ∈ G×1

2 ×G×2
2

for an arbitrary b ∈ Zp.

The next assumption was introduced in [23] and is a variant of the q-SDH assumption [12].

Definition 4 (q-ADHSDH Assumption). We describe this assumption in asymmetric bilinear groups.
Given (G1, F,K,G

x
1 , G2, G

x
2) ∈ G×1

4 × G×2
2

for x ← Zp, and q − 1 tuples (Ai := (K · Gri1)
1

x+ci , C1,i :=
F ci , C2,i := Gci2 , R1,i := Gri1 , R2,i := Gri2)q−1

i=1 , where ci, ri ← Zp, it is computationally infeasible to output a
new tuple (A∗, C∗1 , C

∗
2 , R

∗
1, R

∗
2) of this form.

3 Defining Dynamic Group Blind Signatures

The parties involved in a group blind signature are: an authority called the Issuer who controls who can join
the group, an authority called the Opener who can revoke the anonymity of the signer by opening signatures
and revealing who signed them. A number of signers Signeri each of which has a unique identity and can sign
on behalf of the group once they have joined the group. External users Useri which can ask for messages to
be blindly signed by members of the group. In our definition, we do not require that users (i.e. entities who
request signatures) are traceable (unless the identifying information is embedded in the messages themselves)
and thus we do not assign keys to them. However, the model can be extended to provide this functionality.
A group blind signature scheme GBS is a tuple of polynomial-time algorithms

GBS := (GKg,SKg, 〈Join, Issue〉, 〈Obtain,Sign〉,GVf,Open, Judge),

which are defined as follows:

– GKg: Is run by some trusted third party (TTP) which takes as input a security parameter λ ∈ N and
generates the group public key gpk, the Issuer’s key ik and the Opener’s key ok. The secret keys ik and ok
are then securely transmitted to the respective authorities.

– SKg: Is run by a potential group member Signeri, to generate his pair of personal secret/public keys
(ssk[i], spk[i]) prior to requesting to join the group. We assume that the public key table spk is publicly
accessible (possibly via some PKI).

– 〈Join(gpk, i, ssk[i]), Issue(ik, i, spk[i])〉: Is an interactive protocol between a signer Signeri and the Issuer.
After a successful completion of this protocol, Signeri becomes a member of the group. If successful, the
final state of the Issue algorithm is stored in the registration table at index i (i.e. reg[i]) while that of the
Join algorithm is stored in gsk[i]. We assume that the communication in this interactive protocol takes
place over a secure (i.e. private and authentic) channel. We also assume that the protocol is initiated by
a call to Join.

4

– 〈Obtain(gpk,m),Sign(gsk[i])〉: Is an interactive protocol between a user User and an anonymous member
of the group. If the protocol completes successfully, User obtains a blind signature Σ on the message m
without members of the group learning what the message was or the user learning which group member
produced the signature. If any of the parties abort, User outputs ⊥. This protocol is initiated by a call
to Obtain.

– GVf(gpk,m,Σ): Is a deterministic algorithm which takes as input the group public key gpk, a message m
and a group blind signature Σ and outputs 1 if Σ is a valid signature on the message m, or 0 otherwise.

– Open(gpk, ok, reg,m,Σ): Is a deterministic algorithm in which the Opener uses his key ok to identify the
identity i of the signer form the group blind signature Σ and produces a proof τ attesting to this claim.

– Judge(gpk, i, spk[i],m,Σ, τ): This is a deterministic algorithm which takes as input an index i and returns
1 if the group blind signature Σ was produced by the group member Signeri or 0 otherwise.

4 Security of Dynamic Group Blind Signatures

In defining the security model, we build on the security models used for group signatures [7, 9]. We assume that
the group manager is divided into two separate entities: the Issuer and the Opener. The security properties we
require from a dynamic group blind signature GBS are: correctness, anonymity, traceability, non-frameability,
and blindness.

The security of group blind signatures is formulated via a set of experiments in which the adversary has
access to a set of oracles. In those experiments, a set of global lists are maintained. The lists are: HSL is
a set of honest signers; CSL is a set of corrupt signers whose keys have been chosen by the adversary and
whose states have been learned by the adversary; BSL is a set of bad signers whose secret keys have been
revealed to the adversary; CLA is a set containing the identities of the challenge signers used when calling
the challenge oracle in the anonymity game; CLB is a list containing pairs of challenge message-signature in
the blindness game; a table reg where the element i in this table contains the registration information of
the group member Signeri; a table spk where spk[i] contains the personal public key of the group member
Signeri. The lists HSL, CSL, BSL, CLA and CLB are empty at initialization, whereas the entries of the tables
reg and spk are initialized to ε. The set of oracles the adversary has access to in the experiments are defined
as follows, the details are shown in Figure 1.

– AddS(i): The adversary can use this oracle to add an honest signer Signeri to the group.
– CrptS(i, pk): The adversary can use this oracle to create a new corrupt signer Signeri, where Signeri’s

public key spk[i] is chosen by the adversary. This oracle is usually called in preparation for calling the
SndToI oracle.

– SndToI(i,Min): The adversary can use this oracle to engage in the Join− Issue protocol with the honest,
Issue-executing Issuer.

– SndToS(i,Min): This oracle models the scenario that the adversary has corrupted the Issuer. The adver-
sary uses this oracle to engage in the Join− Issue protocol with an honest, Join-executing Signer.

– ReadReg(i): The adversary can call this oracle to obtain the content of entry reg[i].
– ModifyReg(i, val): The adversary can call this oracle to modify the content of entry reg[i] by setting

reg[i] = val.
– SSK(i): The adversary can call this oracle to obtain both the personal secret key ssk[i] and the group

signing key gsk[i] of group member Signeri.
– OSign(i): This is an interactive oracle (i.e. the adversary must engage in an interaction with this oracle).

After a successful interaction with this oracle, the adversary obtains a blind signature by group member
Signeri on a message of its choice.

– CHb(i0, i1): This oracle is a left-right oracle for defining anonymity and is only called once. The adversary
sends a couple of identities (i0, i1) and interacts with this oracle in order to produce a blind signature
on a message m by the group member Signerib for b← {0, 1}.

– Open(m,Σ): This oracle allows the adversary to ask for signatures to be opened by revealing the identity
of the group member who signed them.

We define the security properties as follows, where we use a set of experiments as shown in Figure 2 in
which the adversary has access to the previously defined oracles.

5

AddS(i):

– If i ∈ HSL ∪ CSL ∪ BSL Then Return ⊥.
– HSL := HSL ∪ {i}.
– (ssk[i], spk[i])← SKg(1λ).
– certi :=⊥, deciIssue := cont.
– StiJoin := (gpk, i, ssk[i]).
– StiIssue := (ik, i, spk[i]).
– (StiJoin,MIssue, deciJoin)← Join(StiJoin,⊥).
– While (deciIssue = cont and deciJoin = cont) Do
• (StiIssue,MJoin, deciIssue)← Issue(StiIssue,MIssue).
• (StiJoin,MIssue, deciJoin)← Join(StiJoin,MJoin).

– If deciIssue = accept Then reg[i] := StiIssue.
– If deciJoin = accept Then gsk[i] := StiJoin.
– Return spk[i].

ModifyReg(i, val):

– reg[i] := val.

SndToI(i,Min):

– If i 6∈ CSL ∪ BSL Then Return ⊥.
– If deciIssue 6= cont Then Return ⊥.
– If StiIssue is undefined Then
• StiIssue := (ik, i, spk[i]).

– (StiIssue,Mout, deciIssue)← Issue(StiIssue,Min).
– If deciIssue = accept Then reg[i] := StiIssue.
– Return (Mout, deciIssue).

SndToS(i,Min):

– If i ∈ CSL ∪ BSL Then Return ⊥.
– If i /∈ HSL Then
• HSL := HSL ∪ {i}.
• (ssk[i], spk[i])← SKg(1λ).
• gsk[i] := ε, Min := ε.

– If deciJoin 6= cont Then Return ⊥.
– If StiJoin is undefined Then
• StiJoin := (gpk, i, ssk[i]).

– (StiJoin,Mout, deciJoin)← Join(StiJoin,Min)
– If deciJoin = accept Then gsk[i] := StiJoin.
– Return (Mout, deciJoin).

CrptS(i, pk):

– If i ∈ HSL ∪ CSL ∪ BSL Then Return ⊥.
– CSL := CSL ∪ {i}.
– spk[i] := pk.
– StiIssue := (ik, i, spk[i]).
– deciIssue := cont.
– Return 1.

SSK(i):

– If i /∈ HSL \ {CSL ∪ BSL} Then Return ⊥.
– BSL := BSL ∪ {i}.
– Return (gsk[i], ssk[i]).

ReadReg(i):

– Return reg[i].

OSign(i):

– If i ∈ CSL ∪ BSL or gsk[i] = ε Then Return ⊥.
– Call Sign(gsk[i]).

CHb(i0, i1):

– If i0 /∈ HSL ∪ BSL or i1 /∈ HSL ∪ BSL Then Return
⊥.

– If gsk[i0] = ε or gsk[i1] = ε Then Return ⊥.
– CLA := CLA ∪ {i0, i1}.
– Call Sign(gsk[ib]).

Open(m,Σ):

– If GVf(gpk,m,Σ) = 0 Then Return (⊥,⊥).
– (id, τ)← Open(gpk, ok, reg,m,Σ).
– If game is Anonymity
• If id ∈ CLA Then Return (⊥,⊥).

– ElseIf game is Blindness
• If (m,Σ) ∈ CLB Then Return (⊥,⊥). 1

– Return (id, τ).

Fig. 1. Oracles used in the security experiments for dynamic group blind signatures

4.1 Correctness

A dynamic group blind signature scheme GBS is correct if: all correctly produced signatures are accepted by
the GVf algorithm, the Opener is always able to identify the honest group member who produced a signature
and the Judge algorithm always accepts the decision made by the Opener.

1 This condition assuming that the signing protocol is strongly unforgeable. If weak unforgeability is required then
this is replaced by the following check: If (m, ·) ∈ CLB Then Return (⊥,⊥).

6

More formally, a group blind signature scheme GBS is correct if for all λ ∈ N, all PPT adversaries A have
a negligible advantage AdvCorrGBS,A(λ) where the advantage is defined as follows:

AdvCorrGBS,A(λ) := Pr[ExpCorrGBS,A(λ) = 1].

4.2 Anonymity

A dynamic group blind signature scheme GBS is anonymous if the adversary is unable to tell which group
member produced a signature. We require that given two signers of its choice, the adversary cannot tell which
of the two signers produced a signature. We provide the adversary with strong capabilities, for instance, it
can fully corrupt the Issuer and can ask for signers’ personal secret keys/group signing keys to be revealed
including the two signers it chooses for the challenge which ensures security against full key exposure. The
only restriction we impose on the adversary is that it may not query the Open oracle on the signature it is
being challenged on.

As is the case with the definition of anonymity for group signatures, we distinguish between CPA-
anonymity and Full Anonymity (FA). In CPA-anonymity [13] (which is analogous to IND-CPA security for
public-key encryption schemes [28]), the adversary is not given access to an Open oracle that revokes the
anonymity of signatures by returning the identity of the group member who produced them.

On the contrary, in full anonymity [9] (which is analogous to IND-CCA2 security for public-key encryption
schemes [45]), the adversary can ask Open queries on any signature except the one it is being challenged on at
any stage of the game. One can also consider a weaker non-adaptive variant of full anonymity which we refer
to as Weaker Full Anonymity (WFA) (which is analogous to IND-CCA1 security for public-key encryption
schemes [40]) in which the adversary can only ask Open queries before it calls the challenge oracle.

The issue with defining full anonymity for group blind signatures is that the signing protocol is a blind one
and unlike in group signatures, the challenge message-signature pair is only revealed by the adversary (playing
the role of the user) at the end of the signing interaction with the CHb oracle. Therefore, it is problematic
to identify the signature the adversary obtained from interacting with the CHb oracle. An adversary can
trivially break anonymity by revealing a bogus message-signature pair different from the one it got from
interacting with the CHb oracle and then at a later stage asks the Open oracle to open the original challenge
signature. Note that the adversary’s knowledge of the secret keys of the challenge group members used in
calling the challenge oracle makes the adversary capable of signing on behalf of those members.
The First Attempt. To catch the adversary if it returns a bogus challenge signature, one could use the
Opener’s key known the challenger running the game. Assume that the adversary runs in 3 respective modes
(find, obtain, and guess). In the obtain phase, the adversary interacts with the challenge oracle but access
to the the Open oracle is disabled. At the end of the obtain phase, the adversary must either output the
challenge signature or opts not to. In the former case, the challenger opens the signature and verifies that
the signer indeed matches the one used by the CHb oracle. If the signer does not match the one used by
the CHb oracle, the game aborts. In the guess phase, the adversary is re-granted access to the Open oracle
providing that it is not queried on the challenge signature. If the adversary opts not to output the challenge
signature, access to the Open oracle remains disabled in the guess phase.

Although the above definition seems reasonable for strongly unforgeable signing protocols, unfortunately,
it might be problematic to use in practice. That is because the requirement that the returned signature is
compared against the signer used by the CHb oracle might be hard to fulfill in practice as usually in the
security proof one would be reducing an attack against anonymity to an attack against a property of another
primitive which might not permit such an operation.
The Definition. In the definition we propose (shown in Figure 2), if the adversary queries the Open oracle
on a signature that opens to a signer in the challenge list, the oracle returns a special symbol instead of
returning the identity of the signer. This restriction, which is similar to that used for IND-RCCA security
[17] for encryption schemes, ensures that the Open oracle does not open a challenge signature. In the game,

7

Experiment ExpCorrGBS,A(λ)

– (gpk, ik, ok)← GKg(1λ); HSL := ∅; CSL := ∅; BSL := ∅.
– (i,m)← A(gpk : AddS(·),ReadReg(·)).
– If i /∈ HSL or gsk[i] = ε Then Return 0.
– (Σ,⊥)← 〈Obtain(gpk,m),Sign(gsk[i])〉.
– If GVf(gpk,m,Σ) = 0 Then Return 1.
– (j, τ)← Open(gpk, ok, reg,m,Σ); If i 6= j Then Return 1.
– If Judge(gpk, i, spk[i],m,Σ, τ) 6= 1 Then Return 1 Else Return 0.

Experiment ExpAnon-b
GBS,A (λ)

– (gpk, ik, ok)← GKg(1λ); HSL := ∅; CSL := ∅; BSL := ∅; CLA := ∅.
– b∗ ← A〈·,CHb(·,·)〉1(gpk, ik : CrptS(·, ·),SndToS(·, ·),ModifyReg(·, ·),Open(·, ·),SSK(·)).
– Return b∗.

Experiment ExpTraceGBS,A(λ)

– (gpk, ik, ok)← GKg(1λ); HSL := ∅; CSL := ∅; BSL := ∅.
– (m,Σ)← A(gpk, ok : AddS(·),CrptS(·, ·),SndToI(·, ·),ReadReg(·),SSK(·)).
– If GVf(gpk,m,Σ) = 0 Then Return 0.
– (i, τ)← Open(gpk, ok, reg,m,Σ).
– If i = 0 or Judge(gpk, i, spk[i],m,Σ, τ) = 0 Then Return 1 Else Return 0.

Experiment ExpNon-Frame
GBS,A (λ)

– (gpk, ik, ok)← GKg(1λ); HSL := ∅; CSL := ∅; BSL := ∅.
– (id, {(mi, Σi)}l+1

i=1)← A〈·,OSign(·)〉∗ (gpk, ok, ik : CrptS(·, ·),SndToS(·, ·),ModifyReg(·, ·),SSK(·)).
– If id /∈ HSL \ BSL or gsk[id] = ε Then Return 0.
– If all of the following conditions are satisfied Then Return 1 Else Return 0:
• GVf(gpk,mj , Σj) = 1 for all j ∈ [1, l + 1].
• (idj , τj)← Open(gpk, ok, reg,mj , Σj); id = idj for all j ∈ [1, l + 1].
• Judge(gpk, idj , spk[idj],mj , Σj , τj) = 1 for all j ∈ [1, l + 1].
• A interacted with OSign(id) no more than l times.
• ∀i, j where 1 ≤ i, j ≤ l + 1, we have that if i 6= j then mi 6= mj .

Experiment ExpBlind-bGBS,A (λ)

– (gpk, ik, ok)← GKg(1λ); HSL := ∅; CSL := ∅; BSL := ∅; CLB := ∅.
– (m0,m1, statefind)← Afind(gpk, ik : CrptS(·, ·),SndToS(·, ·),ReadReg(·),SSK(·),Open(·, ·)).
– statesign ← A

〈Obtain(gpk,mb),·〉1,〈Obtain(gpk,m1−b),·〉1
sign (statefind).

– Let Σb and Σ1−b be the outputs of the honest Obtain algorithm after interactions on mb and m1−b,
respectively.
If Σ0 =⊥ or Σ1 =⊥ or GVf(gpk,mb, Σb) = 0 or GVf(gpk,m1−b, Σ1−b) = 0 Then (Σ0, Σ1) := (⊥,⊥)
Else CLB := CLB ∪ {(mb, Σb), (m1−b, Σ1−b)}.

– b∗ ← Aguess(statesign, Σ0, Σ1 : CrptS(·, ·),SndToS(·, ·),ReadReg(·),SSK(·),Open(·, ·)).
– Return b∗.

Fig. 2. Security experiments for dynamic group blind signatures

the adversary can corrupt the Issuer and ask for the secret keys of any signer including those it will use when
calling the challenge oracle thus capturing full key exposure attacks.

8

The definition is appropriate even for the case where the final signature is weakly unforgeable, i.e. given a
signature on a message, anyone can generate a new signature on the same message without knowledge of the
signing key. WLOG in order to simplify the resulting security proofs, we only allow the adversary a single
invocation of the challenge oracle. We show in Appendix A that this is sufficient by showing a reduction
from an adversary that invokes the challenge oracle polynomially many times to one which is allowed a single
invocation.

Our definition of anonymity also captures unlinkability of signatures. If an adversary can link signatures
by the same signer, it can break our notion of anonmity. Note that the adversary in our definition is allowed
to learn the secret keys of any group member including the challenge signers it uses in calling the CHb oracle.
Thus, it can produce signatures on behalf of any group member. Therefore, unlike [37], we do not define
unlinkability as a separate requirement.

Formally, a dynamic group blind signature scheme GBS is anonymous if for all λ ∈ N, all PPT adversaries
A have a negligible advantage AdvAnonGBS,A(λ) where the advantage is defined as follows:

AdvAnonGBS,A(λ) :=
∣∣∣Pr[ExpAnon−0

GBS,A (λ) = 1]− Pr[ExpAnon−1
GBS,A (λ) = 1]

∣∣∣ .
4.3 Traceability

A dynamic group blind signature scheme GBS is traceable if it is always the case that the Opener is able
to identify the signer when given a message/signature pair. Also, the honest Opener is able to produce a
proof for his claim that will be accepted by the Judge algorithm. Note that in the traceability experiment,
we require that the Issuer is honest because a dishonest Issuer will always be able to create dummy signers
whose signatures cannot be traced and for that reason the adversary in the traceability game is not given
the Issuer’s key. In addition, we require that the Opener is partially but not fully corrupt because a fully
corrupt Opener can simply refuse to open signatures.

Formally, a dynamic group blind signature scheme GBS is traceable if for all λ ∈ N, all PPT adversaries
A have a negligible advantage AdvTraceGBS,A(λ) where the advantage is defined as follows:

AdvTraceGBS,A(λ) := Pr[ExpTraceGBS,A(λ) = 1].

4.4 Non-Frameability

A dynamic group blind signature scheme GBS is non-frameable if it is impossible to prove that a particular
group member produced a signature unless this group member himself has indeed produced the signature.
To capture this, we use a similar definition to that used for the unforgeability of blind signatures [34, 44].
The adversary wins if it outputs l + 1 signatures on l + 1 distinct messages all signed by the same honest
group member but the adversary only asked for l signatures by that group member.

This requirement should hold even if both the Opener and the Issuer are fully corrupt and that is the
reason why we give A access to both ik and ok keys. Formally, a dynamic group blind signature scheme GBS
is non-frameable if for all λ ∈ N, all PPT adversaries A have a negligible advantage AdvNon−FrameGBS,A (λ) where
the advantage is defined as follows:

AdvNon−FrameGBS,A (λ) := Pr[ExpNon−FrameGBS,A (λ) = 1].

4.5 Blindness

A dynamic group blind signature scheme GBS is blind if the adversary is unable to tell which message it is
signing. Also, the adversary cannot link a signature to the protocol run via which it was obtained. In blind
signatures [34], blindness is defined via a game in which the adversary freely chooses two messages (and
possibly the signing/verification keys, e.g. [1]), and then after interacting with an honest Obtain oracle that
requests signatures on those two messages in an arbitrary order (unknown to the adversary), the adversary
wins if it correctly guesses the order in which the two messages were signed.

9

In the context of group blind signatures, things are a bit different as the group contains more than one
signer. To capture the case that group members (including the Issuer) might collude to break blindness,
the adversary is allowed to use different (possibly corrupt) keys in producing the challenge signatures.
This definition would then also imply the anonymity requirement, i.e. if a malicious signer from the group
can recognize a signature he has produced then he can trivially break blindness. Also, unlike [52] which
necessitates that the group must be static, we only require that both challenge signatures verify w.r.t. the
same group public key. Otherwise, the adversary can trivially break blindness.

In the definition (shown in Figure 2), we equip the adversary with strong capabilities such as corrupting
the Issuer as well as corrupting and/or learning the personal secret key/group signing key of any group
member. However, the adversary is denied access to the Opener’s key. Again, as was the case with the
anonymity definition, one can consider different variants where the adversary can ask open queries at the
different stages with the exception that it is not allowed to ask open queries on either of the two challenge
signatures. Otherwise, blindness can be trivially broken. In CPA-Blindness, the adversary is not granted
access to the Open oracle. On the other hand, in Full Blindness (FB), the adversary is granted access to the
Open oracle both before and after the challenge phase. When defining full blindness, if security is w.r.t. weak
unforgeability then the Open oracle returns a special symbol if the signature is on either challenge message.
On the other hand, when security is w.r.t. strong unforgeability, the restriction imposed on the the Open
oracle is that it may not open the signature if the message-signature pair matches either of the challenge
message-signature pairs.

We require that if either of the challenge interactions does not finish successfully (i.e. if either Σ0 =⊥ or
Σ1 =⊥), then the adversary is not informed about the other signature.

Formally, a dynamic group blind signature scheme GBS is blind if for all λ ∈ N, all PPT adversaries A
have a negligible advantage AdvBlindGBS,A(λ) where the advantage is defined as follows:

AdvBlindGBS,A(λ) :=
∣∣∣Pr[ExpBlind−0

GBS,A (λ) = 1]− Pr[ExpBlind−1
GBS,A (λ) = 1]

∣∣∣ .
Finally, we note that in [35] the authors used a different approach for capturing blindness in the context

of blind ring signatures (i.e. group blind signatures which have neither an opener nor an issuer). In their
definition, the adversary is required to only participate in one interaction to produce one challenge signature
on either of the two messages it has chosen (without the adversary knowing which message being signed).
The adversary then is asked to guess the message being signed relying only on the information it gathered
from the interaction, i.e. without knowledge of the resulting challenge signature. While it is clear that such
a game captures the requirement that a signer cannot learn the message it is signing, it is unclear how this
definition captures the requirement that a signer should also not be able to link signatures to the protocol
runs where they were obtained.

5 Tools Used

In this section, we present the building blocks we use in our constructions.

5.1 A New Structure-Preserving Signature Scheme

We introduce a new variant of the CL signature scheme [15] which we refer to as (NCL). It signs group elements
and it is structure-preserving [3]. The unforgeability of the new scheme is proven under the DH-LRSW
assumption. The scheme is given by the following triple of algorithms. Given the description of bilinear
groups P output by BGrpSetup(1λ).

– NCLKeyGen(P): Set skNCL := (x, y) ∈ Zp × Zp and pkNCL := (X,Y) := (Gx2 , G
y
2) ∈ G2

2.
– NCLSign(skNCL, (M1,M2)): To sign a message (M1,M2) ∈ G1 × G2, if ê(M1, G2) 6= ê(G1,M2) return
⊥. Otherwise, select a ← Z∗p, and set A := Ga1 , B := Ay, C := May

1 , D := Ax · Maxy
1 . Output

σ := (A,B,C,D) ∈ G4
1.

10

– NCLVerify(pkNCL, (M1,M2), σ): Output 1 iff A 6= 1G1 ∧ ê(A, Y) = ê(B,G2) ∧ ê(B,M2) = ê(C,G2)
∧ ê(D,G2) = ê(A · C,X) ∧ ê(G1,M2) = ê(M1, G2).

Theorem 1. Assuming the DH-LRSW assumption holds, the NCL signature scheme is existentially unforge-
able against adaptive chosen-message attacks.

Proof. It is straightforward to see that the unforgeability of the signature scheme reduces to breaking the
DH-LRSW assumption.

5.2 Groth-Sahai(GS) Proofs

In [32, 33] Groth and Sahai presented a way to construct non-interactive witness-indistinguishable and zero-
knowledge proofs in the CRS model. Groth-Sahai proofs can be instantiated under different security assump-
tions but since as noted by [27] the most efficient Groth-Sahai proofs are those instantiated under the SXDH
assumption, we will be focusing on this instantiation. The equations one can prove with the GS proof system
are as follows where in the description X1, . . . , Xm ∈ G1, Y1, . . . , Yn ∈ G2, x1, . . . , xm, y1, . . . , yn ∈ Zp are
the secret variables (hence underlined) and Ai, T1 ∈ G1, Bi, T2 ∈ G2, ai, bi, γi,j , t ∈ Zp, tT ∈ GT are public
constants.

– Pairing Product Equation (PPE):

n∏
i=1

ê(Ai, Yi) ·
m∏
i=1

ê(Xi, Bi) ·
m∏
i=1

n∏
j=1

ê(Xi, Yj)γi,j = tT . (1)

– Multi-Scalar Multiplication Equation in G1 (MSME1):

n∏
i=1

A
yi
i

m∏
i=1

Xi
bi

m∏
i=1

n∏
j=1

Xi
γi,j ·yj = T1. (2)

– Multi-Scalar Multiplication Equation in G2 (MSME2):

n∏
i=1

Yi
ai

m∏
i=1

B
xi
i

m∏
i=1

n∏
j=1

Yi
γi,j ·xj = T2. (3)

– Quadratic Equation (QE) in Zp:

n∑
i=1

ai · yi +
m∑
i=1

xi · bi +
m∑
i=1

n∑
j=1

γi,j · xi · yj = t. (4)

The proof system can be instantiated in two settings: the binding setting which yields perfectly sound
proofs and the hiding setting which yields perfectly witness indistinguishable/perfectly zero-knowledge
proofs. The proof system consists of the algorithms

GS := (GSSetup,GSProve,GSVerify,GSExtract,GSSimSetup,GSSimProve).

GSSetup takes as input the description of bilinear groups P and outputs a binding reference string crs and
a trapdoor information xk which allows for witness extraction. GSProve takes as input a set of equations,
the string crs and a witness and produces a proof Ψ for the satisfiability of the equations. For clarity, we
will underline the elements of the witness to distinguish them from public constants. GSVerify takes as input
a set of equations, a CRS, a proof Ψ and outputs 1 if the proof is valid or 0 otherwise. In the rest of the
paper we will omit the set of equations from the input to the GSVerify algorithm. GSExtract takes as input a
binding reference string crs, a valid proof Ψ and the extraction key xk and outputs the witness used in the
proof. GSSimSetup takes as input the description of bilinear groups P and outputs a simulated string, crssim,

11

and a trapdoor key tr that allows to simulate proofs. GSSimProve takes as input a simulated CRS, crssim,
and the simulation key tr and produces a simulated proof Ψsim. The security of the proof system requires
that strings crs and crssim are indistinguishable and that simulated proofs are indistinguishable from proofs
generated by an honest prover.

The proof system has the following properties:

– Prefect Completeness: On a correctly generated CRS, crs, and a valid proof Ψ , the algorithm GSVerify
always accepts the proof.

– Perfect Soundness: On a correctly generated CRS, crs, it is impossible to generate a proof unless the
equations are satisfiable (i.e. unless the prover knows a witness).

– Composable Witness-Indistinguishability: The CRS crs output by GSSetup is computationally
indistinguishable from the CRS crssim output by GSSimSetup. We also have for any PPT adversary A
that is given crssim and is allowed to choose any statement y and two distinct witnesses w0 and w1 for
the statement y that

Pr
[
b← {0, 1};Ψ ← GSProve(crssim, wb, y); b′ ← A(Ψ)
: b = b′ ∧ (w0, y) ∈ R ∧ (w1, y) ∈ R

]
=

1
2

+ ν(λ).

– Composable Zero-Knowledge: Again, the CRS crs output by GSSetup is computationally indistin-
guishable from the CRS crssim output by GSSimSetup. Moreover, we have for any PPT adversary A
that

Pr
[

(crssim, tr)← GSSimSetup(P); (w, y)← A(crssim, tr);
Ψ ← GSProve(crssim, w, y) : A(Ψ) = 1

]
= Pr

[
(crssim, tr)← GSSimSetup(P); (w, y)← A(crssim, tr);

Ψsim ← GSSimProve(crssim, tr, y) : A(Ψsim) = 1

]
,

where (w, y) output by A satisfy (w, y) ∈ R.

Randomizable GS Proofs. As noted by [5], GS proofs can be re-randomized by re-randomizing the
underlying GS commitments and updating the proofs accordingly so that we obtain fresh proofs that are
unlinkable to the original ones. The re-randomization is done without knowledge of neither the witness
concealed in the commitments or the associated randomness. We define an algorithm GSRandomize which
takes as input a CRS crs and a proof Ψ and outputs a proof Ψ ′ which is a randomized version of the proof
Ψ .

– Re-randomizability of GS proofs [5]: We have for all PPT adversaries (A1,A2), the following
probability is negligbly close to 1/2

Pr

 (crs, xk)← GSSetup(P); (w, y, Ψ, statefind)← A1(crs);
Ψ0 ← GSProve(crs, w, y);Ψ1 ← GSRandomize(crs, Ψ); b← {0, 1};
b∗ ← A2(statefind, Ψb) : b∗ = b ∧ GSVerify(crs, Ψ) = 1 ∧ (w, y) ∈ R

 ·
As shown in [5], GS proofs have composable randomizability, where randomizability holds even if we switch
to the hiding setting and give the adversary the simulation trapdoor key tr.

In Appendix B, we show how the GS proof system is instantiated in the SXDH setting.

5.3 Blind Signatures

Blind signatures as introduced by Chaum [18] allow a user to obtain signatures on messages hidden from
the signer. The signing protocol in these schemes is interactive 〈Obtain(pk,m),Sign(sk)〉 between a user
who knows a message m and a signer who possesses a secret signing key sk. If the protocol is completed
successfully, the user obtains a signature σ on the message m.

12

The standard security model for blind signatures [34, 44] consists of two properties: blindness and un-
forgeability. Intuitively, blindness says that an adversarial signer cannot learn the message being signed and
he is unable to match a signature to the protocol run where it was obtained. On the other hand, unforge-
ability deals with an adversarial user whose goal is to obtain l + 1 distinct message/signature pairs given
only l interactions with the honest signer.

In [23, 2], the authors presented a blind signature scheme whose unforgeability reduces to the AWFCDH
and q-ADHSDH assumptions. The scheme uses GS proofs and is akin to the idea used in Fischlin’s generic
construction [22]. The signer signs a commitment to the message. However, unlike the generic construction,
the user transforms the signature on the commitment to the message into a signature on the message itself
instead of proving that he knows a signature on a commitment to the message as in Fischlin’s construction.
In addition, the user proves knowledge of the message and the randomness used in the commitment when
requesting a signature. The message space of the scheme is M := {(Gm1 , Gm2)|m ∈ Zp}.

Exploiting some properties of this blind signature scheme, we will show later how this scheme can be
used to hide the identity of the signer while signing hidden messages. The blind signature scheme is given in
Figure 3.

Setup(1λ):
− (p,G1,G2,GT , ê, G1, G2)← BGrpSetup(1λ).
− P := (p,G1,G2,GT , ê, G1, G2).
− (crs, xk)← GSSetup(P).
− F,K, T ← G1.
− param := (P, F,K, T, crs).
− Return param.

KeyGen(param):
− Choose s← Zp and set S1 := Gs1, S2 := Gs2.
− sk := s, pk := (S1, S2). Return (sk, pk).
Verify(pk, (M1,M2), Σ):
− Parse Σ as ~Ω.
− Return 1 if GSVerify(crs, ~Ω) = 1, Else Return 0.

The signing protocol 〈Obtain(pk, (M1,M2)),Sign(sk)〉
Obtain→ Sign Choose q ← Zp and compute Qi := Gqi for i = 1, 2 and Co := T q ·M1.

~Ψ ← GSProve
(
crs, {M1,M2, Q1, Q2},

{
ê(M1, G2) = ê(G1,M2) ∧
ê(Q1, G2) = ê(G1, Q2) ∧
ê(T,Q2) · ê(M1, G2) = ê(Co,G2)

})
.

Send (Co, ~Ψ) to Sign.
Sign→ Obtain If GSVerify(crs, ~Ψ) 6= 1 Then Abort().

Choose c, r ← Zp and compute C1 := F c, C2 := Gc2, H := (K · T r · Co)
1
s+c ,

R′1 := Gr1, R′2 := Gr2.
Send σ := (H,C1, C2, R

′
1, R

′
2) to Obtain.

Obtain Compute Ri := R′i ·Qi for i = 1, 2.
Abort if ê(R1, G2) 6= ê(G1, R2) or ê(F,C2) 6= ê(C1, G2)

or ê(H,S2 · C2) 6= ê(K ·M1, G2) · ê(T,R2).
~Ω ← GSProve

(
crs, {H,C1, C2, R1, R2},

{
ê(R1, G2) = ê(G1, R2) ∧
ê(C1, G2) = ê(F,C2) ∧
ê(H,S2 · C2) · ê(T−1, R2) = ê(K ·M1, G2)

})
.

Output Σ := ~Ω.

Fig. 3. The automorphic blind signature scheme from [2]

6 Our Constructions

In this section we present our constructions. We start by listing the techniques we use and then give a general
overview of our generic construction before presenting two example instantiations of the construction.

13

6.1 Techniques Used

We identify and make use of a number of observations and desired properties the building blocks we use have,
which allows us to construct a practical dynamic group blind signature scheme that has a round-optimal
signing protocol and yet does not rely on random oracles. We summarize the observations as follows:

– We exploit the fact that GS proofs are re-randomizable [5] and given a proof Ψ , we can compute a new
fresh proof Ψ ′ ← GSRandomize(crs, Ψ) even without knowing the witnesses used in Ψ . The new proof Ψ ′

is unlinkable to the original proof Ψ .
– Groth-Sahai proofs are independent of any public terms (i.e. public monomials) in the equations being

proved.2 Thus, given a witness-indistinguishable GS proof, Ψ , (i.e. one for an equation with a non-
trivial public right-hand side τ), we can later (even without knowing the original witnesses in the proof)
transform Ψ into a related witness-indistinguishable/zero-knowledge proof Ψ ′ by splitting the public
right-hand side τ into a set of witnesses and adding them to the list of witness in the original proof.
One can construct GS NIZK proofs for pairing product equations (Equation 1) if either tT is trivial (i.e.

tT = 1) or if one can factor tT by finding Pi, Qi such that tT =
n∏
i=1

ê(Pi, Qi). It is the latter case that

applies to our construction as the user knows how to open the commitment to the message and therefore
can factor tT . This will become clearer when we present our construction.

– Another observation which is of independent interest and is analogous to [24] (Lemma 4 for PPE equa-
tions), we prove the following lemma for multi-scalar multiplication equations in Appendix D.2.

Lemma 1. Let ((Cz, CA), Ψ) be a GS proof for the equation E := Az = Z, where Cz, CA are the GS
commitments to z ∈ Zp and A ∈ G respectively and Z ∈ G then ((Czz

′
, CA), Ψz

′
) is a GS proof for the

equation E ′ := Az
′·z = Zz

′
.

The same argument holds for quadratic equations over Zp where exponentiation of the public right-hand
side is replaced by multiplication.

– The blind signatures we use are a set of GS proofs of knowledge of values satisfying pairing product
equations which allow us to take advantage of the above properties of GS proofs.

6.2 Overview of the Constructions

The General Idea. In Fischlin’s generic construction for blind signatures [22], the user sends a commitment
to the message to the signer, who in turn returns a signature on the commitment. The user then computes
the blind signature by providing a NIZK proof of knowledge of the signature and the commitment s.t. the
signature is valid on the commitment and the commitment is to the message in question.

Now assume in the above framework we want to hide the signer’s identity from the user. So instead of
sending the signature on the user’s commitment (to the message) in the clear, the signer sends a proof of
knowledge of such a signature and his verification key to the user. If the proofs used are re-randomizable
and transformable in the sense of Observation 1 from Section 6.1, where in the equations used in the signer’s
proofs, the terms involving the commitment are public, then the user can re-randomize the proofs and
transform them to hide the commitment to the message and compute the final blind signature. Unforgeability
follows from that of Fischlin’s framework, blindness also follows from that of the framework plus the re-
randomizability of the proofs, and the anonymity of the signer is ensured by the hiding properties of the
proofs. Thus, we obtain blind signatures while the signer remain anonymous.

What remains is to extend the signer-anonymous blind signature to the group setting by requiring a com-
patible signature scheme to certify signer’s keys when they join the group, and also providing an anonymity
revocation mechanism for the Opener.
The Construction. We base our signing protocol on the blind signature scheme from [2] (cf. Figure 3),
which uses Groth-Sahai proofs and has the required properties needed for our construction. However, the same
2 This observation was also independently noted by [24].

14

methodology can similarly be applied to other Groth-Sahai based instantiations of Fischlin’s construction
satisfying the properties required for our paradigm, e.g. the instantiation by Abe et al. in [3].

In order to issue membership certificates (i.e. credentials) for new group members, we can use any
signature scheme that can sign group elements. We will use the prefix CERT for the signature scheme used
by the Issuer in generating the membership certificates.

The Issuer gets the secret signing key skCERT for the CERT signature scheme. Each potential group member
Signeri would have created his pair of personal secret/public keys (ssk[i], spk[i]) prior to joining the group.
When requesting to join the group, Signeri generates a pair of secret signing/public verification keys (ski, pki)
for the blind signature scheme. To stop a corrupt Issuer from framing group members, we ask that the group
member signs his verification key pki with his personal secret key ssk[i], the resulting signature sigi will be
used as a proof when verifying the Opener’s claim. We will use the CERT scheme for this purpose as well.
Thus, WLOG we assume that the key pair (ssk[i], spk[i]) is a valid pair for the CERT scheme.

The Issuer first verifies the signature sigi and if it is valid, he issues a signature on pki using the CERT
signature scheme and his secret issuing key ik. Upon successful completion of the 〈Join, Issue〉 protocol,
Signeri’s secret group signing key gsk[i] is (ski, pki, certi), where certi is the Issuer’s signature on pki. The
registration information for Signeri is set to reg[i] := (pki, sigi).

The group public key gpk contains the public key of the CERT signature scheme, the public values used
in the blind signature scheme and two GS reference strings crs1 and crs2, which are used in constructing GS
proofs used in the first and second rounds of the signing protocol, respectively. Note that although we could
use the same GS reference string for both rounds, we use separate strings because we believe this provides
extra functionality such as preventing the opener from revoking the anonymity of the message in the signing
phase or to allow for having a different opener for revoking anonymity of the message if needed. To open
signatures, the Opener is given the extraction key for the GS proof system.

The signing protocol 〈Obtain,Sign〉 between an external user who knows a secret message (M1,M2) ∈
G1×G2 and an anonymous group member Signeri who possesses a secret group signing key gsk[i] consists of
two rounds. In the first round, the user commits to the message using Pedersen commitment Co := T q ·M1

for some random q ← Zp and computes Qi := Gqi for i=1,2. He then sends the commitment Co along with
GS proofs of knowledge ~Ψ to prove that: the commitment Co is indeed to the message M1 and that the
message and the randomness pairs are well-formed.

In the second round of the protocol, Signeri verifies the GS proofs and if they are valid, produces a
signature using the blind signature scheme defined in Figure 3. The signature σ on the commitment Co
contains the components (H,C1, C2, R

′
1, R

′
2). Now since we require that the signer remains anonymous,

we hide the parts of the signature which identify the signer. Thus, the signer commits to his membership
certificate certi, his public verification key pki and the components (H,C1, C2) of the signature σ. Note that
the components R′1 and R′2 of σ do not identify the signer and hence at this phase we can send them in the
clear to the user.

The signer’s response consists of GS proofs ~Ω to prove that: the signer has a valid certificate he got from
the Issuer on his public verification key pki, his public verification key pki is well-formed, and the signature
was produced by the owner of public key pki, and the components R′1, R

′
2 of σ.

The user first verifies the GS proofs ~Ω. If they are valid, the user first re-randomizes those proofs using
the algorithm GSRandomize. The new proofs are unlinkable to the original ones. Note here that the last
equation proven in ~Ω is ê(H,S2 · C2) = ê(K · Co,G2) · ê(T,R′2), where Co and R′2 are public at this stage
and hence not part of the witness.

The user then updates the components R′1 and R′2 to include the randomness used in the commitment
(by computing R1 := R′1 ·Q1 and R2 := R′2 ·Q2) and then decomposes the commitment and transforms the
proof for the last equation in ~Ω into a proof based on the message M1 instead of the commitment Co by
adding the value R2 to the witness. The transformation is done without knowledge of H,C2 or S2. The proof
is now for the equation ê(H,S2 · C2) · ê(T−1, R2) = ê(K ·M1, G2), where H,S2, C2 and R2 are parts of the
witness. In addition, the user adds to ~Ω′ a new GS proof to prove that R1 and R2 hide the same exponent.
The final signature Σ is a set of GS proofs of knowledge ~Ω′ to prove that: the group member has a valid
credential from the Issuer, his public key is well-formed and the blind signature verifies w.r.t. his key.

15

To open a signature, the Opener uses his secret extraction key to extract the verification key pk, the
signature σ and the membership certificate cert from the proofs. Besides those, the Opener returns the index
i of the group member and the signature sig in support of his claim. The Judge algorithm can verify the
correctness of the Opener’s decision by verifying those components and checking that the group member has
indeed signed the key pk with his secret key ssk[i]. The construction is illustrated in Figure 4.

Next we present two example instantiations of the construction. The first instantiation is less efficient but
its security relies solely on non-interactive assumptions which are falsifiable [39]. The second instantiation is
more efficient as it makes use of the new efficient structure-preserving signature scheme that we construct but
at the expense of basing traceability on an interactive complexity assumption. Both constructions achieve
CPA-anonymity and we outline in Section 7 how to extend them to achieve full anonymity.

6.3 Instantiation I

In this construction we will use the asymmetric automorphic signature scheme (AFPV) (underlying the blind
signature scheme in Figure 3) from [23], which has the extra beneficial property of being able to sign its own
public keys, to instantiate the CERT scheme. Although this will result in a less efficient construction than
Instantiation II in Section 6.4, we get the bonus of basing the security of the construction on non-interactive
complexity assumptions which are falsifiable [39].

6.4 Instantiation II

To get better efficiency, we instantiate the CERT scheme using the new NCL scheme (Section 5.1). Since
in our construction, the final group blind signature hides the components of the certificate and hence one
cannot directly verify that the certificate is non-trivial (i.e. that A 6= 1G1), we require that the signer
additionaly proves this statement. Otherwise, the adversary can create untraceable signatures by faking
trivial certificates. We suggest two re-randomizable proofs in Appendix D to achieve this. Despite the need
for this extra proof, this construction is still more efficient than construction I.

6.5 Efficiency Analysis
Assuming that GS proofs are instantiated in the SXDH setting, we get the following efficiency:
Instantiation I. The final signature consists of seven GS proofs ~Ω′ = (Ω′i)

7
i=1: proofs (Ω′1, Ω

′
2, Ω

′
3) to prove

that the member has a valid membership certificate, proof Ω′4 to prove that his key is well-formed and proofs
(Ω′5, Ω

′
6, Ω

′
7) to prove that the blind signature verifies w.r.t. his public key. All of those proofs are quadratic

PPE proofs and hence each of size 2 ·G2
1× 2 ·G2

2. Thus, the total size of the proofs is 28 · |G1|+ 28 · |G2|. The
total number of GS commitments used in those proofs are 7 commitments in group G2

1 and 5 commitments
in group G2

2 and therefore the total size of the signature is 42 · |G1|+ 38 · |G2|.
Instantiation II. The final signature Σ consists of eight GS proofs ~Ω′ = (Ω′i)

7
i=0, where Ω′0 is Protocol

II (cf. Appendix D.2) to prove that A 6= 1 which is of size G2
1 × 2 · G2

2. Two of those proofs (i.e. proofs
Ω′1 and Ω′3) are for linear equations where all elements of the witness lie in the same group. Thus, we have
Ω′i = (~θi, ~πi) ∈ 2 ·G2

1 × 2 ·G2
2 for i = 2, 4, 5, 6, 7 and Ω′i = πi ∈ G2

2 for i = 1, 3 and hence the total size of the
proofs is 22 · |G1|+28 · |G2|. The total number of GS commitments used in those proofs are 8 commitments in
group G2

1 and 4 commitments in group G2
2 and therefore the total size of the signature is 38 · |G1|+ 36 · |G2|.

6.6 Security Analysis

Here we prove the security of our constructions.

Theorem 2. The generic construction in Figure 4 is a secure group blind signature scheme providing that
the CERT scheme is unforgeable, the GS proof system is sound, hiding (i.e. witness-indistinguishable/zero-
knowledge) and re-randomizable and the blind signature scheme is secure (i.e. unforgeable and blind).

16

GKg(1λ)

− P ← BGrpSetup(1λ).
− F,K, T ← G1.
− (crs1, xk1)← GSSetup(P).
− (crs2, xk2)← GSSetup(P).
− (skCERT, pkCERT)← CERTKeyGen(P).
− gpk := (P, crs1, crs2, F,K, T, pkCERT).
− ik := skCERT; ok := xk2.
− Return (gpk, ik, ok).
SKg(P):

− (ssk[i], spk[i])← CERTKeyGen(P).
− Return (ssk[i], spk[i]).
GVf(gpk, (M1,M2), Σ):

− Parse Σ as ~Ω.

− Return 1 if GSVerify(crs2, ~Ω) = 1.
Else Return 0.

Open(gpk, ok, (M1,M2), Σ)

− Parse ok as xk2.
− Parse gpk as (P, crs1, crs2, F,K, T, pkCERT).
− (σ, cert, pk)← GSExtract(crs2, xk2, Σ).
− If ∃i s.t. reg[i].pk = pk Then

Return (i, (σ, cert, pk, reg[i].sig))
Else Return (0, (σ, cert, pk, ε)).

Judge(gpk, i, spk[i], (M1,M2), Σ, τ)

− Parse gpk as (P, crs1, crs2, F,K, T, pkCERT).
− Parse τ as (i, (H,Cj , Rj), cert, pk, sig) for j = 1, 2.
− Parse pk as (S1, S2).
− If i > 0 and ê(H,S2 · C2) = ê(K ·M1, G2) · ê(T,R2)

and ê(R1, G2) = ê(G1, R2) and ê(F,C2) = ê(C1, G2)
and CERTVerify(spk[i], pk, sig) = 1
and CERTVerify(pkCERT, pk, cert) = 1
Then Return 1 Else Return 0.

Join(gpk, i, ssk[i]) Issue(ik, i, spk[i])

s← Zp, ski := s, pki := (S1 := Gs1, S2 := Gs2).
sigi ← CERTSign(ssk[i], pki). sigi, pki−−−−−→

Parse pki as (S1, S2).

Abort if pki = pkj for any j or ê(S1, G2) 6= ê(G1, S2).
If CERTVerify(spk[i], pki, sigi) = 0 Then Abort.

Abort if CERTVerify(pkCERT, pki, certi) = 0. certi←−−− certi ← CERTSign(ik, pki).

gsk[i] := (ski, pki, certi). reg[i] := (pki, sigi).

The signing protocol 〈Obtain(gpk, (M1,M2)), Sign(gsk[i])〉
Obtain→ Sign: Choose q ← Zp and set Q1 := Gq1, Q2 := Gq2 and Co := T q ·M1.

~Ψ ← GSProve
`
crs1, {M1,M2, Q1, Q2},

˘
ê(M1, G2) = ê(G1,M2) ∧
ê(Q1, G2) = ê(G1, Q2) ∧
ê(T,Q2) · ê(M1, G2) = ê(Co,G2)

¯´
.

Send (Co, ~Ψ) to Sign.

Sign→ Obtain: If GSVerify(crs1, ~Ψ) 6= 1 Then Abort().

Choose r, c← Zp, set H := (K · T r · Co)
1
s+c , C1 := F c and C2 := Gc2, R′1 := Gr1, R′2 := Gr2.

Set σ := (H,C1, C2, R
′
1, R

′
2) and parse pki as (S1, S2).

Compute ~Ω′ ← GSProve (crs2, {cert, S1, S2, H,C1, C2},˘
CERTVerify(pkCERT, (S1, S2), cert) = 1 ∧
ê(S1, G2) = ê(G1, S2) ∧
ê(C1, G2) = ê(F,C2) ∧
ê(H,S2 · C2) = ê(K · Co,G2) · ê(T,R′2)

¯´
.

Send
“
R′1, R

′
2, ~Ω′

”
to Obtain.

Obtain: If GSVerify(crs2, ~Ω′) 6= 1 or ê(R′1, G2) 6= ê(G1, R
′
2) Then Abort().

Set Ri := R′i ·Qi for i = 1, 2.
~Ω′ ← GSRandomize(crs2, ~Ω′).

Modify2 ~Ω′ to ~Ω ← GSProve (crs2, {certi, S1, S2, H,C1, C2, R1, R2},˘
CERTVerify(pkCERT, (S1, S2), cert) = 1 ∧
ê(S1, G2) = ê(G1, S2) ∧
ê(C1, G2) = ê(F,C2) ∧
ê(H,S2 · C2) · ê(T−1, R2) = ê(K ·M1, G2) ∧
ê(R1, G2) = ê(G1, R2)

¯´
.

Output Σ := ~Ω.
2 The transformation is done without knowledge of the original witness of the proof.

Fig. 4. The Construction

17

Proof. Correctness follows from that of the building blocks and is straightforward to verify.

Lemma 2. The construction is anonymous (against full key exposure) providing that GS proofs are hiding
(i.e. witness-indistinguishable/zero-knowledge) and that the SXDH assumption holds.

Proof. We prove that
AdvAnonGBS,B(λ) ≤ AdvHidingGS,A1

(λ) + AdvSXDHA2
(λ).

By the perfect witness-indistinguishability/zero-knowledge of GS proofs in the hiding setting we have that
AdvHidingGS,A1

(λ) = 0. Also, the adversary has a negligible advantage (by the security of the SXDH assumption)
in telling apart a binding CRS from a hiding one [33] and therefore this only negligibly changes B success
probability and hence the scheme is anonymous. The reduction to the SXDH assumption was proven in [33]
and hence we skip it.

We will use adversary B to construct an adversary A1 which can distinguish between witnesses of
GS proofs/simulated proofs and real proofs in the hiding setting and hence break the witness-indistin-
guishabiliy/zero-knowledge properties of the GS proof system.

The algorithm A1 is shown in Figure 5(a)3. Adversary A1 has access to a Prove(·, ·, ·) oracle which when
given two possible witnesses w0 and w1, generates a set of proofs that involve one of the two witnesses and A
wins its game if it could tell which witness was used in the proofs (or given a proof and it is required to tell
whether the proof is real or simulated in the case of zero-knowledge). The success probability of adversary
A1 is given by AdvHidingGS,A1

(λ) :=
∣∣∣Pr[ExpHiding−0

GS,A1
(λ) = 1]− Pr[ExpHiding−1

GS,A1
(λ) = 1]

∣∣∣, where the experiment

ExpHiding−bGS,A1
is defined in Figure 5(b).

Adversary A1 starts out by creating the group public key gpk, where A1 gets crs2 from its environment,
chooses the Issuer’s key ik and generates the rest of gpk itself. It then calls B with input (gpk, ik := skCERT).

All B’s queries are answered by adversary A1 as in Figure 1 except the following queries:

– CHb: Adversary A1 will use the group signing keys of members Signeri0 and Signeri1 (i.e. gsk[i0] and
gsk[i1]) to produce two signatures σ0 by signer Signeri0 and σ1 by Signeri1 . In producing those two
challenge signatures, A will use the same randomness r to construct both signatures and hence the same
R′1, R

′
2 components are used in both signatures. This does not give away any information about the

identity of the signer because R′1 and R′2 are completely independent of the signer’s key. Adversary A1

then forwards (gsk[i0],gsk[i1], Co, σ0, σ1, R
′
1, R

′
2) to its Prove oracle and receives a proof ~Ω′. A1 then

forwards (R1, R2, ~Ω′) to B.
– Open: Our scheme is CPA-anonymous and hence this oracle is not available to the adversary. We outline

in Section 7 how to make our scheme fully anonymous.

Finally, when B outputs its guess for the bit b∗, A1 returns this as its answer in the ExpHiding−bGS,A1
game.

Clearly, if B wins its game then A1 breaks the WI/ZK properties of the proof system.

Lemma 3. The construction is traceable providing that the CERT scheme is unforgeable and GS proofs are
sound.

Proof. We prove that
AdvTraceGBS,B(λ) ≤ AdvUnforgCERT,A1

(λ) + AdvSoundnessGS,A2
(λ).

Intuitively, the only way that adversary B can create an untraceable signature is by either forging a new
certificate for a signer that has not joined the group or by faking GS proofs. GS proofs are perfectly sound
and therefore AdvSoundnessGS,A2

(λ) = 0. Thus, we have AdvTraceGBS,B(λ) ≤ AdvUnforgCERT,A1
(λ). Using adversary B that

wins the traceability game, we can construct an adversary A1 that breaks the unforgeability of the CERT
signature scheme. Since we have that AdvUnforgCERT,A1

(λ) ≤ ν(λ), we also have that AdvTraceGBS,B(λ) ≤ ν(λ) and
therefore the scheme is traceable. The Opener uses the proof system’s extraction key xk2 to open signatures

3 For the zero-knowledge property, we assume that w1 = w0 and that Prove1 calls SimProve.

18

Algorithm: A1(P, crs2 : Proveb(·, ·, ·))
− (skCERT, pkCERT)← CERTKeyGen(P).
− F,K, T ← G1.
− (crs1, xk1)← GSSetup(P).
− gpk := (P, crs1, crs2, F,K, T, pkCERT); ik := skCERT.

− b∗ ← B〈·,CHb(·,·)〉1 (gpk, ik : CrptS(·, ·),SndToS(·, ·),
ModifyReg(·, ·), SSK(·)).

− Return b∗.

Experiment: ExpHiding−bGS,A (λ)

− P ← BGrpSetup(1λ).
− (crs, tr)← GSSimSetup(P).
− (y, w0, w1, statefind)← Afind(crs,P).
− If (w0, y) /∈ R or (w1, y) /∈ R Then Return ⊥.
− Πb ← Proveb(y, w0, w1).
− b∗ ← Aguess(statefind, Πb).
− Return b∗.

Fig. 5. Adversary A against the hiding property of the GS proof system (left) and security experiment for GS proof
system hiding property (right)

and since we are using GS proofs in the binding setting we are guaranteed to be able to extract a satisfying
witness from the proofs.

Adversary A1 gets as its input the public key pkCERT of the CERT scheme from its game. It then runs
the GKg algorithm and initiates GS proofs in the binding setting (i.e. crs2 is chosen to be a binding CRS),
except that the Issuer’s public key pkCERT is set to be its own input.

When calling B, A1 sends gpk and ok. All B’s queries are answered as in Figure 1 except the following
queries:

– AddS and SndToI: Here A1 simulates the Issuer, where it forwards pki := (Si,1, Si,2) to its sign oracle and
uses the output of the oracle as the certificate certi for group member Signeri.

Finally, when B outputs its signature Σ, adversary A1 extracts the certificate cert and the verification
key pk := (S1, S2) from the signature Σ and returns ((S1, S2), cert) as its forgery in its game.

Clearly, if B wins its game then A1 breaks the unforgeability of the CERT signature scheme since having
a group blind signature produced by a signer who has not joined the group corresponds to a forgery in the
CERT unforgeability game.

Lemma 4. The construction is non-frameable if the blind signature scheme is unforgeable (i.e. If assump-
tions AWFCDH and q-ADHSDH hold and GS proofs are sound) and the CERT signature scheme (used for
producing sig upon joining the group) is unforgeable.

Proof. We prove that

AdvNon−FrameGBS,B (λ) ≤ n(λ) · (AdvUnforgBS−DS,A1
(λ) + AdvUnforgCERT,A2

(λ)) + AdvSoundnessGS,A3
(λ),

where n(λ) is a polynomial in λ representing the maximum number of honest group members adversary B
creates during the game. By the perfect soundness of GS proofs, we have that AdvSoundnessGS,A3

(λ) = 0.
Also, the signature scheme BS−DS used in the signing protocol and the CERT signature scheme used for

producing the signature sig upon joining are unforgeable and therefore adversaries against the unforgeability
of those schemes have a negligible advantage. Thus, we have that AdvUnforgBS−DS,A1

(λ) ≤ ν(λ), AdvUnforgCERT,A2
(λ) ≤

ν(λ) and therefore have that AdvNon−FrameGBS,B (λ) ≤ ν(λ).
The details of the security proof for the unforgeability of the underlying blind signature scheme can be

found in [23]. We will construct an adversary A1 that launches a successful chosen-message attack against
the unforgeability of the signature scheme BS−DS underlying the blind signature scheme where A1 uses B
as an oracle to achieve its goal. Adversary A1 has access to a sign oracle SSign(sk, ·) in its unforgeability
game. It starts out by running the algorithm GKg to generate the group public key gpk, where it initiates
GS proofs in the binding setting (i.e. crs2 is chosen to be a binding CRS). Then it calls B on input gpk, the
Issuer’s key ik := skCERT, and the Opener’s key ok := xk2.

Let j be the identity of tth honest signer B creates, where t ∈ [1, n(λ)]. Adversary A1 guesses that j is
the identity of the group member B will attempt to frame. All B’s queries are answered as in Figure 1 except
the following queries:

19

– SndToS: For all honest group members Signeri, A1 will generate the personal secret/public keys (ssk[i],
spk[i]) itself. Adversary A1 will also generate all the signing/verification keys (ski, pki) for all honest
group members except for Signerj where pkj is set to the public key that A1 gets from its SSign oracle in
its unforgeability game and thus skj =⊥ because it corresponds to the secret key available to A1’s SSign
oracle which is unknown to A1.

– SSK: Is answered as in Figure 1 with the exception that B is not allowed to ask the query SSK(j) i.e. it
cannot ask for the secret signing key of the group member it intends to frame.

– OSign: For a group member Signeri where i 6= j, A1 will use gsk[i] to generate the group blind signature
Σ. For a group member Signeri where i = j, A1 will forward the request to its SSign oracle and gets σ
back and then generates the rest of the group blind signature Σ itself. It then forwards the signature Σ
to B.

Finally, when B outputs its l+1 signatures, adversary A1 aborts if the framed group member is different from
the one it has guessed. Otherwise, A1 uses the extraction key xk2 to extract the extra signature σ∗ := (H∗,
C∗1 , C

∗
2 , R

∗
1, R

∗
2) on the message (M∗1 ,M

∗
2) that it did not query its oracle on and returns σ∗ and (M∗1 ,M

∗
2)

as its output in its unforgeability game.
We now turn to constructing an adversary A2 that launches a successful chosen-message attack against

the unforgeability of the signature scheme CERT used for producing the signature sig in the Join protocol.
Adversary A2 has access to a sign oracle SSign(sk, ·) in its unforgeability game. It starts out by running the
algorithm GKg to generate the group public key gpk, where it initiates GS proofs in the binding setting (i.e.
crs2 is chosen to be a binding CRS). Adversary A2 calls B on input gpk, the Issuer’s key ik := skCERT, and
the Opener’s key ok := xk2. Again, A2 guesses that j is the identity of the group member that B will attempt
to frame. All B’s queries are answered as in Figure 1 except the following queries:

– SndToS: For all honest group members Signeri, A2 will generate the signing/verification keys (ski, pki).
It also generates the personal secret/public keys (ssk[i], spk[i]) and the signatures sigi for all honest
members except for member j whose signature sigj is obtained by a call to the SSign(sk, ·) oracle A2 has
access to. The key spk[j] is set to the public key A2 obtains from its game and thus ssk[j] =⊥ because
it corresponds to the secret key available to A2’s SSign oracle which is unknown to A2.

Finally, when B outputs a successful forgery, adversary A2 aborts if the framed group member is different
from the one it has guessed. Otherwise, A2 returns (pk∗, sig∗) as its answer in its unforgeability game. By
the unforgeability of the CERT scheme, we have that AdvUnforgCERT,A2

(λ) ≤ ν(λ).
We conclude that AdvNon−FrameGBS,B (λ) ≤ ν(λ) and hence the group blind signature scheme is non-frameable.

Lemma 5. The construction is blind providing that the GS proof system is hiding and re-randomizable, the
Pedersen commitment (used in the first round of the signing protocol) is hiding and that the SXDH assumption
holds.

Proof. We prove that

AdvBlindGBS,B(λ) ≤ AdvHidingGS,A1
(λ) + AdvHidingPedersen,A2

(λ) + AdvSXDHA3
(λ).

By the perfect witness-indistinguishability/zero-knowledge of GS proofs in the hiding setting, we have that
AdvHidingGS,A1

(λ) = 0. Also, the commitment used in the first round of the signing protocol, the Pedersen

commitment scheme, is perfectly hiding, and therefore we also have AdvHidingPedersen,A2
(λ) = 0. Furthermore, we

have by the security of GS proofs (i.e. the security of the SXDH assumption [33]) that an adversary has
a negligible advantage in telling apart a binding CRS from a hiding one and therefore this only negligibly
changes B’s success probability. Thus, the scheme is blind.

In this game, the adversary plays the role of a signer in the group. In the CPA-version of the scheme,
adversary B is not granted access to the Open oracle (for the same reason we mentioned in the proof for
anonymity).

Note that the commitments, Cob and Co1−b, B sees in the first round are Pedersen commitments which
are perfectly hiding and have identical distributions. Moreover, by making proof ~Ψ zero-knowledge, we can

20

simulate all the proofs that the user sends to the signer and hence we can build an adversary against the
hiding property of Pedersen commitment (i.e. adversary A2 that wins the security game in Figure 6) where

AdvHidingPedersen,A2
(λ) := |Pr[ExpHidingPedersen,A2

(λ) = 1]− 1
2
|.

Also, by switching crs1 and crs2 to hiding strings, the proofs B sees are distributed uniformly and hence again

Experiment : ExpHidingPedersen,A2
(λ)

− sk← Zp; pk← Gsk
1 .

− (m0,m1, statefind)← A2find (pk), where m0,m1 ∈ Zp.
− b← {0, 1}.
− r0, r1 ← Zp.
− Co0 := Gmb · pkr0 .
− Co1 := Gm1−b · pkr1 .
− b∗ ← A2guess (Co0,Co1, statefind).
− If b = b∗ Then Return 1 Else Return 0.

Fig. 6. Security experiment for Pedersen commitment scheme’s hiding property

if B can break the blindness of the group blind signature scheme, we can construct an adversary A1 that uses
B (in a similar game to that used in Figure 5(b)) to break the witness-indistinguishability/zero-knowledge
properties of GS proofs by distinguishing between different witnesses A1 gets from its Prove oracle.

Note that even if the malicious signer dishonestly chooses the randomness it uses in the GS commitments,
the new proofs after the re-randomization process by the user are independent of those sent by the signer
and hence they cannot be linked. Moreover, the re-randomized proofs are indistinguishable from fresh proofs
generated for the same statements. Thus, the scheme is blind.

7 Achieving Full Anonymity

Since GS proofs are not simulation-sound and hence when instantiated in the hiding setting we can no longer
apply the GSExtract algorithm to extract the witness used in the proof. This means that whenever there is a
need to simulate the proofs, the Opener can no longer answer Open queries. To achieve full anonymity where
the Opener can always respond to Open queries, we need an extractable simulation-sound proof system [46,
47] which allows for extraction while simulating.

Alternatively, we can use an IND-CCA secure encryption scheme to encrypt the signature σ and add an
extra GS proof to prove that the encrypted signature is the same as that used as a witness in the other proofs.
In this case, the Opener gets the decryption key for the encryption scheme which allows him to decrypt any
ciphertext and hence recover the underlying signature from its encryption if he cannot extract it from GS
proofs. It appears that the encryption scheme we require has to be re-randomizable but yet the IND-CCA
security contradicts re-randomizability of ciphertexts which in some way considered a form of malleability.
However, there exist a number of encryption schemes with properties that seem to suffice for this purpose,
e.g. [30, 43].

8 Conclusion

We have presented a formal security model for dynamic group blind signatures which allows for obtaining
rigorous proofs of security. In doing so, we have identified and remedied a number of issues which were not
considered by previous constructions.

We have also presented new schemes whose security does not rely on random oracles. All our schemes
have a concurrent joining protocol, a round-optimal signing protocol and yield signatures of a constant-size.
We have also proved the security of our constructions.

21

Acknowledgments

This work was supported by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO and EPSRC via grant
EP/H043454/1. The author would like to thank Nigel Smart and Bogdan Warinschi for many helpful dis-
cussions, and David Bernhard and Georg Fuchsbauer for useful feedback on an earlier version of the paper.

References

1. M. Abdalla, C. Namprempre and G. Neven. On the (im)possibility of blind message authentication codes. In
CT-RSA 2006, Springer LNCS 3860, 262–279, 2006.

2. M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev and M. Ohkubo. Structure-preserving signatures and com-
mitments to group elements. In Crypto 2010, Springer LNCS 6223, 209–236, 2010.

3. M. Abe, K. Haralambiev and M. Ohkubo. Signing on Elements in Bilinear Groups for Modular Protocol Design.
Cryptology ePrint Archive. Report 2010/133, available at http://eprint.iacr.org/2010/133.

4. G. Ateniese, J. Camenisch, S. Hohenberger and B. de Medeiros. Practical group signatures without random
oracles. Cryptology ePrint Archive. Report 2005/385, available at http://eprint.iacr.org/2005/385.

5. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya and H. Shacham. Randomizable Proofs
and Delegatable Anonymous Credentials. In CRYPTO 2009, Springer LNCS 5677, 108–125, 2009.

6. M. Belenkiy, M. Chase, M. Kohlweiss and A. Lysyanskaya. P-signatures and noninteractive anonymous creden-
tials. In TCC 2008, Springer LNCS 4948, 356–374, 2008.

7. M. Bellare, D. Micciancio and B. Warinschi. Foundations of group signatures: formal definitions, simplified
requirements, and a construction based on general assumptions. In EUROCRYPT 2003, Springer LNCS 2656,
614–629, 2003.

8. M. Bellare and P. Rogaway. Random oracles are practical: A Paradigm for Designing Efficient Protocols. In
ACM-CCS 1993, ACM, pp. 62–73.

9. M. Bellare, H, Shi and C. Zhang. Foundations of group signatures: The case of dynamic groups. In CT-RSA
2005, Springer LNCS 3376, 136–153, 2005.

10. S. Bengio, Y. Desmedt and C. Goutier. Special Uses and Abuses of the Fiat–Shamir Passport Protocol. In Crypto
1987, Springer LNCS 293, 21–39, 1988.

11. O. Blazy, G. Fuchsbauer, M. Izabach‘ene, A. Jambert, H. Sibert and D. Vergnaud. Batch Groth-Sahai. Cryptology
ePrint Archive, Report 2010/040. http://eprint.iacr.org/2010/040.

12. D. Boneh and X. Boyen. Short signatures without random oracles. In Eurocrypt 2004, Springer LNCS 3027,
56–73, 2004.

13. D. Boneh, X. Boyen and H. Shacham. Short Group Signatures. In CRYPTO 2004, Springer LNCS 3152, 227–242,
2004.

14. X. Boyen and B.Waters. Full-domain subgroup hiding and constant-size group signatures. In PKC 2007, Springer
LNCS 4450, 1–15, 2007.

15. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps. In CRYPTO
2004, Springer LNCS 3152, 56–72, 2004.

16. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. In CRYPTO 1997, Springer
LNCS 1294, 410–424, 1997.

17. R. Canetti, H. Krawczyk, and J. Nielsen. Relaxing Chosen-Ciphertext Security. In CRYPTO 2003, Springer
LNCS 2729, 565–582, 2003.

18. D. Chaum. Blind signatures for untraceable payments. In CRYPTO 1982, Plenum Press, 199–203, 1983.
19. D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT 1991, Springer LNCS 547, 257–265, 1991.
20. L. Chen, P. Morrissey and N.P. Smart. DAA: Fixing the pairing based protocols. IACR e-print 2009/198.

http://eprint.iacr.org/2009/198.
21. A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification and signature problems. In

CRYPTO 1986, Springer LNCS 263, 186–194, 1987.
22. M. Fischlin. Round-optimal composable blind signatures in the common reference string model. In Advances in

Cryptology – CRYPTO 2006, Springer LNCS 4117, 60–77, 2006.
23. G. Fuchsbauer. Automorphic Signatures in Bilinear Groups and an Application to Round-Optimal Blind Signa-

tures. In Cryptology ePrint Archive, Report 2009/320, http://eprint.iacr.org/2009/320.pdf.
24. G. Fuchsbauer. Commuting Signatures and Verifiable Encryption and an Application to Non-Interactively Del-

egatable Credentials. In Cryptology ePrint Archive, Report 2010/233, http://eprint.iacr.org/2010/233.pdf.
25. S. Galbraith, K. Paterson and N.P. Smart. Pairings for cryptographers. In Discrete Applied Mathematics, 156,

3113–3121, 2008

22

26. E. Ghadafi, N.P. Smart and B. Warinschi. Practical zero-knowledge proofs for circuit evaluation. In Coding and
Cryptography: IMACC 2009, Springer LNCS 5921, 469–494, 2009.

27. E. Ghadafi, N.P. Smart and B. Warinschi. Groth-Sahai proofs revisited. In PKC 2010, Springer LNCS 6056,
177–192, 2010.

28. S. Goldwasser and S. Micali. Probabilistic encryption. In Journal of Computer and System Sciences, 28:2,
270–299, 1984.

29. M. Green and S. Hohenberger. Universally Composable Adaptive Oblivious Transfer. In Asiacrypt 2008, Springer
LNCS 5350, 179–197, 2008.

30. J. Groth. Rerandomizable and Replayable Adaptive Chosen Ciphertext Attack Secure Cryptosystems. In Theory
of cryptography– TCC 2004, Springer-Verlag LNCS 2951, 152–170, 2004.

31. J. Groth. Fully anonymous group signatures without random oracles. In Asiacrypt 2007, Springer LNCS 4833,
164–180, 2007.

32. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In EUROCRYPT 2008,
Springer LNCS 4965, 415–432, 2008.

33. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups (full version). http://www.

brics.dk/~jg/WImoduleFull.pdf

34. A. Juels, M. Luby and R. Ostrovsky. Security of blind digital signatures. In Advances in Cryptology – CRYPTO
’97, Springer LNCS 1294, 150–164, 1997.

35. J. Herranz and F. Laguillaumie. Blind Ring Signatures Secure Under the Chosen-Target-CDH Assumption. In
Information Security – ISC 2006, Springer LNCS 4176, 117–130, 2006.

36. A. Lysyanskaya, R. Rivest, A. Sahai and S. Wolf. Pseudonym systems. In Selected Areas in Cryptography – SAC
1999, Springer LNCS 1758, 184–199, 1999.

37. A. Lysyanskaya and R. Zulfikar. Group blind digital signatures: A scalable solution to electronic cash. In
Financial Cryptography 1998, Springer LNCS 1465, 184–197, 1998.

38. U. Maurer. Abstract models of computation in cryptography. In Cryptography and Coding 2005, Springer LNCS
3796, 1–12, 2005.

39. M. Naor. On cryptographic assumptions and challenges. In Advances in Cryptology – Crypto 2003, Springer
LNCS 2729, 96–109, 2003.

40. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In 22nd
ACM symposium on Theory of computing – STOC 1990, 427–437, 1990.

41. K. Q. Nguyen, Y. Mu, and V. Varadharajan. Divertible Zero-Knowledge Proof of Polynomial Relations and
Blind Group Signature. In ACISP 1999, Springer LNCS 1587, 117–128, 1999.

42. T. Okamoto and K. Ohta. Divertible Zero Knowledge Interactive Proofs and Commutative Random Self-
Reducibility. In EUROCRYPT 1989, Springer LNCS 434, 134–149, 1990.

43. M. Prabhakaran and M. Rosulek. Rerandomizable RCCA encryption. In Advances in Cryptology – CRYPTO
2007, Springer-Verlag LNCS 4622, 517–534, 2007.

44. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal of Cryptology,
13(3), 361–396, 2000.

45. C. Rackoff and D. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack.
In Crypto 1991, Springer-Verlag LNCS 576, 433–444, 1991.

46. A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-Ciphertext Security. In FOCS
1999, 543–553, 1999.

47. A. Sahai. Simulation-Sound Non-Interactive Zero Knowledge. In Manuscript, 2001.

48. C.P. Schnorr. Efficient signature generation by smart cards. In Journal of Cryptology, 4, 161–174, 1991.

49. J. T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identities. In J. ACM, 27, 701–717,
1980.

50. V. Shoup. Lower bounds for discrete logarithms and related problems. In Eurocrypt 1997, Springer LNCS 1233,
256–266, 1997.

51. B. Waters. Efficient Identity-Based Encryption Without Random Oracles. In EUROCRYPT 2005, Springer
LNCS 3494, 114–127, 2005.

52. Q. Wu, F. Zhang, W. Susilo and Yi Mu. An Efficient Static Blind Ring Signature Scheme. In Information
Security and Cryptology – ICISC 2005, Springer LNCS 3935, 410–423, 2006.

23

A From Many Challenge Queries to a Single Query

Here we use a hybrid argument similar to that used in [9] to show a reduction from an adversary B against
the anonymity property which is allowed at most n(λ) invocations (for some polynomial n(·)) of the CHb
oracle to an adversary A which is allowed a single invocation of the CHb oracle. The hybrid argument utilizes
the fact that the adversary is allowed to learn the signing keys of any group member and hence it is capable
of signing on behalf of any member.

Lemma 6. Let GBS be a dynamic group blind signature scheme. For any polynomial-time adversary B
attacking the anonymity of GBS with at most n(λ) CHb invocations, there exists an adversary A attacking
the anonymity of GBS with only a single invocation of CHb.

Proof. We define a series of games {Gamej}n(λ)
j=0 , where in game Gamej , the first j-th challenge queries by B

are answered using the signing key gsk[i0], whereas the rest of the queries are answered using gsk[i1]. Let
Pj be the probability that adversary B wins Gamej . We have that

Pn(λ) = Pr[ExpAnon−0
GBS,B (λ) = 1]

P0 = Pr[ExpAnon−1
GBS,B (λ) = 1]

Adversary A is shown in Figure 7, whereas the challenge and open oracles used by A to answer B’s challenge
and open queries are given in Figure 8.

Adversary A〈·,CHb(·,·)〉1 (gpk, ik : CrptS(·, ·), SndToS(·, ·),SSK(·),ModifyReg(·, ·),Open(·, ·))
− CLA := ∅.
− index := 0.
− i← [1, n(λ)].

− b∗ ← B〈·,CH(·,·)〉n(λ)
(gpk, ik : CrptS(·, ·), SndToS(·, ·), SSK(·),ModifyReg(·, ·),Open(·, ·)).

− If index < i Then Call CHb(ε, ε).
4\\ Oracle Query

− Return b∗.

Fig. 7. Adversary A.

CH(i0, i1):

− index := index + 1.
− If index = i Then Call CHb(i0, i1).
− CLA := CLA ∪ {i0, i1}.
− (gsk0, ssk0)← SSK(i0). \\ Oracle Query
− (gsk1, ssk1)← SSK(i1). \\ Oracle Query
− If gsk0 = ε or gsk1 = ε Then Return ⊥.
− If index < i Then
• Sign using key gsk0.

− Else
• Sign using key gsk1.

Open(m,Σ):

− (id, τ)← Open(m,Σ). \\ Oracle Query
− If id =⊥ Then Return (⊥,⊥).
− If id ∈ CLA Then Return (⊥,⊥).
− Return (id, τ).

Fig. 8. The challenge oracle (left) and the Open oracle (right) used by adversary A.

4 This statement is to ensure that A will always make one call to its challenge oracle.

24

In answering B’s challenge queries, A randomly chooses i ← [1, n(λ)], all challenge queries j < i are
answered using gski0 . The i-th challenge query is answered using A’s challenge oracle and the rest challenge
queries are answered using gski1 . The rest of B’s queries are answered using the oracles available to A.

Adversary A keeps an independent list CLA containing all the signers it uses in simulating the challenge
oracle for B. Every time B asks an Open query, A looks up the identity returned by its own Open oracle
in this list and returns (⊥,⊥) if either the identity exists in the list or the answer of the Open oracle was
(⊥,⊥). Otherwise, A returns whatever was returned by its own Open query.

.
Since i is chosen uniformly at random from the set [1, n(λ)], we have for every j ∈ [1, n(λ)] that

Pr[ExpAnon−0
GBS,A (λ) = 1|i = j] = Pj

Pr[ExpAnon−1
GBS,A (λ) = 1|i = j] = Pj−1

Thus, we have

Pr[ExpAnon−0
GBS,A (λ) = 1] =

n(λ)∑
j=1

Pr[ExpAnon−0
GBS,A (λ) = 1|i = j]

=
n(λ)∑
j=1

Pj ·
1

n(λ)

Similarly, we have

Pr[ExpAnon−1
GBS,A (λ) = 1] =

n(λ)∑
j=1

Pr[ExpAnon−1
GBS,A (λ) = 1|i = j]

=
n(λ)∑
j=1

Pj−1 ·
1

n(λ)

By the above two equations, we have

AdvAnonGBS,A(λ) =
∣∣∣Pr[ExpAnon−0

GBS,A (λ) = 1]− Pr[ExpAnon−1
GBS,A (λ) = 1]

∣∣∣
=

1
n(λ)

·
∣∣Pn(λ) − P0

∣∣
=

1
n(λ)

· AdvAnonGBS,B(λ)

B SXDH Instantiation of the GS Proof System

Here we show how GS proofs are instantiated under the SXDH assumption. Let P := (p,G1,G2,GT , ê, G1,
G2) be a bilinear group in which SXDH assumption holds. We set A1 := G1, A2 := G2, AT := GT , B1 := G2

1,
B2 := G2

2 and BT := G4
T , all with operations performed componentwise. We let

F :
{

B1 × B2 −→ BT
(X1, Y1), (X2, Y2) 7−→ (ê(X1, X2), ê(X1, Y2), ê(Y1, X2), ê(Y1, Y2))

Since the underlying pairing ê is bilinear, it follows that the map F is also bilinear. To generate the CRS,
the trusted party chooses ai, ti ← Zp for i = 1, 2 and computes Hi := Gaii , Ui := Gtii , Vi := Hti

i . Set
Ui,1 := (Gi, Hi) ∈ Bi.

25

– GSSetup: Generates a binding key by setting Ui,2 := U tii,1 := (Ui, Vi). The extraction key is xk := (a1, a2).
– GSSimSetup: Generates a hiding key by setting Ui,2 := U tii,1/(1, Gi) := (Ui, Vi/Gi).

The CRS is then the set { ~U1, ~U2} ∈ B2
1 × B2

2 where ~Ui := {Ui,1,Ui,2}. Under the SXDH assumption, one
cannot tell a binding CRS from a hiding CRS.

To aid what follows, we set Wi := Ui,2 · (1, Gi) := (Wi,1,Wi,2) ∈ Bi.
GS Commitments.
We define the maps

ιi :
{

Gi −→ Bi
X 7−→ (1, X) ι′i :

{
Zp −→ Bi
x 7−→ Wx

i

– Committing to Group Elements: To commit to X ∈ Gi, choose ~τX ← Zp × Zp and compute

CX ← GScommi(X, ~τX) := ιi(X) · ~Ui
~τx ∈ Bi. GSExtract then extracts the witness from a commitment

C = (C1, C2) ∈ Bi by computing C2 · C−ai1 .
– Committing to Exponents: To commit to x ∈ Zp, randomly choose τx ← Zp and compute Cx ←

GScommi(x, τx) := ι′i(x) · Uτxi,1 ∈ Bi. GSExtract then extracts the witness from a commitment C =
(Gc1i , G

c2
i) by computing c2−ai · c1. Note that the algorithm needs to solve discrete logarithm to be able

to extract a witness from a commitment to an exponent.

The proof is constructed by first committing to each element in the witness list and then constructing
a proof Ψ := (θ, π) ∈ B1 × B2 for the satisfiability of each equation. Proofs for linear equations are simpler
and consist of only one of the two elements and not both. The size of the proof includes the proof itself and
the associated commitments.

For more details about the proof system we refer the reader to [33].

C DH-LRSW in the Generic Group Model

Here we show that the DH-LRSW assumption holds in the generic group model [50, 38].

Theorem 3. Let A denote an adversary in the generic group model against the DH-LRSW assumption.
Assume A in this game makes qG group operation queries, qP pairing queries, and qO queries to the
DH-LRSW oracle ODH-LRSW . The probability ε of adversary A winning the DH-LRSW game is bounded by
ε ≤ (qG+qP+4qO+4)2·4

p , where p is the (prime) order of the generic groups.

Proof. A challenger B interacts with adversary A in the game in which A is given access to a set of oracles.
Adversary A interacts with those oracles via group handles. We also define three random encoding functions
ξi : Gi −→ {0, 1}∗ for i = 1, 2, T where ξi maps elements from group Gi into random strings. The challenger
keeps three lists G1,G2,GT which contain pairs of the form (σ, P) where σ is a “random” encoding of the
group element (i.e. σ is an output of the map ξi) and P is some polynomial in Fp[X,Y,A1, . . . , AqO].

To each list we associate an Update operation, that takes as input the specific list Gi and a polynomial
P . The function Update(Gi, P) searches the list for a pair whose second component is equal to P , if it finds
one, it returns the first component as a result. Otherwise, a new random encoding σ, distinct from all other
elements used so far is chosen, and the pair (σ, P) is added to the list Gi. The value σ is then returned. Note
that at no point A gets access to the second element in the pairs.

The challenger starts the game by calling: Update(G1, 1), Update(G2, 1), Update(G2, X) and Update(G2, Y).
The oracles used in the game are defined as follows:

– Group Operations: Oracles O1, O2 and OT allow A access to the group operations, via subtrac-
tion/addition operations. On a call to Oi(σ1, σ2) B searches list Gi for pairs of the form (σ1, P1) and
(σ2, P2). If both exist, B returns the output of Update(Gi, P1 ± P2). Otherwise, it returns ⊥.
Note that exponentiation operations can be performed by calls to the group operation oracles.

26

– Pairing Operation: Oracle OP allows A to perform pairing operations. On a call to OP (σ1, σ2), B
searches the list G1 for the pair (σ1, P1), and the list G2 for the pair (σ2, P2). If both exist, B returns the
output of Update(GT , P1 · P2). Otherwise, it returns ⊥.

– DH-LRSW Oracle: The adversary may make up to qO queries of the form ODH-LRSW (σ1, σ2).
The challenger searches list G1 for a pair (σ1, P1) and list G2 for a pair (σ2, P2). If they do not exist
or P1 6= P2, B returns ⊥. Otherwise, it executes the following operations, where Ai, X and Y are
indeterminants:

σAi ← Update(G1, Ai),
σBi ← Update(G1, Ai · Y),
σCi ← Update(G1, Ai · P1 · Y),
σDi ← Update(G1, X ·Ai · (1 + P1 · Y)).

Returning the tuple (σAi , σBi , σCi , σDi) to A.

At the end of the game, the total number of non-constant polynomials contained in the three lists G1,G2 and
GT after A has made its qO queries to the DH-LRSW oracle is bounded from above by t = qG+qP +4qO+4.

Using the above oracles, we can simulate the entire run of the adversary where the adversary may make
no decision which depends on the particular encoding of group elements used.
The Adversary Output: Eventually, A will output a tuple (σA, σB , σC , σD, σM1 , σM2), where σA, σB , σC ,
σD and σM1 are on list G1 while σM2 is on list G2. We let PA, PB , PC , PD, PM1 , PM2 denote the polynomials
associated with these encodings.

For the output of A to be correct, it must correspond to a solution to the DH-LRSW problem, so these
output polynomials can be assumed to satisfy, for some assignment (x, y, a1, . . . , aqO) ∈ F2+qO

p to the vari-
ables (X,Y,A1, . . . , AqO), the equations

PB = PA · Y (5)
PC = PB · PM2 (6)
PD = X · (PA + PC) (7)
PM1 = PM2 (8)

From this we wish to derive a contradiction, i.e. conclude that the adversary cannot solve the DH-LRSW
assumption in the GGM. To do so we need to first ensure that these polynomial identities cannot hold
identically, i.e. irrespective of any particular assignment (x, y, a1, . . . , aqO) ∈ F2+qO

p to the variables (X,Y,A1,
. . . , AqO).

Let (M1,i,M2,i) denote the ith query to the DH-LRSW oracle, where we discount queries which return
⊥. It is easy to see that the only polynomials on the list G2 are linear combinations of the terms 1, X and
Y we see that we must have PM2,i = ri + si ·X + ti · Y . Since we have PM1,i = PM2,i , this implies that the
above polynomials must also appear on the list G1. However, it is also clear that there is no operation in G1

which we create a polynomial with a monomial term of X, nor one of Y . Thus, we can conclude that all
queries to the DH-LRSW oracle correspond to elements whose polynomials are a constant term of the form
PM1,i = PM2,i = ri. By a similar argument, we can also deduce that the output of the adversary corresponds
to polynomials with PM1 = PM2 = r. Note, this is precisely where we use the property that the oracle will
return ⊥ unless the input query lies in Ĝ.

Since the queries are for constant polynomials only, we see that the only polynomials which can appear
on the list G1 are of the form

v0 +
q∑
i=1

v1,i ·Ai +
q∑
i=1

v2,i ·Ai · Y +
q∑
i=1

v3,i ·X ·Ai · (1 + ri · Y) (9)

where v0, v1,i, v2,i, v3,i ∈ Fp.

27

By (5) and (6) we have that PB = PA · Y and PC = PB · PM2 , where PA, PB , PC ∈ G1. This implies that

we must have PA =
q∑
i=1

a1,i ·Ai, PB =
q∑
i=1

a1,i ·Ai · Y and PC = r ·
q∑
i=1

a1,i ·Ai · Y , where PM1 = r.

Equation (7) then implies that we have X ·
(

q∑
i=1

a1,i ·Ai + r ·
q∑
i=1

a1,i ·Ai · Y
)
∈ G1, i.e.

q∑
i=1

a1,i ·X ·Ai(1+

r ·Y) ∈ G1. But since all elements in G1 are of the form (9) this implies that we must have r = ri′ and a1,i = 0
if i 6= i′ for some value i′ ∈ [1, qO]. This would contradict the DH-LRSW assumption since the output pair
(M1,M2) would then be identical to one of the queries to the oracle.

Thus, the adversary must win, or tell it is in a simulation, via a specific (random) assignment to the
variables. We now turn to bounding the probability that the adversary wins (or detects the simulation) in
this case.
Analysis of the challenger simulation: Now B chooses random values x, y, ai ∈ Fp and evaluates the
polynomials. We need to show that the challenger’s simulation is sound. If A learned it was interacting in
a simulated game, there would be two different polynomials Pi,j(x, y, ai) = Pi,j′(x, y, ai) in list Gi where
Pi,j 6= Pi,j′ . The simulation will fail if any of the following is correct:

P1,j(x, y, ai) = P1,j′(x, y, ai) (10)
P2,j(x, y, ai) = P2,j′(x, y, ai) (11)
PT,j(x, y, ai) = PT,j′(x, y, ai) (12)

Since the maximum degree of any polynomial in list G1 ≤ 3, by applying [50][Lemma 1], we have that the
probability of Equation (10) holding is ≤ 3

p . Similarly, since the maximum degree of any polynomial in list
G2 ≤ 1, we have that the probability of Equation (11) holding is ≤ 1

p . Finally, the probability of Equation
(12) holding is ≤ 4

p .
Now summing over all possible values of j in each case, we bound this probability by

ε ≤
(
|G1|
2

)
3
p

+
(
|G2|
2

)
1
p

+
(
|GT |

2

)
4
p
,

where |Gi| denotes the size of list Gi.
In conclusion, the probability that an adversary breaks the DH-LRSW assumption in the GGM is bounded

by ε ≤ (qG+qP+4qO+4)2·4
p .

D Proofs that a committed value A ∈ G is non-trivial i.e. A 6= 1.

D.1 Protocol I

Assuming A ∈ G1, the prover randomly chooses a secret value Z ← G×2 and computes the following proof

Ψ ← GSPOK ({A,Z}, {ê(A,Z) = tT }) .

The verifier can then verify the proof Ψ and additionally check that tT 6= 1 which grantees that A 6= 1. The
proof is of size 2 · G2

1 × 2 · G2
2 and we require one extra GS commitment in G2

2. Thus, the total size of the
proof is 2 ·G2

1 × 3 ·G2
2.

Theorem 4. The proof is re-randomizable and is witness-indistinguishable and can be made zero-knowledge.

Proof. Correctness and soundness follow from that of GS proofs and the fact that if A = 1 then regardless
of the value of Z, tT = 1 which stops the prover from cheating.

To prove witness-indistinguishability, observe that when one switches to the hiding setting, GS commit-
ments are perfectly hiding and thus do not reveal which witness they hide. Moreover, since Z is chosen
uniformly, tT perfectly hides A. Thus, the proof is witness-indistinguishable.

28

Re-randomizability. The bilinearity of the bilinear map and the structure of GS proofs allow a party who
does not know the witness of the proof to re-randomize the proof by re-randomizing the value Z (without
knowing it) and tT and adjusting the proof accordingly. For a proof of this claim see [24] (Lemma 4).

Although we do not require the proof to be zero-knowledge, observe that if we factor tT to tT =
ê(Ar, Zr

−1
) for some random r ← Zp then Ar hides A and Zr

−1
hides Z and thus we can make those

randomized values public which makes the equation simultable [33] and hence the proof can be made zero-
knowledge.

D.2 Protocol II

Instead of using a quadratic PPE equation (as is the case with Protocol I) which yields a less efficient
proof and which is more costly to be made zero-knowledge, we use a proof for a multi-scalar multiplication
equation.

Again, assuming A ∈ G1, the prover randomly chooses z ← Zp and computes Z := Az and produces the
following GS proof

Ψ ← GSPOK ({A, z}, {Az = Z}) .
The verifier verifies the proof Ψ and additionally checks that Z 6= 1 which guarantees that A 6= 1. Proofs
of this type of equations can be made zero-knowledge for free [33]. Note here that although GS proofs
only provide F-extractability [6] when working with exponent witnesses, it does not affect the construction
because at no point need we to efficiently extract the exponent z, we just need to ensure that the proof is
sound.

The proof is of size G2
1 × 2 ·G2

2 and we require one extra GS commitment in G2
2. Thus, the total size of

the proof is G2
1 × 3 ·G2

2 which is more efficient than the Protocol I.

Theorem 5. The proof is witness-indistinguishable/zero-knowledge and is re-randomizable.

Proof. Correctness and soundness follow from that of GS proofs and the fact that if A = 1 then regardless
of the value of z, we will always have that Z = 1 and hence the prover cannot cheat.

To prove witness-indistinguishability/zero-knowledge, note that the GS commitments are perfectly hiding
when we switch to the hiding setting. Moreover, since z is uniformly chosen, Z perfectly hides A. To get
zero-knowledge for free, we just need to move Z to the left-hand side.
Re-randomization. To prove re-randomizability in the sense that we need, we prove that the same re-
randomization technique [24] (Lemma 4) used for proofs for quadratic PPE equations (such as that proved
in Protocol I), also works for proofs for quadratic multi-scalar multiplication equations.

The user re-randomizes the GS commitment to z by raising it to some random integer and doing the
same to the proof. This re-randomizes z without knowing it. To prove this, we provide a proof for Lemma 1
in Section 6.1.
Proof of Lemma 1.

The original GS commitments used in the original proof are

CA ← GScomm1(A, ~τA) := ι1(A) · ~U1
~τA

Cz ← GScomm2(z, τz) := ι′2(z) · Uτz2,1

The proof for the original equation is give by Ψ := (θ, ~π) ∈ B1 × B2
2, where

θ := ι1(A)τz · ~U1

~t
~π := ι′2(z) ~τA

T · Uτz· ~τA
T−~tT

2,1
,

where ~t← Zp×Zp. Now to re-randomize the secret value z to z · z′ and adapt the proofs without knowledge
of z where z′ ← Zp, we compute C′z := Cz′z . We have that

C′z = Cz
′

z

= ι′2(z · z′) · Uz
′·τz

2,1

29

Now the proof Ψ ′ := Ψz
′

is a proof for the equation Az·z
′

= Zz
′

as we have

θ′ = ι1(A)z
′·τz · ~Uz′·~t1

~π′ = ι′2(z · z′) ~τAT · Uz
′·(τz· ~τAT−~tT)

2,1

30

