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A priori reformulations for joint rolling-horizon scheduling of 

materials processing and lot-sizing problem 

In many production processes, a key material is prepared and then transformed 

into different final products. The lot sizing decisions concern not only the 

production of final products, but also that of material preparation in order to take 

account of their sequence-dependent setup costs and times. The amount of 

research in recent years indicates the relevance of this problem in various 

industrial settings. In this paper, facility location reformulation and strengthening 

constraints are newly applied to a previous lot-sizing model in order to improve 

solution quality and computing time.  Three alternative metaheuristics are used 

to fix the setup variables, resulting in much improved performance over previous 

research, especially regarding the use of the metaheuristics for larger instances. 

Keywords:  Lot Sizing and Scheduling, Facility Location Reformulation, Valid 

Inequalities, Metaheuristics.  

1. Introduction 

The lot sizing problem is frequently encountered in industrial production planning.  

How does a planner decide the lot size of each product produced on one or more 

machines in each demand period over a planning horizon?  This problem has been 

extensively researched, as discussed in the reviews by Bahl et al. (1987), Drexl and 

Kimms (1997), Brahimi et al. (2006), Karimi et al. (2003) and Jans and Degraeve 

(2007, 2008). 

In some industrial sectors, production setup costs and times are sequence-

dependent, so that the decisions about the production of lots concern their sequence as 

well as their size. The two sets of decisions are mutually dependent and so should be 

modelled and decided simultaneously rather than separately. For example, Araujo et al. 

(2007) consider the processing of key materials at an initial stage as well as the 

products that use the materials. In such a two-stage system, the sequencing decisions at 

the end stage must jointly consider products that use the same materials, so that 

material changeovers are minimised at the prior stage. In other words, the sequencing at 

both stages must be integrated. The model in Araujo et al. (2007) is based on a classical 

http://ees.elsevier.com/caie/viewRCResults.aspx?pdf=1&docID=7110&rev=1&fileID=220296&msid={07A312F4-1857-43CA-A287-7BD53D002852}


  

 

 

formulation of the lot sizing problem, but its complexity meant that an established 

industrial-grade optimisation solver was unable to find an optimal solution within 

acceptable computing time.  As a result, the paper developed heuristic solution methods 

based on relax-and-fix within a rolling horizon approach and incorporating 

metaheuristics. 

Since then, many other authors have also researched the integrated lot-sizing 

and sequencing problem with material preparation at a prior stage in a wide range of 

industrial settings. Examples include soft drink production (Toledo et al., 2009 and 

Ferreira et al., 2009, 2010, 2012), animal feed (Toso et al., 2009 and Clark et al., 

2010), electrofused grains (Luche et al., 2009), glass bottles (Almada-Lobo et al., 2007, 

2008), foundries (Araujo et al., 2008; Tonaki and Toledo, 2010 and Camargo et al., 

2012), yogurt packaging company (Marinelli et al., 2007), pharmaceutical company 

(Stadtler, 2011) and sand casting operations (Hans and Van de Velde, 2011).  

Most of this recent research, including Araujo et al. (2007), is based on the 

General Lot Sizing and Scheduling Problem (GLSP) model (Fleischmann and Meyr, 

1997) in which the planning horizon is subdivided into macro-periods, in each of which 

multiple products can be produced. To model the sequence of lots, each macro-period 

is in turn subdivided into micro-periods in which at most one product can be produced.  

This special structure involving subperiods within macro time periods is similar to a 

small-bucket framework (Koçlar, 2005).  

However, some papers, such as Clark et al. (2010) and Ferreira et al. (2012) 

take a different approach, using an asymmetric travelling salesman problem (ATSP) 

representation for sequencing lots rather than a GLSP-type model. The results 

presented in Ferreira et al. (2012) shown the superiority of their ATSP-type model over 

a GLSP-type model.  One possible reason is the poor quality of the GLSP linear 

relaxation as a lower bound on the optimal solution. 

Taking forward research initiated in Bernardes et al. (2010), the first 

contribution of this current paper is to demonstrate that certain reformulations applied 

to the GLSP-type model in Araujo et al. (2007) can provide improved solutions using 

established optimisation solvers, due mainly to their better quality of linear-relaxation 

lower-bounds, contributing to the growing research in this area.  The second 

contribution is to show computationally that the use of metaheuristic methods can help 



  

 

 

solve the reformulations more quickly and better than established solvers, such as, 

Cplex 12.0. 

  This paper is structured as follows.  In section 2, the original model in Araujo 

et al. (2007) is presented. Section 3 develops extended formulations and proposes new 

constraints. In section 4, a reformulated rolling horizon-based model is proposed while 

section 5 presents the metaheuristics.  Section 6 computationally compares the quality 

of the reformulations using the Branch-and-Cut search within the solver Cplex 12.0 

and using the metaheuristics. Section 7 concludes and poses challenges for future 

research. 

 

2. Original Formulation (OF) 

In Araujo et al. (2007), a material may be used in multiple products, but a product is 

made from just one material. A product must be manufactured in the same time period 

in which its material is processed. Thus processed materials cannot be held over from 

one period to the next. In each time period only one material can be processed on a 

given machine. A setup changeover from one material to another is sequence-

dependent, i.e., it consumes capacity time in a manner that is dependent on the 

sequence in which the materials are processed. The triangle inequality holds for setup 

costs and times so that it is optimal to produce at most one lot per product per period. 

The model allows backlogs as well as inventory. 

The sequencing decisions are made by dividing a period into smaller 

subperiods, as in the General Lot Sizing and Scheduling Problem (GLSP) model 

(Fleischmann and Meyr, 1997; Drexl and Kimms, 1997; Meyr, 2000, 2002). Let K  be 

the total number of materials, P  the total number of products, T  the total number of 

periods and   the total number of subperiods. Consider the following indices and data: 

 

Indices: j, k = 1,..., K processed materials 

p = 1,..., P products  

t = 1,..., T periods 

n = 1,...,  subperiods 



  

 

 

Data:  C

  

Capacity available on the machine in each subperiod. 

 p Capacity required to produce one unit of product p. 

 d

p

t 

Demand for product p at the end of period t. 

 S(k) Set of products p that use material k. Each product uses just one 

material, i.e., {1, ..., P} = S(1)  ...  S(K), and S(k)  S(j) = Ø, for all 

materials k  j, implying  
k

PkS )(  

 
pth  Backlog penalty for delaying delivery of a unit of product p at the end 

of period t. 

 

pth

 

 

Inventory penalty for holding a unit of product p at the end of period t. 

 sjk Setup penalty (or cost) for changing over from material j to material k, 

where sjj=0. 

 stjk Setup time (loss of machine capacity) for changing over from material j 

to material k, where stjj = 0. 

Variables:  xpn Quantity (lot-size) of product p to be produced in subperiod n  

 I pt


 Inventory of product p at the end of period t, where I


0p is the initial 

inventory at the start of period 1. 

 I pt


 Backlog of product p at the end of period t, where I


0p is the initial 

backlog at the start of period 1. 

 y
k
n  Binary variable: y

k
n = 1 if the machine is configured for production of 

material k in subperiod n, otherwise y
k
n = 0.  Note that the initial setup 

state y
k
0 is set to zero and so not a variable. 



  

 

 

 jk
nz  Binary setup variable: 

jk
nz = 1 if there is a machine changeover from 

material j to material k at the start of subperiod n, otherwise 
jk

nz = 0. 

Thus 
jk

nz =1 if 
j

n 1y  = 1 & 
k
ny = 1, and 

jk
nz = 0 if 

j
n 1y  = 0 or 

k
ny = 0. It is 

relaxed to be continuous for reasons explained below.  

Consider also the following definitions from the GLSP model: 

t      Maximum number of subperiods in period t 

Ft  = 1+ 




1t

1

  First subperiod in period t 

Lt = Ft + t -1  Last subperiod in period t 

  = 


T

1t

t  Total number of subperiods over periods 1,…,T 

The Original Formulation (OF) (Araujo et al., 2007) of the mathematical model is: 

Minimize     

p t
ptptptpt IhIh )(  +    

j k

L

Fn
n

T
jk

jk zs
1

    (1) 

subject to 


1,tpI - 


1,tpI  + 



L

Fn

t

t

pnx  - 

ptI  + 


ptI  = dpt   p, t    (2) 


 )(kSp

p xpn + jk
jk nst z    C

k
ny      j, k, n=F1,...,LT  (3) 

jk j k
n n 1 nz y y 1          j, k, n=F1,...,LT   (4) 

1
k

k
ny        n=F1,...,LT     (5) 

1
1 1


 

K

j

K

k

jk

Ft
z        t                   (6) 

k
ny   {0,1} with 

ky0  = 0     k, n=F1,...,LT  (7) 

jk
nz    0       j, k, n=F1,...,LT  (9) 

xpn   0 and integer      p, n=F1,...,LT  (9) 


ptI  and 


ptI   0      p, t    (10) 

The objective function (1) minimizes a weighted sum of inventory & backlog 

penalties and sequence-dependent setup penalties. Constraints (2) balance inventories, 



  

 

 

backlogs, demand and production in each period. Constraints (3) not only keep 

production within the machine’s capacity, but also ensure that only products of the 

same material are produced in the same machine loading. As y
k
n  and y 1

j

n  are both 

binary variables, constraints (4) and the objective function (1) force the continuous 

variable z jk

n  to have value 1 if there is a changeover from material j to material k and, 

along with constraints (7), to have value 0 otherwise. Constraints (5) and (7) ensure that 

there is only a single machine loading in each subperiod. Constraints (6) ensure one 

changeover in the first subperiod of each period.  

The model assumes that the system is not initially setup for any material, and 

that every setup must be completed in a subperiod. This means that the capacity time 

stjk needed to setup a material k must not be greater than C, the capacity available on 

the machine in each subperiod, as enforced in constraints (3). 

Most models generally consider the lot-size variables xpn to be continuous. If an 

xpn value is large, then simply rounding it to the nearby integer value is usually feasible 

and near-optimal. However, for problems where capacity or demand is low then the 

integer conditions (9) on xpn must hold. Constraints (10) measure inventory I

pt  and 

backlogs I

pt  as non-negative variables, but for a given pair (p,t), I


pt  and I


pt  will not 

both be strictly positive in an optimal solution, given their positive coefficients in the 

objective function (1). 

 

3. A priori Reformulations 

Recently, many authors (Alfieri et al., 2002, Pochet and Van Vyve, 2004; Jans and 

Degraeve, 2004a; Denizel and Süral, 2006; Denizel et al., 2008; Jans, 2009, and Süral 

et al., 2009) have used alternative formulations with stronger linear relaxations that can 

provide better lower bounds or improved integer rounding of fractional solutions.  

Two such reformulations stand out in particular.  The first is based on the 

Shortest Path (SP) problem and makes use of variable redefinition (Eppen and Martin, 

1987). The second reformulation is based on the Facility Location (FL) problem 

(Krarup and Bilde, 1977).  



  

 

 

Several reformulation results, both theoretical and computational, have been 

published. Nemhauser and Wolsey (1988) show that for the single item capacitated 

problem, the SP and FL reformulations are equivalent and that their linear relaxations 

coincide with the integer convex hull. In fact, their reformulation matrices are 

unimodular. Denizel et al. (2008) consider the capacitated multi-item problem with 

setup times, and also show that the SP and FL reformulations are equivalent. Alfieri et 

al. (2002) apply these reformulations to the same problem without setup times.  The 

computational tests indicated that the SP and FL linear relaxations’ objective value is 

60% larger than those of the classical formulation, but 30% larger if setup times are 

considered (Denizel and Süral, 2006). Diaby et al. (1992)  use Lagrangean relaxation 

together with reformulation as a transport problem. Süral et al. (2009) consider an 

alternative formulation and also use Lagrangean relaxation to solve the problem. Jans 

and Degraeve (2004b) present a method to obtain lower bounds on the problem with 

setups using an SP-based formulation.  

In addition, several researchers have proposed similar formulations for 

extentions of the classical lot sizing problem. Wu et al. (2011) propose two new mixed 

integer programming models for capacitated multi-level lot-sizing problems with 

backlogging, whose linear programming relaxations provide good lower bounds on the 

optimal solution value. Gramani and França (2006) consider the lot sizing problem 

integrated with the bidimensional cutting stock problem applied to the furniture 

industry, proposing a method based on an analogy with the SP problem.  

In the same spirit, in section 3.1 an extended formulation (EF) is now developed 

from the original formulation (OF) using the facility location concept studied in Krarup 

and Bilde (1977) and Denizel et al. (2008). Additional EF constraints will also be 

proposed. The EF model is then strengthened in section 3.2 using setup considerations 

(Koçlar, 2005; Wolsey, 2002; Belvaux and Wolsey, 2001). 

3.1. Extended Reformulation (EF) 

The extended formulation (EF) can be obtained by interpreting the original formulation 

(OF) in a manner analogous to the Facility Location Problem (Krarup and Bilde, 1977). 

Let },,1{ N  be the set of facility candidates and },,1{ TM  a set of clients. The 

Facility Location Problem (FLP) consists of deciding which facilities to install so that 



  

 

 

demand is satisfied with minimum cost.  To interpret the original formulation as an 

FLP, the production in subperiod n to satisfy demand in period t is taken as equivalent 

to using installed facility n to meet the demand of client t. Thus subperiods represent 

facilities and periods represent clients.   

The FLP-based extended formulation uses the same indices, parameters and 

variables as the original formulation in section 2, and an additional variable, pntQ , the 

quantity of product p  produced in subperíod n  to meet the demand at the end of  

period t . The production in a subperiod can have multiple destinations.  

Note that if the production of subperiod n within period t meets demand for 

period t’ > t after period t, then it is held in inventory until the end of period (t’-1), with 

consequent costs over periods t,...,t’-1. Conversely, if the production of subperiod n 

within period t meets demand for period t” < t before period t, then the backlog costs 

over periods t”,...,t-1 must be charged. 

Using n  to indicate the period of subperiod n, the inventory and backlog costs 



pntCQ  and


pntCQ  must be redefined as follows: 



pntCQ  is the unit cost of producing product p  in subperiod n  to meet demand 

at the end of period t  after n . Note that  




 
1t

l plpnt
n

hCQ


 ( tn  ). 



pntCQ  is the unit cost of producing product p  in subperiod n  to meet 

backlogged demand at the end of period t  before n . Note that 




 
1n

tl plpnt hCQ


 (

tn  ). 

The extended formulation (EF) is then given by the objective function (11) and 

constraints (12)-(15), as now explained. 

  

Extended Formulation (EF) 

Min    
  

















 















K

j

K

k

L

Fn

jk

njk

P

p

L

n

L

Fn

pnt

t

tppnt

T

t

tp

TT T n

n

n

n
zsQCQQCQ

1 11

1

1

1 1

11 12







               (11) 

Subject to: 







1

1

TL

Fn

ptpnt dQ                                                      p, t                              (12) 



  

 

 


 )(kSp

p 










T

t

pntQ
1

 + jk
jk nst z    C

k
ny               j, k, n=F1,...,LT                 (13) 

pntQ    0 and integer         p, ,t  n=F1,...,LT             (14) 

and constraints (4)-(9) from the original formulation.    (15) 

 

The objective function (11) again minimizes a weighted sum of inventory & 

backlog penalties and sequence-dependent setup penalties. Constraints (12) ensure that 

the demand in period t is met by the production from all subperiods. The variable Q is 

defined for 1  subperiods so as to permit backlogs in the last period.  Note that the 

initial stock is zero.  Constraints (13) are identical to (3) in the original formulation.   

Although the number of variables has increased, previous research indicates 

such a reformulation generally improves the lower bounds obtained via linear 

relaxation (Chen and Thizy, 1990; Nemhauser and Wolsey, 1988 and Denizel et al., 

2008).  

 

3.2. Strengthening constraints for an Extended Formulation 

This section now presents strengthening constraints based on setup considerations that 

can be included in an extended formulation (EF).  

  

Flow equations (V1) 

The setup variables y and changeover variables z are weakly linked in the linear 

relaxation of the extended formulation.  The setup variables y can take positive values, 

thus allowing production, without the corresponding changeover variables z also being 

positive. For example:  if
j

ny 1 = 0.5 and 
k

ny = 0.5 then constraint (4) means that 
jk

nz ≥ 0.5 

+ 0.5 – 1 = 0. This kind of solution causes a loosening of the lower bounds provided by 

the linear relaxation (as used in the Branch-and-Cut method).    

The relationship between setup variables y and changeover variables z can be 

represented via a network in which the value associated with a node (j,n) indicates if 

there is a setup to material j in subperiod n.  The flow along an arc represents a 

changeover between two consecutive subperiods. The setup variable 
j

ny 1 indicates the 



  

 

 

node capacity of node (j,n-1) and the changeover variable jk

nz indicates the flow from 

node (j, n-1) to node (k, n), as illustrated in Figure 1. 

 

 

[FIGURE 1: NEAR HERE] 

 

 

The constraint family V1 presented below, based on Wolsey (2002), establishes 

a stronger link between the setup and changeover variables.  When there is a setup to 

material k in a subperiod, then a changeover from another material to k must be 

enforced (constraint 16, V1a) along with a changeover from j to some other material 

(constraint 17, V1b), thus preserving the flow in the network. 

V1a:     



K

j

k

n

jk

n yz
1

, Kk ,,1 , TLFn ,,1  .      (16) 

V1b:    j
n

K

k

jk
n yz 1

1





 , Kj ,,1 , TLFn ,,11  .    (17) 

 

Elimination constraints (E1) 

Suppose that a solution has a sequence in a period in which the same material is 

processed in 2 lots in 2 non-consecutive subperiods. Given triangular setups, a no-

worse and possibly better solution can be obtained by resequencing so that the 

subperiods are consecutive, thus eliminating a setup. In other words, there exists an 

optimal solution such that no material is setup more than once in a period.  Constraints 

E1 impose this: 

E1:  
 


K

kjj

L

Fn

jk

n

t

t

z
|1

1     Kk ,,1 , Tt ,,1 .   (18) 

 

4. Reformulated Rolling Horizon Model 

The original formulation OF and the strengthened extended formulation EF+V1+E1 

(i.e., EF with the new constraints V1a, V1b and E1) were solved and tested with the 

Cplex 12.0 mixed integer programming (MIP) optimizer. As we will show in the 

computational results in section 6.3, the performance of Cplex 12.0 for solving the 



  

 

 

formulations is unsatisfactory for medium-sized problems. As a result, this section 

proposes three metaheuristics to solve the EF model on a rolling-horizon basis.  

As in Araujo et al. (2007), suppose each period t is a workday. Consider, for 

example, a planning horizon of T = 5 workdays of which only the first day (t = 1) will 

be scheduled in detail. This is achieved by dividing the first day into L =1 =10 

subperiods, as up to L material loadings can be processed each day. The remaining days 

t = 2,....,5 have just one subperiod each (2 = 3 = 4 = 5 = 1). Thus F1 = 1; L1 = 10; 

F2  = L2=11; F3 = L3= 12; F4 = L4= 13; F5 = L5=14, i.e., there are  = 14 subperiods n. 

The variables
k
ny  for the larger subperiods n = F2,...,F5 are then redefined as “the 

number of loadings using material k produced in subperiod n”. 

Only the scheduled decisions relative to the 1 = 10 subperiods of day 1 are 

actually implemented. The decisions for the remaining 4 days are used only to evaluate 

the impact of future available capacity, i.e., to identify a provisional production plan in 

order to have advance warning of possible production backlogs and be able to act 

accordingly. The extended formulation for rolling horizon use, denominated EF-RH, is:  

Model EF-RH:  

Min    
  

















 















K

j

K

k

L

Fn

jk

njk

P

p

L

n

L

Fn

pnt

t

tppnt

T

t

tp zsQCQQCQ
T T n

n

n

n

1 11

1

1

1 1

11

1

12







               (19) 

Subject to: 







1

1

TL

Fn

ptpnt dQ                                                     p, t                                  (20) 


 )(kSp

p 










T

t

pntQ
1

 + jk
jk nst z    C

k
ny           j, k, n=F1,...,L1                 (21) 


 )(kSp

p 










T

t

pntQ
1

    C
k
ny                 j, k, n=F2,...,LT                 (22) 

 tk

k
n

L
y        t, n=Ft,...,Lt        (23) 

jk j k
n n 1 nz y y 1         j, k, n = F1,...,L1     (24) 





K

j

k

n

jk

n yz
1

      k, n = F1,...,L1   (25) 



  

 

 

j
n

K

k

jk
n yz 1

1





       j, n = F1+1,...,L1    (26) 

 
 


K

kjj

L

Fn

jk

nz
|1

1
1

1

     k      (27) 

k
ny   {0,1} with ky0  = 0               k, n = F1,...,L1                       (28) 

k
ny   0 and  integer                k, n = F2,...,LT       (29) 

jk
nz   0      j, k, n = F1,...,L1            (30) 

pntQ    0 and integer     p, ,t  n=F1,...,L1             (31) 

pntQ    0      p, ,t  n=F2,...,LT             (32) 


ptI  and 


ptI   0     p, t     (33) 

 

Constraints (13) are now replaced by (21) for the first period and (22) for the 

remaining periods.  As in Araujo et al. (2007), constraints (5) are replaced by (23) 

which impose exactly L/ηt setups in subperiod n, i.e., the number of loads in period t 

divided by the number of subperiods in period t.  For example, period 1 has 10 

subperiods and can handle 10 loads, so L/η1 = 10/10 = 1, whereas period 2 has one 

subperiod and can handle 10 loads, so L/η2 = 10/1 = 10. Constraints (24), as well as the 

strengthening constraints (25), (26) and (27) are now restricted to the first period.  

 

5. Metaheuristics for the Extended Formulation (EF) 

The models were solved on a rolling horizon basis in two steps using the relax-and-fix 

method, as follows: 

Relax all integer variables, except the first day’s binary variables 
k
ny  for n = 

F1,...,L1, these being the most important decisions in the rolling horizon method. Solve 

this relaxed problem. 

Fix the first day’s binary variables
k
ny  at their solution values in step 1. 

Retighten to be integer the
k
ny  variables for the subsequent days (n = F2,...,LT) and the 

xpn variables for the first day (n = F1,...,L1). Solve this partially fixed problem. 



  

 

 

Note that solving the model on a rolling horizon basis means that the initial 

setup state is zeroed as we proceed through the rolling horizon.  This can result in 

slightly different solutions to the Cplex solution of the OF and EF formulations. 

Step 1 is still time-consuming to solve optimally, so a solution is obtained using 

one of the three metaheuristics methods described in this section.   

Step 2 can be optimally solved in a few seconds with Cplex, since a binary 

variable 
k
ny  which is fixed to 1 implies that Qpnt = 0 for all p  S(k), i.e., products that 

do not use material k are not manufactured in subperiod n, thus eliminating many 

integer variables and constraints.  

Consequently, the three solution methods developed in the rest of this paper 

focus on step 1 and are now briefly described.  Details can be found in Araujo et al. 

(2007) 

 

Descent Heuristic (DH) 

Step 1 of the relax-and-fix method can be solved using a local search descent 

heuristic (Araujo et al., 2007) to find the values of the first day’s binary variables
k
ny  

for n = F1,...,L1. The search starts with a random initial solution whose objective 

function value is obtained by solving the linear programme (LP) that results from fixing 

the values of the binary variables. The 
k
ny solution values for day 1 are then randomly 

modified to provide a neighbouring solution whose objective function value is then 

calculated via the dual simplex method to efficiently resolve the modified LP. If it is an 

improvement, the neighbouring solution is adopted as the current one. Experiments 

showed that 1000 iterations are sufficient to obtain a good solution within an acceptable 

running time. 

 

Diminishing Neighbourhood (DN) Search 

This method adapts the local search descent heuristic described above by 

beginning with a large neighbourhood to encourage diversity, and then gradually 

diminishing its size so as to increasingly intensify the search. The search starts with the 

largest possible neighbourhood and after a certain number of iterations the 

neighbourhood size is reduced. The search ends with the smallest neighbourhood where 

just one position is changed. 1000 iterations in total were made. 



  

 

 

 

 

 

Simulated Annealing (SA) 

Simulated Annealing (Eglese, 1990) is a variant of the local search descent 

heuristic that tries to avoid getting trapped at a local optimum by permitting worsening 

moves away with probability: 

    







 



Temp

ofv

eofvp )(            (34) 

where Temp is a gradually-cooling “temperature” and Δofv the amount by which the 

new move worsens the objective value of the solution. As the search progresses, the 

best solution encountered is recorded. 1000 iterations in total were made. The 

parameters used in the tests below were the same as in Araujo et al. (2007).  

6. Computational Results 

This section first describes how the test data was generated.  It then goes on to analyse 

the use of the Cplex 12.0 solver against the metaheuristics from Araujo et al. (2007) on 

the Original Formulation (OF). Then Cplex 12.0 is compared against the metaheuristics 

from Araujo et al. (2007) under the Extended Formulation incorporating the a priori 

constraints (EF + V1 + E1). 

The models were implemented in the AMPL modelling language (Fourer et al., 

2002).  The optimizer Cplex 12.0 used its default parameters.  The tests were carried 

out on an Intel Core 2 Duo CPU P8400 at 2.26 GHz 2.27 GHz with 3.0 GB of RAM, 

under Window Vista Business. 

6.1 Data Generation 

The data set is presented in Table 1.  It is the same as that generated by Araujo et al. 

(2007). The instances have 10, 50 and 100 products (small, medium and large, 

respectively). The capacity can be (loose, tight or too tight) and setup costs are high or 

low, making a total of 3×3×2=18 combinations. Ten replications were run for each of 

the 18 combinations.  The planning horizon extends over 5 periods, each divided into 



  

 

 

10 subperiods.  

 

 

 

[TABLE 1: NEAR HERE] 

 

6.2. Comparing Cplex on the OF formulation against the metaheuristics on 

the OF-RH formulation. 

Table 2 compares the objective function value resulting from an hour of Cplex 12.0 

solving time applied to the original formulation (OF) over the values obtained by the 

Descent Heuristic (DH), Diminishing Neighbourhood Search (DN) and Simulated 

Annealing (SA).  

The heuristic procedures are applied on the rolling horizon-based model RH 

proposed in Araujo et al. (2007). In this paper this model will be called OF-RH. A 

solution to model OF-RH is not a solution to model OF (1)-(9), as just the first loadings 

are scheduled and actually implemented, while the other days are planned only 

approximately. However, the application T times of model OF-RH, starting 

consecutively at periods 1, 2, …, 5, with an always-shortening horizon (T = 5,4,3,2,1), 

will provide a feasible solution to model (1)-(9), enabling a comparison of results.  

 The table shows the percentage mean difference between the Cplex solution 

and the indicated metaheuristic, calculated as: 

%.100
 valuesolutionCplex 

 valuesolutionCplex  -  valuesolution Heuristic









Difference  

Thus a positive difference value provides a % measure of how much better the Cplex 

solution is compared to the heuristic solution.  Conversely, a negative difference value 

indicates how much worse the Cplex solution is compared to the heuristic one. 

 

 

[TABLE 2: NEAR HERE] 



  

 

 

 

 

 

Note from Table 2 that Cplex generally outperforms the metaheuristics for 

small and medium sizes problems, but certainly not for large problems where the 

metaheuristics perform far better.  This is consistent with the generally acknowledged 

advantage that metaheuristics show over mathematical programming for large 

instances. 

6.3. Using Cplex to compare the Original Formulations (OF) and Extended 

Formulations (EF+V1+E1) 

Tables 3 to 5 show the results using Cplex on both the original formulation (OF) and 

the extended one (EF+V1+E1).  The values shown are the means from 10 runs for each 

of the 18 combinations in Table 1 using Cplex for up to an hour, along with upper (UB) 

and lower (LB) bounds.  The gap shown is the percentage mean difference between the 

upper and lower bounds UB and LB.  The nodes and cuts columns show respectively 

the number of nodes and cuts used by Cplex up to the time limit.   

 

 

 

[TABLE 3: NEAR HERE] 

 

 

 

Note that for small instances (Table 3) the results are practically identical, while 

for medium-sized instances (Table 4), the EF always provided slightly better solutions.  

For large instances (Table 5), the EF always provided much better solutions.  These test 

results clearly illustrate that the extended formulation is more efficient and thus more 

effective than the original formulation.  However, note that, for medium and large 

problems, the gaps obtained by Cplex are still large, being more than 60% on average, 

even for the tighter EF+V1+E1 reformulation. 

 



  

 

 

[TABLE 4: NEAR HERE] 
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6.4. Comparing Cplex on the EF+V1+E1 formulation against the metaheuristics 

on the OF-RH formulation. 

Table 6 shows the differences between Cplex 12.0 on the EF+V1+E1 formulation and 

the metaheuristics on the OF-RH formulation.  Note that the EF+V1+E1 formulation 

generally outperforms the metaheuristics in small and medium problems, but not for 

large instances, an observation very similar to that in section 6.2. 
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6.5. Comparing Cplex on the EF+V1+E1 formulation against the metaheuristics 

on the EF-RH+V1+E1 formulation. 

Considering the good results obtained after the resolution of the reformulation with the 

Cplex 12.0, the metaheuristics from Araujo et al. (2007) were adapted for solving the 

EF+V1+E1 reformulation.  The results are shown in Table 7.  Observe that now the 

metaheuristics generally outperforms the EF+V1+E1 formulation in small and medium 

problems, and very clearly so for large instances.  These results are the really 

interesting ones, showing that metaheuristics are very competitive even against a 

strengthened mathematical programming reformulation.  Comparing the three 



  

 

 

metaheurstics, note that simulated annealing (SA) performs best, followed by 

diminishing neighbourhood (DN). 

 

 

[TABLE 7: NEAR HERE] 

 

 

7. Conclusions. 

This paper considered a lot sizing model that sequences the preparation of a key 

material and decides the production lot sizes of the final products.  This class of 

problem is very prevalent in the literature, using GLSP formulations. However, recent 

ATSP-inspired formulations have shown better performance.  Aiming to tighten the 

linear relaxation of the GLSP-type model in Araujo et al. (2007), a reformulation as a 

facility location problem was extended with setup elimination constraints and flow 

equations, strengthening the link between setup and changeover variables.  Three 

different metaheuristics and an industry-standard optimizer were then successfully 

applied to accelerate and improve the solution of both the original and extended 

formulations, particularly applying simulated annealing to the latter.  

Computational tests showed that on the larger instances the metaheuristics 

outperformed Cplex and the reformulated model was more effective than the original 

model.  Jointly applied, the metaheuristics and the extended formulation were effective 

on both small and large sized instances, particularly the latter where metaheuristics 

really show their advantage.  

Future work will extend and adapt the metaheuristics to the case where multiple 

machines process the raw materials, the predominant case in many industrial processes. 

Considering the prevalence of this type of problem, future research should analyse and 

compare the GLSP and ATSP formulations, both theoretically and computationally. 
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Table 1: Parameters used for generating uniformly-distributed test data. 

Parameters Values 

Number of Products and Materials: (P, K) pairs Small Problem: (10, 2) 

Medium Problem: (50, 10) 

Large Problem: (100, 20) 

Number of Periods (T) 5 

Inventory Penalty ( pth
) U[2, 10] 

Backlog Penalty ( pth
) U[20, 100] 

Necessary capacity to produce one unit of product p (p) U[0.1, 3] 

Setup Time (stjk) U[5, 10] 

Setup Penalty (sjk) Low:  50  stjk 

High:  500  stjk 

Demand (dpt) U[40, 60] 

Tightness of Capacity (C) 

Note: LFLC = T

P

p

T

t ppt Ld  1 1
  

 

Loose: LFLC / 0.6 

Tight: LFLC / 0.8 

Too Tight: LFLC / 1.0 

 

  



  

 

 

 

Table 2: Difference (%) between Cplex and the metaheuristics, both on OF 

Methods DH DN SA 

  Setup Cost 

Problem Capacity Small Large Small Large Small Large 

 Loose 25.82 66.46 6.34 59.99 6.34 59.97 

10 products Tight 90.73 60.25 12.89 44.80 6.34 44.82 

 Too Tight 63.47 32.37 -19.12 4.58 -19.99 7.95 

 Loose 30.01 32.35 8.43 12.55 10.73 12.90 

50 products Tight 28.77 15.05 17.65 -2.69 16.52 -1.55 

 Too Tight 27.84 6.73 16.79 -1.89 23.29 -3.27 

 Loose -94.04 -91.69 -94.09 -92.18 -94.14 -92.16 

100 products Tight -86.14 -88.03 -86.43 -88.66 -86.66 -88.68 

 Too Tight -75.31 -82.72 -76.32 -83.91 -76.60 -83.32 

 

  



  

 

 

 

 

 

 

  

Table 3: Tests with 10-product instances 

Problem OF Formulation 

Capacity Setup Cost UB LB Gap (%) Nodes Cuts 

Loose Small 1,961 1,961 0.00 2,910 133 

 Large 13,040 13,034 0.05 6,845,657 145 

Tight Small 1,961 1,961 0.00 1,278 146 

 Large 14,405 14,382 0.16 11,696,057 150 

Too Tight Small 6,262 6,015 3.94 11,149,917 282 

 Large 22,575 22,359 0.96 12,292,987 197 

Mean 10,034 9,952 0.82 6,998,134 175 

  

Problem EF + V1 + E1  Formulation 

Capacity Setup Cost UB LB Gap (%) Nodes Cuts 

Loose Small 1,961 1,961 0.00 2,198 477 

 Large 13,040 12,401 4.90 1,806,223 567 

Tight Small 1,961 1,961 0.00 776 229 

 Large 14,408 14,383 0.17 4,493,654 323 

Too Tight Small 6,327 6,027 4.74 3,186,267 377 

 Large 22,816 22,368 1.96 3,459,528 340 

Mean 10,085 9,850 2.33 2,158,107 386 



  

 

 

 

Table 4: Tests with the 50-product instances 

Problem OF Formulation 

Capacity Setup Cost UB LB Gap (%) Nodes Cuts 

Loose Small 21,154 1,900 91.01 13,314 1,901 

 Large 122,272 2,882 97.64 11,253 2,109 

Tight Small 33,563 8,002 76.16 8,311 2,077 

 Large 147,141 8,255 94.39 7,270 2,272 

Too Tight Small 93,839 42,425 54.79 14,329 1,381 

 Large 212,540 43,799 79.39 11,578 1,396 

Average 105,085 17,877 82.99 11,009 1,856 

  

Problem EF + V1 + E1 Formulation 

Capacity Setup Cost UB LB Gap (%) Nodes Cuts 

Loose Small 19,974 4,912 75.41 12,193 2,938 

 Large 117,433 27,807 76.32 9,591 3,244 

Tight Small 30,515 11,400 62.64 9,252 3,067 

 Large 132,776 33,846 74.51 6,673 3,406 

Too Tight Small 90,254 46,183 48.83 7,524 3,318 

 Large 193,250 68,028 64.80 5,228 3,428 

Average 97,367 32,029 67.10 8,410 3,233 

 

 

  



  

 

 

 

 

 

  

Table 5: Tests with the 100-product instances 

Problem OF Formulation 

Capacity Setup Cost UB LB Gap (%) Nodes Cuts 

Loose Small 3,994,738 35,373 99.11 124 3,085 

 Large 3,566,167 102,836 97.12 185 39,101 

Tight Small 2,561,219 61,540 97.60 225 2,916 

 Large 4,135,672 48,497 98.83 127 2,916 

Too Tight Small 2,316,719 220,323 90.49 290 220,060 

 Large 3,869,352 220,060 94.31 227 2,454 

Average 3,407,311 114,771 96.63 2041 38,923 

  

Problem FE + V1 + E1 Formulation 

Capacity Setup Cost UB LB Gap (%) Nodes Cuts 

Loose Small 140,947 97,523 30.81 723 5,324 

 Large 295,012 117,271 60.25 675 5,742 

Tight Small 718,120 131,557 81.68 442 5,074 

 Large 326,927 151,379 53.60 559 5,647 

Too Tight Small 612,921 293,273 52.15 149 4,087 

 Large 983,102 321,127 67.33 386 5,035 

Average 512,838 185,355 63.86 1,975 4,735 



  

 

 

 

Table 6: Difference (%) between Cplex on EF+V1+E1 and the 

metaheuristics on OF-RH 

Methods DH DN SA 

  Setup Cost 

Problem Capacity Small Large Small Large Small Large 

 Loose 25.82 66.46 6.34 59.99 6.34 59.97 

10 products Tight 90.73 60.21 12.89 44.77 6.34 44.78 

 Too Tight 61.80 30.97 -19.95 3.47 -20.80 6.80 

 Loose 37.69 37.80 14.83 17.19 17.27 17.56 

50 products Tight 41.63 27.50 29.40 7.83 28.16 9.10 

 Too Tight 32.92 17.38 21.43 7.90 28.19 6.38 

 Loose 68.96 27.27 67.53 19.86 66.13 20.09 

100 products Tight -50.57 51.43 -51.60 43.46 -52.43 43.19 

 Too Tight -6.67 -31.98 -10.51 -36.67 -11.54 -34.34 

 

  



  

 

 

 

Table 7: Difference (%) between Cplex on EF+V1+E1 and the 

metaheuristics on EF-RH+V1+E1 

Methods DH DN SA 

  Setup Cost 

Problem Capacity Small Large Small Large Small Large 

 Loose 8.96 

 

58.59 

 

-4.44 

 

7.09 

 

-5.47 

 

2.75 

 10 products Tight 6.93 

 

20.69 

 

-16.18 

 

-12.08 

 

-22.37 

 

-27.11 

  Too Tight 162.86 

 

8.33 

 

-66.92 

 

-53.32 

 

-54.24 

 

-63.10 

  Loose 39.31 

 

-43.27 

 

10.56 

 

-51.24 

 

9.90 

 

-62.65 

 50 products Tight 79.48 

 

-29.62 

 

1.92 

 

-46.08 

 

-20.89 

 

-54.11 

  Too Tight 77.94 

 

17.71 

 

78.47 

 

-41.40 

 

-73.24 

 

-66.34 

  Loose -27.60 

 

-58.15 

 

-32.38 

 

-55.16 

 

-37.32 

 

-63.56 

 100 products Tight -67.26 

 

2.03 

 

-79.87 

 

-49.70 

 

-87.11 

 

-56.30 

  Too Tight -31.83 

 

-37.64 

 

-50.71 

 

-60.93 

 

-67.53 

 

-82.01 
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Highlights 

 A lot sizing and sequencing model with prepared materials is proposed. 

 The prepared materials have sequence-dependent setup costs and times. 

 Reformulation and strengthened constraints improve the model. 

 Three alternative metaheuristics are used to fix the setup variables. 

 The metaheuristics greatly improve performance. 




