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Abstract

Mutual Information (MI) is a popular similarity measure for performing im-
age registration between di↵erent modalities. MI makes a statistical com-
parison between two images by computing the entropy from the probability
distribution of the data. Therefore, to obtain an accurate registration it is
important to have an accurate estimation of the true underlying probability
distribution. Within the statistics literature, many methods have been pro-
posed for finding the ‘optimal’ probability density, with the aim of improving
the estimation by means of optimal histogram bin size selection. This pro-
vokes the common question of how many bins should actually be used when
constructing a histogram. There is no definitive answer to this. This ques-
tion itself has received little attention in the MI literature, and yet this issue
is critical to the e↵ectiveness of the algorithm. The purpose of this paper
is to highlight this fundamental element of the MI algorithm. We present a
comprehensive study that introduces methods from statistics literature and
incorporates these for image registration. We demonstrate this work for
registration of multi-modal retinal images: colour fundus photographs and
scanning laser ophthalmoscope images. The registration of these modalities
o↵ers significant enhancement to early glaucoma detection, however tradi-
tional registration techniques fail to perform su�ciently well. We find that
adaptive probability density estimation heavily impacts on registration ac-
curacy and runtime, improving over traditional binning techniques.
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1. Introduction

Image registration is the task of finding the spatial transformation that
gives correct matching correspondence between two images. Registration is
widely used in many application areas. In particular, registration of images
from di↵erent modalities has become increasingly common in areas such as
Medical Imaging for in-depth patient analysis. However, the di�culty is that
by their very nature, multi-modal image pairs may have no clearly defined
relation between corresponding image intensities.

Mutual Information (MI) has become a popular similarity measure for
multi-modal registration. The algorithm was simultaneously proposed by
both Viola [1] and Collignon [2], and since then has stimulated much inter-
est. Derived from Information Theory, MI is based on statistical comparison
between the two images being registered. This di↵ers from traditional reg-
istration techniques that rely on direct pixel intensity calculation such as
Normalized Cross-Correlation. Given the floating image A and the corre-
sponding area from the reference image B, MI can be defined as:

MI(A,B) = H(A) +H(B)�H(A,B)

where H(A) is the entropy of image A, H(B) is the entropy of image B and
H(A,B) is the joint entropy of both A and B. The transformation that
maximizes MI(A,B) should result in the correct registration. Studholme [3]
extended this by introducing Normalized MI that is designed to handle partial
overlap of the images. This is defined as:

NMI(A,B) = H(A)+H(B)
H(A,B) .

Entropy gives a measure of the amount of information that a given signal
may contain, and forms the basis of MI. For a signal X consisting of n
elements, Shannon’s entropy [4] is defined as:

H(X) = �
nX

i=0

p(i) log2 p(i)
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(a) (b)

Figure 1: (a) Fundus colour photograph. (b) Scanning laser ophthalmoscope image.

where p(i) is the probability of value i occurring within the data set. The
amount of information for a given value is inversely related to its probability,
meaning that if the probability of a particular value occurring is low then
this returns a greater amount of information than if the probability of the
value is high. It can be thought of that the more rare the occurrence of an
event, the more important it is when that event does occur. For an image,
if there are many identical intensity values (such as background) then the
entropy result will be low. However, an image that has lots of detail will
return a much larger entropy, due to having a greater variety of intensity
values. From this description, entropy can also be thought of as a measure
for the dispersion of the probability.

This can be extended further to compute the entropy of two signals,
known as the joint entropy. The joint entropy defines the amount of infor-
mation given by the combination of both signals. Using Shannon’s entropy,
we can define joint entropy of two signals A and B, consisting of n and m
elements respectively, as:

H(A,B) = �
nX

i=0

mX

j=0

p(i, j) log2 p(i, j)

where p(i, j) is the probability of value i occurring in A at the same time
as j occurs within B. From this, it can be seen that it is the probability
distribution of the two images being registered that forms the basis of the MI
algorithm. Therefore how the probability distribution is actually estimated
could have a significant impact on the performance of the MI algorithm.

For this study we are particularly interested in the registration of a
challenging dataset comprised of multi-modal retinal image data. The two
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modalities that are to be registered together are colour fundus photographs
and confocal scanning laser ophthalmoscope (SLO) images (Figure 1). Both
modalities capture high quality images from the eye of the optic nerve head
(ONH), with the fundus photograph recording the clinical appearance and
the SLO image providing quantitative information such as the retinal surface
reflectivity and topographic structure [5]. Whilst it is apparent that similar
features exist in both images it is also very clear that there are significant
di↵erences in how these are represented. Fusion of the two images would
bring together complementary information and improve ONH analysis for
the early detection of glaucoma.

In this paper we conduct a comprehensive study that shows how his-
togram bin size estimation methods can heavily impact on MI registration
results. We present a number of histogram bin size methods from statis-
tics literature (Section 3). We also present alternative probability estimation
methods that have also become popular in the literature (Section 4). Using
these methods we carry out extensive testing of MI registration (Section 5).
Finally, we provide discussion on the study (Section 6).

2. Literature Review

MI relies on a number of factors that need to be carefully considered in
order to perform accurate image registration. Pluim [6] gives a thorough
survey of the algorithm along with an overview of influencing factors that
a↵ect registration performance. Beirlant et al. [7] provides a mathematical
overview of entropy estimation methods and discusses the associated param-
eters. Paninski [8] also looks at the estimation of entropy methods, and
extends this to consider the estimation of MI. The report by Egnal [9] in-
troduces the topic of probability estimation in relation to MI well, and also
introduces the notion of histogramming in relation to MI.

Birgé addresses the issue of histogramming in his comprehensive study [10]
that sets out to answer the question, “How many bins should be put in a reg-
ular histogram?”. Whilst the histogram remains perhaps the most simple to
understand method of probability estimation, there is still no definitive an-
swer to this question. Instead, many previous works tend to use a value that
seems appropriate, with no statistical justification behind this. Certainly in
the MI literature the issue of how many bins to use in the histogram is quite
often over-looked. Many studies seem to take the approach of populating the
histogram by binning equal intensity values together [6]. For 8-bit images,
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the number of bins would cover the full range of 256 gray-levels to maintain
intensity independence, although not necessarily stated. Collignon et al. [2]
do not initially specify bin size, however later work by Maes et al. [11] states
that they use 256 bins. They also mention that they do not investigate the
influence that bin size may have.

More recent works have began to realise the importance of histogram bin
size, however they typically rely on experimental selection rather than on
any statistical basis. Dowson and Bowden [12] make the point that MI is not
invariant to the bin size, although do not demonstrate the e↵ects of altering
this parameter. Lachner states the importance of determining correct bin size
based on the trade-o↵ between histogram variance and bias [13], concluding
that 64 bins provide satisfactory results for their experiments. In contrast
to this, Ritter et al. [14] performs registration of intra-modal fundus pho-
tographs using just 4 histogram bins, again determined through experimen-
tal testing. Nam et al. [15] experiment using 5, 10 and 32 bins, concluding
that 10 bins gives the best results for their data. Similarly, Kang et al. [16]
assessed using 4, 8, 16, 32 and 64 bins, concluding that the best number of
bins is between 4 and 16. It is often suggested, as in [17], to simply use a
power of 2 as a suitable value for bin size, or as in [18], ‘a low number of
bins’.

However, in the statistics literature there has actually been much work
carried out on selecting the optimal number of bins for histogram construc-
tion, with both Birgé [10] and Davies [19] giving comprehensive surveys on
the topic. The earliest work dates back to 1926, when Herbert Sturges pro-
posed a rule to calculate the number of bins based on properties of the data
being organized [20]. Egnal [9] and Lachner [13] actually refer to Sturges’
Rule when discussing MI, however do not draw any conclusions as to whether
this is beneficial to the algorithm. After the introduction of Sturges’ Rule,
it was not until 1979 that perhaps the second most recognized bin size rule
was proposed - Scott’s Rule [21]. It had been suggested that Sturges’ Rule
over-smoothed the histogram and so a better rule was necessary [22]. From
these two rules came many other variations, such as the Freedman-Diaconis
Rule [23], Devroye’s Rule [24], Taylor’s Rule [25] and Doane’s Rule [26].
Further modifications on existing works are also proposed such as Scott’s
Rule with a skewness factor [27] and Sturges’ Rule with the kurtosis of the
histogram [28]. The impact of bin size has also be studied for other applica-
tions, such as by Shimazaki and Shinomoto [29] for the construction of time
histograms.
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From our review of the literature, it is evident that bin size selection has
not been fully explored within MI. However, probability distribution provides
the fundamental basis of the algorithm and could dramatically a↵ect the
registration performance.

3. Histogram Bin Size Selection

When a continuous analogue signal such as an image is discretized for
the purpose of digital processing, artefacts occur due to intensity and spatial
quantization. Probability density estimation is the task of predicting the
shape of the true distribution based on the sampled data set. By finding
the ‘optimal’ probability density representation it may be possible to obtain
an estimate close to that of the original signal. Similarly, by adapting the
probability density representation further, distracting artefacts such as noise
may be reduced to leave only salient features in the image.

The simplest and most common approach to probability density estima-
tion is by use of a histogram. Typically, an image histogram shows how many
occurrences there are of each independent intensity value within the data set.
Each set of occurrences is a ‘bin’ within the histogram. We can also reduce
the number of bins to group together intensities. By grouping intensities,
we can reduce the number of empty bins that occur within the distribution
(since an image will unlikely consist o↵ all possible intensity values). How-
ever, reducing the number of bins too far will degrade the information in the
image dramatically meaning that distinct features are lost. Histograms tend
to take two forms; regular and irregular. When discussing the number of
bins for a histogram it is typical to use a regular histogram where bin width
is uniform throughout. Irregular histograms, whilst they can provide greater
flexibility in classification, would most likely require some intervention by the
user which makes this unsuitable for an automated registration procedure.

In Section 2 we have shown that there are many statistical methods for
computing bin size selection, although these are not commonly adopted in
Computer Vision applications. Unfortunately, of all these methods, there is
no single approach that is universally recognized as the best approach for
bin size selection. This is because each method relies on assumptions of the
underlying data, i.e. what model is chosen to fit that distribution. Typically,
how well a model can be fit to the data is measured by a loss function that
is to be minimized. The Hellinger Distance and Ln-norms are two common
loss functions that may be used to evaluate the construction of a regular
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histogram. For a review of loss functions in application to regular histograms,
see Birgé and Rozenholc [10]. It is the combination of the di↵erent possible
distribution models and the di↵erent possible loss functions that leads to the
large number of methods in the statistics literature for selecting the possible
number of bins.

For our study, we are constructing the histogram for the purpose of further
processing, and so we are not concerned with whether the distribution can
improve a particular loss function as such. Instead, we assess each method by
how well it can improve registration. We wish to minimise the registration
error by adopting di↵erent bin size selection methods. The method that
results in the least error can be regarded as the most suitable bin size selection
method for registration.

3.1. Sturges’ Rule

Sturges’ Rule [20] was originally proposed in 1926 and is still commonly
used today in many statistical computer packages. The rule provides a simple
formula that is based on properties from the data being classified in the
histogram. Sturges’ Rule makes the assumption that a histogram consisting
of Normal data can be approximated by a binomial distribution. The rule
defines the bin width as w = 1 + log2(n) where n is the number of elements
within the data set. We can then simply determine the number of bins to be
r/w where r is the range of the data set. Since Sturges’ Rule assumes that
the data is normally distributed it could then give inaccurate results where
this does not hold true.

Figure 2 shows an example of applying Sturges’ Rule to the fundus pho-
tograph and the SLO image. Both of these images are 259 ⇥ 266 pixels,
meaning that there are 68096 pixels in each image. By applying Sturges’
Rule, it can be seen that the number of bins in the histogram is reduced
significantly. For the original fundus image there are 204 occupied bins (i.e.
unique intensity values in the image), which can be reduced to just 19 bins
after applying Sturges’ Rule. Likewise, for the SLO image this reduction is
from 246 to just 19. The number of pixels and the data range are the two
main factors in Sturges’ Rule.

There are two benefits that the new histogram can o↵er. Firstly, the
original histogram consists of frequently unpopulated bins, which are likely
an artefact created by the discretization of the data during image acquisition.
By grouping intensities together we can eliminate such artefacts and populate
all bins in the distribution. Secondly, entropy is computed as a summation
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Figure 2: Fundus image and associated histogram (a) original, (b) computed using Sturges’
Rule (19 bins), (c) computed using Scott’s Rule (84 bins). SLO image and associated his-
togram (d) original, (e) computed using Sturges’ Rule (19 bins), (f) computed using Scott’s
Rule (62 bins). Image representations are modified based on the number of histogram bins.

of all probabilities in the data set, which means that if there are less unique
intensity values then less calculation is required leading to improved runtime.

It is also important to see how the reduced intensity images replicate the
originals. It can be seen that the fundus image has lost much detail in the
background and created a ‘patch-like’ e↵ect of intensity regions, yet the key
features such as the blood vessels and the optic disc still appear very clear.
This reduction of intensities could be regarded as ‘cleaning up’ the image,
by eliminating noisy artefacts such as the background that could quite easily
mislead the registration. In the case of the SLO, whilst there is a similar
reduction to the number of unique intensities, the appearance does not look
particularly di↵erent. In this situation, the process manages to preserve much
of the original detail although we still benefit from the fact that the number
of intensities is heavily reduced.

3.2. Scott’s Rule

Scott’s Rule [21] is similar to Sturges’ Rule, however is based on the
standard deviation of the data. Given two di↵erent images that have the
same intensity range and same size, Sturges’ Rule would give identical bin
size whereas Scott’s Rule would give a bin size based on the actual intensity
values being considered. Scott’s Rule defines the bin width as 3.49�n�1/3,
where � is the standard deviation of the data and n is the number of elements
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within the set. As with Sturges’ Rule, this assumes that the data is Normal.
Figure 2 also shows the a↵ect of applying Scott’s Rule to the images.

Whereas Sturges’ Rule reduced the number of unique intensity values to just
19, Scott’s Rule suggests that 84 and 62 bins should be used for the fundus
photograph and the SLO image respectively. Comparing the histograms, it is
clear that Sturges’ Rule reduces the number of intensities greatly and so the
histogram now consists of larger steps between each intensity bin. However,
Scott’s Rule reduces the bin size whilst maintaining a relatively small step
size between each intensity bin in the histogram. For the SLO image, the
histogram representation using Scott’s Rule is very similar in shape to that
of the original image. This highlights the trade-o↵ between using low number
of bins whilst trying to preserve the original probability density estimation.

3.3. Variations based on Scott’s Rule and Sturges’ Rule

The introduction of Scott’s Rule gave birth to many variations on the rule
that could be used for bin size selection. Taylor [25] and Kanazawa [30] give
the bin width as 2.29�2/3n�1/3, whilst Devroye and Györfi [24] give the bin
width as 2.72�n�1/3. Freedman and Diaconis also took a similar approach
that is described as more robust to Scott’s Rule [31], using the interquartile
range (IQR) of the data, which gives the bin width as 2(IQR)n�1/3.

As mentioned previously, both Sturges’ Rule and Scott’s Rule (and its
variants) assume that the data consists of a Normal distribution. In Figure 2
it can be seen that this is not the case as both histograms are skewed. Since
it is known that the data does not fit the assumptions of the model, the
obtained results are likely to be sub-optimal. Typically, it is thought that
these methods suggest too few bins (or rather, the equivalent being too large
a bin width). Doane [26] proposed a method that extends Sturges’ Rule to
account for the skewness of the data. Given that n is the number of elements,
Xi is an element in the set and X̄ is the mean of the set, Doane proposes the
number of bins as:

log2(n) + 1 + log2(1 +

p
b

�
p
b
)

where

p
b =

Pn
i=1(Xi � X̄)3

[
Pn

i=1(Xi � X̄)2](3/2)

and
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�
p
b =

s
6(n� 2)

(n+ 1)(n+ 3)
.

Scott also proposes a method that extends his own method, where Scott’s
Rule is multiplied by a skewness factor [27], as defined by:

skewness factor =
21/3�

e5�2/4(�2 + 2)1/3(e�2 � 1)1/2
.

By considering the extent of the skew, these approaches tend to recommend
using a slightly greater number of bins for the histogram.

Similar to measuring the skewness factor, we can also consider the kur-
tosis of a histogram. What the kurtosis measures is how peaked or flat the
distribution is in comparison to a Normal distribution. If the data has a
high kurtosis then the data has a distinct steep peak close to the mean of
the data. A low kurtosis shows that the data has a much flatter distribution.
Kurtosis is defined as:

K =

Pn
i=1(Xi � X̄)4

(n� 1)�4

where n is the number of elements, X̄ is the mean of the data and � is the
standard deviation. In Wichard [28], Sturges’ Rule is adapted to include the
kurtosis measure, given by:

log2(n) + 1 + log2(1 +K ⇤
p

n/6)

We have presented a number of di↵erent bin size strategies that rely
of di↵erent statistics of the data. Sturges’ rule simply uses the number of
elements in the data, whereas Scott’s rule (and its variants) make use of
the standard deviation of the data. Freedman and Diaconis use the IQR of
the data instead of the standard deviation. Finally, we have seen methods
that introduce skewness (Doane and Scott) and kurtosis (Wichard) measures
regarding the data distribution. By incorporating such statistics we develop
a greater understanding of the data which can be used to create an improved
model for the probability distribution. Whilst there is no formally correct
solution for how the data should be binned, we are interested to see whether
a particular bin size method can improve registration accuracy when used to
compute MI.
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3.4. Joint Histogram Bin Size

In order to compute MI, we need to consider probability estimation from
not only the marginal histogram, but also the combined joint histogram.
There is little mention in the literature regarding joint histogram bin size
selection. Most existing works tend to take the original histogram bins to
a power of 2 (e.g. 2562 = 65536 bins). Xie [32] suggests that as a rough
guide, the number of bins used for the joint histogram should give an average
of at least one sample per bin. As with the standard histogram, ideally
there would be no empty bins within the distribution and so this approach
seems plausible, however it is not derived from any statistical justification.
Moreover, such an approach is likely to greatly underestimate the number
of bins for the joint histogram, resulting in much loss of data with regards
to the intensity correspondence between the two images. We decide to use
an m ⇥ n joint histogram, where m is the number of bins to use for our
floating image and n is the number of bins to use for our reference image, as
determined by the bin size selection methods discussed previously. In doing
this, we maintain the statistical relationship with the marginal probability
estimation. This approach eliminates a large number of redundant empty
bins compared to when using 2562 bins, whilst also preserving enough bins to
ensure that the probability estimation remains meaningful. We acknowledge
that this approach is not optimal, however it does serve to draw the attention
of the community to the importance of bin size in joint probability estimation.
The topic of joint probability estimation remains a largely unexplored topic
for MI, and is outside the scope for this current work.

4. Alternative Methods for Probability Density Estimation

Along with histogram bin size we also investigate into alternative prob-
ability estimation methods which we include in our experimental testing.
Whilst these methods are more computationally demanding, it is thought
that they give a closer representation of the original signal.

4.1. Kernel Density Estimation

Kernel Density Estimation [1] aims to resolve the disadvantages of a his-
togram, most notable being the lack of a continuous function due to its
step-like fashion. The method adapts the traditional histogram by convolv-
ing the histogram with a fixed kernel [33]. By doing so, each point in the
distribution is spread over multiple bins based on the chosen kernel which
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reduces the e↵ect of discrete bin entries. The shape of the kernel determines
how the data is spread in the distribution. To show how this method relates
to the histogram, supposing we chose the kernel to be a square block, with
a width equal to our histogram bin width, then this would essentially be
equivalent to our original histogram. However, if we choose the kernel to
be a smooth Gaussian curve, this can provide a much more desired result.
Similar to this is the idea of using a B-Spline curve to spread the probability
distribution in the same fashion [34]. As well as the shape of the kernel, we
need to ensure that the kernel size is chosen well to suit the distribution. If
the kernel is too small or too large this would lead to an under-smoothed or
over-smoothed distribution respectively.

4.2. k-Nearest Neighbour Density Estimation

The k -Nearest Neighbour (kNN) approach [35] is a commonly used tool
for classification that relies on computing the average distance between a
given point and its k -nearest neighbours within the data set. Clearly this
method is highly dependent on neighbouring data points, and also takes into
account the spread of the data. Essentially, kNN is closely related to KDE
then. In KDE, the kernel remains a fixed size and captures a variable number
of samples at each data point. In kNN, the kernel size becomes variable so
as to capture a fixed number of samples as defined by k. As with previous
methods, careful parameter selection for k is important, causing an under-
smoothed or over-smoothed distribution if set too low or too high. In the
current literature, it is recognized that kNN can be very computationally
expensive for large data sets [36]. This is due to computing the size of the
kernel based on the neighbourhood points for every element in the data set.
In the context of MI registration, this could easily become exceptionally
expensive leading to an impractical system for performing fast registration.

4.3. NP-Windows

NP (Non-Parametric) Windowing is a method proposed by Dowson et
al. [37] which aims to improve the probability distribution by e↵ectively sam-
pling the image at an infinite resolution. One advantage that NP-Windows
has over other approaches we have seen is that it does not require any pa-
rameters to be selected beforehand. Given an intensity at point (x, y) in the
image, along with three neighbouring intensities at points (x+1, y), (x, y+1)
and (x + 1, y + 1), rather than populating just these bins in the histogram,
they create two triangles using these intensity points, and then determine all
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the intensities that occur within the triangle area. Each intensity bin is then
incremented based on the area of the two triangles. This approach accounts
for absent intensity variations between a pixel and its neighbour, as before,
aiming to reduce the artefacts introduces by pixel discretization. Rajwade
proposed a similar idea [38] that interpolates the image to an infinite reso-
lution. This approach could be seen as histogram interpolation, whereby we
could scale the histogram by a given factor and then scale back to the original
size. The scale factor would a↵ect how much smoothing is introduced into
the histogram, but also lead to expensive computation to perform. Com-
pared to standard histogram binning this method is very slow to compute,
which due to computational demands of the algorithm is not surprising. We
note that the authors’ work suggests using GPU optimization to compute
NP-Windows in a satisfactory time, however this is beyond the scope of our
study.

5. Evaluation of Probability Density Estimation Methods

The data set used consists of 135 matching image pairs captured from the
human eye. For each pair, there is a colour fundus photograph and an SLO
image. The original resolution of each fundus photograph is 3008⇥1960. The
SLO images are captured using the Heidelberg Retinal Tomograph II (HRT
II) [39] device. The field of view for each SLO image is 15⇥15 degrees and the
original resolution is 384⇥ 384. The data set consists of both left and right
eyes and shows various stages of the glaucoma disease ranging from no sign
of infection to highly glaucomatous. Whilst all the SLO images are of a high
clinical standard, there are some cases where slight blurring has occured in
the image. This is due to subtle movement in the eye during the acquisition
process (microsaccades). The data set represents a wide variety of di↵erent
scenarios that a clinician would encounter when capturing these two image
modalities. All images were taken by an expert clinician, who also provided
ground truth data using a manual alignment tool developed specifically for
this task. For this study, we perform registration to assess the e↵ect of
probability estimation in MI and Normalized MI. In order to evaluate the
registration accuracy we will consider a variety of di↵erent implementations.

Registration can be thought of in two parts: the transformation search
that maps the floating image to the reference image and the similarity mea-
sure that makes the comparison between the overlap of the two images (which
in this study is MI). How the transformation search is performed can great
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impact both the registration accuracy and runtime e�ciency. A naive ap-
proach would use an exhaustive search that considers all possible transfor-
mations. Even for just rigid transforms only (rotation and translation) this
is far too time-consuming and not practical. Instead, an optimized search
scheme is required. In our testing we shall consider two well-known optimiza-
tion methods; Nelder-Mead Simplex and Simulated Annealing (details and
implementation for each of these can be found in [40]). Whilst these schemes
can speed up the search process, it should be noted that they can also give
incorrect results should the search space contain local maxima that ‘trap’ the
search process. Therefore it is important that the search scheme works well
in conjunction with the similarity measure. We choose Nelder-Mead Simplex
and Simulated Annealing since these are two common optimization methods
that are well-known within the community. While many alternative search
optimization schemes exist, it should be recognized that the main focus of
this paper is to improve the similarity measure being optimized. By improv-
ing the convergence of the similarity measure, there becomes less uncertainty
in the performance of the optimization method.

Another possible technique to improve registration is the inclusion of
a multi-resolution image pyramid. Registration is performed at the coarse
(top) level of the pyramid which acts as the initialization point for the next
level down. This is done for each level of the pyramid until reaching the fine
(bottom) level which consists of the original image. This approach can dra-
matically improve runtime since the low resolution images can be processed
quicker and are used to initialize registration of the high resolution images.
Multi-resolution pyramids are also commonly used in 3D and 4D registration
schemes. So whilst the original image data may have many more data points
than our 2D registration example, the coarse levels of the pyramid will ac-
tually be quite similar, meaning that the same bin size strategies could be
applied also.

As part of our testing we shall consider registration both with and with-
out an image pyramid. We use a 3-level pyramid where the image is taken
at full, half and quarter resolution. In each case, registration is initialized
by placing the template image in the centre of the reference image. We use
search optimization strategies to find the translation parameters. The ro-
tation parameter is known to be within ±3� (with 0.5� increments). Since
the rotation parameter space is much smaller than the translation space, we
choose to search all possible values within this range at the coarse pyramid
level. This ensures that the correct rotation parameter is tested by the reg-
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Method Mean Median Regerr Runtime

T R T R

256 bins 154.5 2.8 154.7 2.5 154.4 2.77
128 bins 141.7 2.5 148.4 2.5 141.8 2.19
64 bins 99.0 2.3 121.8 1.5 99.5 2.14
32 bins 64.8 2.1 46.8 1.5 65.6 2.13
16 bins 52.9 2.1 32.9 1.5 54.0 2.14
8 bins 49.8 1.8 31.1 1.5 50.9 2.15

4 bins 52.9 2.2 37.3 1.5 54.3 2.18
devroye 42.5 1.9 18.4 1.5 43.7 2.62
doane 54.2 2.1 28.1 1.5 55.6 2.42
fd 42.7 2.1 22.0 2.0 44.0 3.72
scott 44.9 1.8 18.9 1.5 46.1 2.63
+skewness 41.7 1.9 15.8 1.0 43.2 5.70

sturges 51.5 2.0 25.6 1.5 52.6 2.30
+kurtosis 51.5 2.3 29.0 2.0 52.7 3.72
taylor 94.8 2.2 106.1 2.0 95.3 2.89
kde (9) 64.5 2.2 40.6 2.0 65.6 4.51
kde (17) 56.6 2.1 26.5 1.5 57.7 5.11
kde (33) 54.3 2.1 29.4 1.5 55.5 6.19
knn (8) 50.6 1.9 25.8 1.5 51.8 102.76

knn (16) 51.7 2.0 26.3 1.5 52.9 120.09
knn (32) 51.6 2.0 25.2 1.5 52.9 125.45
npwin 59.2 2.0 42.2 1.5 60.1 84.99

Table 1: Registration error results: MI combined with an image pyramid using simplex
search. Table shows fixed bin size (top), adaptive bin size (middle), and alternative esti-
mation methods (bottom). Translation and Regerr are given in pixels, rotation is given
in degrees, and runtime is given in seconds.

istration algorithm, and aims to minimize the possible error that could be
introduced by using a search optimization strategy. As the pyramid is tra-
versed the rotation search space becomes further restricted, converging to a
fixed parameter by the lowest level of the pyramid. For our testing where
no image pyramid is used, the full rotation range is allowed throughout the
registration.

For our study, we developed a MATLAB implementation for perform-
ing multi-modal image registration. For search optimization, we use the
built-in MATLAB implementation of the Nelder-Mead simplex algorithm
(fminsearch), and the implementation by Vandekerckhove of Simulated An-
nealing (available from MATLAB Central [41]). Experiments were conducted
on a standard desktop PC machine configured with a Pentium 2.6GHz dual-
core processor, 4GB of memory, and Windows 7 operating system. The regis-
tration software developed and a subset of the image data are both available
to download by request to the authors.

5.1. Registration Error Results

To quantify the results of our experiments, we compare the registration
results to the ground truth registration results as approved by an expert
clinician. We compare the mean and median translation error T (measured
in pixels) and rotation error R (measured in degrees), along with the mean
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Method Mean Median Regerr Runtime

T R T R

256 bins 142.5 2.8 154.7 2.5 142.2 17.40
128 bins 140.1 2.5 141.3 2.0 140.2 13.39
64 bins 125.7 2.3 137.5 2.0 125.9 12.64
32 bins 98.5 2.1 122.9 1.5 99.1 12.71
16 bins 78.9 1.9 84.8 1.5 79.5 13.12

8 bins 80.6 2.2 92.9 2.0 81.6 13.07
4 bins 92.1 2.5 97.6 2.5 92.8 13.28
devroye 61.2 1.8 22.0 1.5 62.1 16.79
doane 76.1 2.0 82.5 1.5 76.9 15.49
fd 45.6 1.9 27.6 1.5 46.6 27.19

scott 55.9 1.8 23.0 1.5 56.9 16.80
+skewness 57.4 1.9 21.0 1.5 58.3 38.26
sturges 76.6 2.1 70.3 1.5 77.2 14.33
+kurtosis 77.2 2.1 83.4 1.5 78.1 32.32
taylor 132.6 2.4 141.5 2.5 132.7 20.73
kde (9) 100.6 2.2 120.4 2.0 101.1 32.99
kde (17) 87.1 2.4 102.2 2.0 87.8 39.06
kde (33) 76.6 1.9 78.3 1.5 77.3 49.47
knn (8) 83.5 1.9 103.3 1.5 84.3 894.54
knn (16) 82.9 2.1 96.6 2.0 83.5 920.32
knn (32) 80.9 2.0 91.1 1.5 81.4 1099.40
npwin 69.5 2.3 69.5 1.5 70.4 742.13

Table 2: Registration error results: MI combined with an image pyramid using simulated
annealing. Table shows fixed bin size (top), adaptive bin size (middle), and alternative
estimation methods (bottom). Translation and Regerr are given in pixels, rotation is given
in degrees, and runtime is given in seconds.

registration error based on the 4 corner points of the template image, defined
as Regerr (measured in pixels). This is calculated by measuring the distance
for each corner point between the registration result and the ground truth.
Each experiment is carried out using the complete set of 135 retinal image
pairs. Four scenarios were tested in our experiments: MI with an Image
Pyramid, NMI with an Image Pyramid, MI without an Image Pyramid and
NMI without an Image Pyramid. In this paper we report only the most
significant results. The complete set of results can be found in [42].

5.1.1. MI with a Multi-Resolution Image Pyramid
Tables 1 and 2 show a great di↵erence in transformation error between the

di↵erent probability estimation methods. It can be seen that using 256 bins
in the histogram gives the worst result. Whilst a typical image histogram
may consist of 256 bins, it seems that this does not yield great results when
there is further processing to be done such as constructing a joint histogram.
This is most likely due to sparsely-populated bins within the joint histogram
that can lead to a poor entropy estimate. Previous studies have suggested
that a low number of bins should be used for the histogram which can be
observed in the table. As the number of fixed bins reduces, the registration
error is minimized. We noted earlier that no suggestion to how low this
number of bins should be is given and that many papers tend to find the

16



Figure 3: Boxplot of Regerr for MI simplex registration. Bounding box defines the
interquartile range, the star defines the mean and the bar across defines the median.
Whiskers define the range and the cross defines any outliers.

number of bins through experimental testing. Of the fixed bin methods,
it can be seen that 8 bins gives the lowest registration error when using
Simplex and 16 bins gives the lowest registration error when using Simulated
Annealing. However, in both cases, using fewer bins than this meant that
the registration error increased. This shows then that by using too few bins
will degrade registration since salient features in the image are being lost.

When using statistical bin size methods the registration error is reduced
further. From these results there are four methods that perform consis-
tently better than fixed bin methods and the advanced probably estimation
methods: Devroye’s, Freedman-Diaconis’, Scott’s and Scott’s Rule with the
skewness factor. The only method that seems to perform poorly in relation
to the others is that of Taylor and Kanazawa, giving a result similar to using
64 fixed bins. For the four methods that perform best, it can be seen that
Scott’s Rule combined with the skewness factor gives the lowest translation
error T , whilst Scott’s Rule gives the lowest rotation error R. If we consider
only the registration error as given by Regerr, it is Scott’s Rule with the
skewness factor using the simplex search that achieves the lowest overall reg-
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Figure 4: MI registration using four di↵erent binning methods. (a) Scott’s Rule, (b) 4
bins, (c) 8 bins, (d) 16 bins. Of all methods, only (a) aligns the images correctly.

istration error. These results clearly suggest that statistical bin size selection
helps to improve the result for MI registration. Figure 3 shows this trend
using a box plot. The mean registration error Regerr can be plotted for each
method allowing us to visualize the results in a clear and concise manner.

Figure 4 shows a registration example using Scott’s histogram rule com-
pared to using fixed histogram bin size. In each case where fixed bin size is
used, MI fails to successfully register the two images together. The same is
also true for when larger fixed bin sizes were used (32, 64, 128 and 256 bins).
However, we see that when Scott’s rule is used for adaptive bin size selection,
the two images are aligned correctly. This highlights the important fact that
careful bin size selection is required and that it is not simply just a case of se-
lecting a low number of bins as has previously been suggested [14, 18, 15, 16].

5.1.2. Overview of remaining testing scenarios
Tables 3 and 4 give an overview of registration error for our remaining

testing scenarios: NMI using an image pyramid, MI with no pyramid and
NMI with no pyramid. The complete set of results can be found in [42].

A similar trend is apparent when using NMI as was seen with MI. In most
cases it was seen that using adaptive histogramming techniques improved the
result over that of fixed bin sizes, and 256 bins was always found to give the
worst performance. From the table, we find that using Scott’s Rule combined
with simulated annealing and no image pyramid gave the lowest registration
error. Compared against the same experiment when using simplex search,
the registration error is much greater. Here, it is the search strategy that
has failed to find where the similarity measure is maximized rather than the
similarity measure not giving the correct result. If the search space consists
of many local maxima then it is quite possible that the search algorithm may
not find the maximum solution. This highlights the important issue of min-
imizing the presence of local maxima that the similarity measure generated
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Method Mean Median Regerr Runtime

T R T R

NMI Pyramid

256 bins 159.2 2.9 159.8 2.5 158.9 2.69
32 bins 56.1 2.1 27.7 1.5 57.2 2.16
16 bins 48.8 2.1 24.3 1.5 49.9 2.14
8 bins 42.5 1.8 19.0 1.5 43.5 2.15

4 bins 51.9 2.2 37.0 2.0 53.3 2.16
devroye 48.1 1.9 23.0 1.5 49.2 2.63

fd 48.4 2.0 31.3 1.5 49.5 3.72
scott 50.8 1.9 20.0 1.5 52.0 2.62
kde (9) 58.3 2.2 28.1 2.0 59.5 4.48
kde (17) 52.4 2.0 25.1 1.5 53.5 5.11

kde (33) 52.9 2.1 28.3 1.5 54.1 6.17
MI NoPyramid

256 bins 94.3 2.1 114.5 1.5 94.7 10.33
32 bins 50.2 1.8 26.1 1.5 51.1 9.01
16 bins 50.6 1.9 25.8 1.5 51.6 8.99
8 bins 49.0 1.9 27.0 1.5 50.1 8.99

4 bins 52.9 2.3 35.7 2.0 54.2 8.97
fd 43.2 1.7 17.1 1.0 44.2 21.33

scott 43.6 1.8 16.1 1.5 44.7 11.99
knn (16) 49.9 1.7 23.3 1.0 50.9 617.17
knn (32) 49.9 1.5 23.3 1.0 50.8 752.39

NMI NoPyramid

32 bins 48.7 1.8 19.6 1.5 49.7 8.88
16 bins 48.6 1.7 19.2 1.5 49.7 8.89
8 bins 43.9 1.7 21.9 1.0 45.1 8.86

4 bins 49.8 2.2 32.4 1.5 51.1 8.86
sturges 45.7 1.8 13.6 1.0 46.8 9.67

+kurtosis 45.9 1.7 14.6 1.5 47.0 20.35
kde (17) 49.1 1.8 22.2 1.5 50.2 12.92

Table 3: Registration error results using simplex search for three scenarios: NMI com-
bined with an image pyramid, MI with no pyramid, NMI with no pyramid. (Summary of
significant results shown). Translation and Regerr are given in pixels, rotation is given in
degrees, and runtime is given in seconds.

within the search space. Likewise, it is interesting to observe the di↵erence
between when using an image pyramid. It can be seen that registration per-
forms best when no image pyramid is used, however runtime is significantly
increased. The issue of local maxima becomes more apparent when the im-
age pyramid is used, to the extent that in some cases the registration fails
to recovers at the lower levels of the pyramid. Whilst the improvement to
runtime is beneficial, the accuracy of the registration is vital, and so the
similarity measure should aim to reduce the occrrence of local maxima.

In terms of runtime, it is clear to see that there is great variation depend-
ing on the chosen testing scenario. Using either fixed bins or adaptive bin
size, the results in Table 1 are between 2-5 seconds when using simplex search
strategy, and between 12-38 seconds when using simulated annealing. When
using more advanced methods of probability estimation such as kNN and
NP-windows, the runtime becomes much longer. This becomes even more
apparent in our other testing scenarios, where no image pyramid is adopted.
The complexity of computing the probability estimation using such an ap-
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Method Mean Median Regerr Runtime

T R T R

NMI Pyramid

256 bins 146.6 2.5 148.4 2.0 146.8 24.11
32 bins 104.6 2.1 127.0 2.0 105.2 14.26
16 bins 78.4 2.1 81.3 1.5 79.1 14.39
8 bins 75.9 2.2 83.5 1.5 77.2 14.37

4 bins 87.6 2.4 91.2 2.0 88.3 14.16
devroye 91.7 2.1 108.2 1.5 92.2 19.53
fd 65.8 1.9 49.3 1.5 66.4 33.65

scott 83.9 2.1 90.7 1.5 84.4 19.61
kde (9) 105.8 2.3 130.4 2.0 106.5 42.46
kde (17) 90.9 2.1 106.2 1.5 91.4 49.59
kde (33) 84.6 2.2 100.1 2.0 85.5 65.20

MI NoPyramid

256 bins 58.3 1.8 47.5 1.5 59.1 70.93
32 bins 35.3 1.7 6.1 1.0 36.5 54.54
16 bins 35.1 1.7 6.3 1.0 36.3 57.39

8 bins 43.2 1.9 18.1 1.5 44.4 57.81
4 bins 52.4 2.1 46.1 1.5 53.4 58.64
fd 28.1 1.6 5.4 1.0 29.1 152.99
scott 26.3 1.5 5.4 1.0 27.5 76.29

knn (16) 27.2 1.5 6.1 1.0 28.9 4983.70

knn (32) 27.5 1.6 6.1 1.0 29.4 5217.90
NMI NoPyramid

32 bins 34.7 1.6 5.7 1.0 35.7 63.84

16 bins 37.2 1.6 6.7 1.0 38.1 60.30
8 bins 40.0 1.6 12.4 1.0 41.1 60.04
4 bins 51.1 2.1 39.7 2.0 52.2 60.11
sturges 35.8 1.6 6.3 1.0 36.8 65.33
+kurtosis 30.6 1.6 5.1 1.0 31.8 175.54

kde (17) 37.9 1.9 7.6 1.0 39.0 100.71

Table 4: Registration error results using simulated annealing for three scenarios: NMI
combined with an image pyramid, MI with no pyramid, NMI with no pyramid. (Summary
of significant results shown). Translation and Regerr are given in pixels, rotation is given
in degrees, and runtime is given in seconds.

proach means that it is not suitable for use in a registration scheme. Of
course, as we have already discussed, the methods with low runtime may
not necessarily provide the correct registration, and so there is a trade-o↵
between runtime and accuracy. Computing MI using Scott’s rule with no
pyramid, and searching with simulated annealing we achieve a runtime of
76.29 seconds. This runtime is reasonably acceptable and also delivers the
greatest registration accuracy.

6. Discussion

In this study we have explored the e↵ects of probability estimation as
part of the MI similarity measure. Since MI is based upon the entropy calcu-
lation of the probability distribution, how the distribution is computed can
play a crucial role in the registration accuracy. Typically, when constructing
a histogram for an image, many people would assume to use 256 bins so that
each intensity is binned independently. Certainly in the case of MI, we can
see this approach gives very poor results. Some studies suggest using a lower
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(a) (b) (c)

(d) (e) (f)

Figure 5: Surface plots showing MI (y-axis) vs. X-Translation (x-axis) using fixed bin
sizes. (a) 256, (b) 128, (c) 64, (d) 32 (e) 16 and (f) 8 bins. The red line indicates the point
that should be maximized by MI in each plot.

number of fixed bins [17], which we observe in our results can improve reg-
istration. We have incorporated adaptive bin size techniques from statistics
literature within registration, and found Scott’s Rule, Scott’s Rule with the
skewness factor, Devroye’s Rule and Freedman-Diaconis’ Rule, to give the
most accurate registration.

We have also compared the statistical bin size approach to other probabil-
ity estimation methods; Kernel density estimation (KDE), k-Nearest Neigh-
bours (k-NN) and NP-windows, and include these in our testing strategy.
The results show that there is no significant improvement to registration ac-
curacy when using these methods compared to the simple histogram, however
they take longer to compute. Finally, we have considered the impact that
the search optimization scheme can have on registration and also the e↵ects
of incorporating an image pyramid as part of the registration search process.

It is surprising to see that 256 bins gives such weak results in comparison
to the other methods and so we investigate this further. Figure 5 shows the
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MI results when registering a pair of retinal images (Figure 1), computed only
for the X-translation, using di↵erent bin sizes. Reducing the parameter space
allows us to clearly visualize the di↵erence in the similarity measure. The
expected point of registration is given by the dashed vertical line. Using 256
bins, the true registration is a local maximum but not the global maximum.
As the bin size is reduced, the true registration becomes more prominent.
Even when the true registration is the global maximum (32, 16 or 8 bins),
there are other local maxima that could impact on the search strategy. It
has been discussed previously that a sparsely-populated histogram will give
poor estimation of entropy [43]. By using statistical methods, we can now
determine a suitable number of bins rather than simply choosing an arbitrary
number of bins in the hope that it performs well.

Interestingly, in some particularly challenging cases, we found that the
failure of registration to be as a result of weaknesses in the MI algorithm.
Figure 6 shows an example of this from our retinal image dataset. In 6(a), MI
fails to register the two images. However, the MI score is actually maximized,
giving a better result than the ground truth registration 6(b). This result
is noticeable for this particular example for all probability estimation meth-
ods covered in this study. This highlights that whilst statistical probability
estimation may improve upon traditional techniques, MI is still not a fully
reliable similarity measure. Kubecka et al. [44] also studied the registration
of these two image modalities using MI, and whilst they did not consider the
a↵ect of bin size estimation, they did conclude that “the mutual information
had global extreme out o↵ the point of subjective registration”. They do not
give quantitative results for using MI. It is recognized that MI lacks spatial
information [6], which if this was incorporated into the algorithm could help
to improve registration performance. Some more recent methods consider
this (e.g., [45, 46, 47, 48]), however they are more computational-intensive
than MI and have significantly longer runtime requirements.

7. Conclusion

We have investigated the Mutual Information registration algorithm and
highlighted the importance of probability density estimation as part of the
algorithm. In constructing the histogram for probability estimation, we show
that careful bin size selection does have a direct impact on the registration
result. Many previous studies using MI omit this detail or do not truly
consider how this could a↵ect the accuracy of registration. We have con-
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(a) (b)

Figure 6: An example of di�cult registration. (a) Registration given by maximum MI.
(b) Ground truth registration.

ducted a comprehensive empirical study for performing image registration
that demonstrates the impact of adaptive bin size selection methods, as well
as other registration parameters such as search optimization strategies and
inclusion of an image pyramid. We show that this approach can improve
upon fixed bin size methods, and significantly reduces the need for extensive
experimental testing to find a suitable number of bins [14, 13, 15, 16].

Previously, many MI registration applications have focused on common
modalities such as MR and CT imaging without much concern regarding bin
size, and have enjoyed great success. As more advanced imaging technolo-
gies are introduced though, traditional MI registration may not su�ce for
accurate results. We have seen that this is the case for multi-modal reti-
nal images, and that registration parameters needs to be considered more
carefully for challenging modalities. Likewise, we would expect that other
modalities such as PET/CT registration would also benefit from adaptive
bin size selection. More recently, MI has received criticism for not including
spatial information, and so new algorithms have been proposed to tackle this.
However, MI remains as a simple and reliable similarity measure that can be
easily implemented and is fast to compute compared to more modern meth-
ods. In addition, the use of adaptive histogram bin size selection methods
can yield significant improvements on the traditional MI algorithm, meaning
that it should not be neglected for modern registration tasks.
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