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Abstract: Wastewater quality is usually assessed using physical, chemical and microbiological tests, 12 
which are not suitable for online monitoring, provide unreliable results, or use hazardous chemicals. 13 
Hence, there is an urgent need to find a rapid and effective method for the evaluation of water 14 
quality in natural and engineered systems and for providing an early warning of pollution events. 15 

Fluorescence spectroscopy has been shown to be a valuable technique to characterize and monitor 16 
wastewater in surface waters for tracking sources of pollution, and in treatment works for process 17 

control and optimization. This paper reviews the current progress in applying fluorescence to assess 18 
wastewater quality. Studies have shown that, in general, wastewater presents higher fluorescence 19 
intensity compared to natural waters for the components associated with peak T (living and dead 20 
cellular material and their exudates) and peak C (microbially reprocessed organic matter). 21 

Furthermore, peak T fluorescence is significantly reduced after the biological treatment process and 22 
peak C is almost completely removed after the chlorination and reverse osmosis stages. Thus, 23 
simple fluorometers with appropriate wavelength selectivity, particularly for peaks T and C could 24 

be used for online monitoring in wastewater treatment works. This review also shows that care 25 
should be taken in any attempt to identify wastewater pollution sources due to potential overlapping 26 

fluorophores. Correlations between fluorescence intensity and water quality parameters such as 27 
biochemical oxygen demand (BOD) and total organic carbon (TOC) have been developed and 28 

dilution of samples, typically up to x10, has been shown to be useful to limit inner filter effect. It 29 
has been concluded that the following research gaps need to be filled: lack of studies on the on-line 30 

application of fluorescence spectroscopy in wastewater treatment works and lack of data processing 31 
tools suitable for rapid correction and extraction of data contained in fluorescence excitation-32 
emission matrices (EEMs) for real-time studies.   33 
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1 Introduction 59 
Environmental monitoring is applied to determine the compliance with ambient and discharge 60 

standards and to identify areas with persistent issues for timely and effective remediation (Cahoon 61 

and Mallin 2013). Wastewater quality assessment is an essential part of environmental monitoring 62 
due to the high anthropogenic impact of treated and untreated discharges on water bodies (Suthar et 63 
al. 2010). There are two important aspects of wastewater quality monitoring: the first concerns the 64 
detection of pollution events for early warning and rapid remedial responses of water bodies, while 65 
the second aspect relates to wastewater treatment works where quality monitoring is required for 66 

process control and compliance with regulations at the effluent discharge point (Bourgeois et al. 67 
2001, Michael et al. 2015, Rehman et al. 2015).  68 

The quality of wastewater is generally assessed using physical, chemical and microbiological 69 

tests. Among these techniques, reliance is often placed on biological oxygen demand (BOD), 70 
chemical oxygen demand (COD) and total organic carbon (TOC) (Bourgeois et al. 2001, 71 
Bridgeman et al. 2013). However, these global parameters depend on expensive or time-consuming 72 
methods, offering only snapshots of moments in time (Bourgeois et al. 2001, Chong et al. 2013, 73 

Yang et al. 2015a), which makes them unsuitable for online monitoring. Research conducted almost 74 
two decades ago (Ahmad and Reynolds 1995, Tartakovsky et al. 1996, Reynolds and Ahmad 1997, 75 
Ahmad and Reynolds 1999) has shown that fluorescence spectroscopy could be used for wastewater 76 
quality assessment as a tool for discharge detection in natural water systems and for process control 77 

in wastewater treatment plants (WwTPs). Fluorescence is the release of energy in the form of light 78 
when molecules or moieties, named fluorophores, are excited with a high-energy light source 79 

(Lakowicz 2006, Reynolds 2014). The technique has been suggested for its multiple advantages: it 80 
is fast, inexpensive, reagentless, requires little sample preparation, is highly sensitive and non-81 

invasive (Reynolds 2003, Hudson et al. 2007, Cao et al. 2009, Henderson et al. 2009, Hambly et al. 82 
2010, Murphy et al. 2011, Chong et al. 2013, Yang et al. 2015a). According to Reynolds (2002) 83 

fluorescence monitoring could provide rapid feedback, allowing dynamic, high spatial and temporal 84 
resolution studies.  85 

In the past decades, more studies have proved the potential of fluorescence spectroscopy as a 86 

monitoring and detection tool in natural and engineered systems. This technique has been used 87 
successfully to characterize organic matter in seawater (Coble et al. 1990, Coble 1996, Conmy et al. 88 
2004, Drozdowska 2007), freshwater (Baker 2001, McKnight et al. 2001, Spencer et al. 2007b, 89 

Carstea et al. 2009) or estuarine water (Huguet et al. 2009). Also, it has been used to monitor 90 
riverine organic matter and diesel pollution (Downing et al. 2009, Carstea et al. 2010), evaluate 91 

drinking water treatment processes (Bieroza et al. 2009, Cumberland et al. 2012, Shutova et al. 92 
2014) or detect pesticides (Ferretto et al. 2014). Fluorescence spectroscopy has been used to assess 93 
the quality of raw sewage and effluents (Baker 2001, Boving et al. 2004, Pfeiffer et al. 2008), 94 

industrial (Santos et al. 2001, Borisover et al. 2011, Li et al. 2015), or farm (Baker 2002a, Old et al. 95 
2012) discharges into natural systems. Moreover, recent studies on short and long-term 96 

fluorescence monitoring along the WwTPs process train have been undertaken, to determine the 97 
potential of the technique for treatment processes control (for example, (Murphy et al. 2011, 98 

Bridgeman et al. 2013, Cohen et al. 2014, Ou et al. 2014, Singh et al. 2015). Although considerable 99 
work has been done so far in this field, there are still issues with regard to the “matrix effects”, as 100 
reviewed by Henderson et al. (2009), or with fouling (Reynolds 2002) that must be overcome to 101 
allow application of the technique in WwTPs. 102 

Other reviews proved the potential of applying fluorescence spectroscopy to water quality 103 
monitoring (Hudson et al. 2007, Henderson et al. 2009, Fellman et al. 2010, Ishii and Boyer 2012, 104 

Yang et al. 2015b). However, none of them focused only on wastewater, which requires a specific 105 
discussion due to its complexity in composition and impact on the environment. Moreover, a 106 
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growing number of studies are published each year on the application of fluorescence spectroscopy 107 
to wastewater quality evaluation, proving its scientific and industrial importance. In this paper, we 108 

review the current progress in applying fluorescence spectroscopy to assess wastewater quality. The 109 
technique’s capabilities as a detection and early warning tool of pollution with treated or raw 110 
wastewater from different sources are discussed. Also, its potential for process control in WwTPs is 111 
presented. 112 

 113 

2 Fluorescence assessment of wastewater components 114 
2.1 Organic matter fluorescence assessment 115 

The most common methods of recording fluorescence spectra for wastewater are excitation – 116 
emission matrices (EEM) and synchronous fluorescence spectra (SFS). EEMs represent 117 
fluorescence contour maps, which comprise a series of repeated emission scans recorded in a range 118 

of excitation wavelengths (Coble 1996). SFS are obtained by scanning simultaneously both 119 
excitation and emission monochromators at a fixed wavelength interval between them (Patra and 120 
Mishra 2002, Reynolds 2003). For many years, since the mid-1970s, SFS were preferred as a 121 

multidimensional technique for the analysis of complex solutions, because it provided better peak 122 
resolution, compared to emission spectra, and faster recording time than EEMs (Ryder 2005). 123 
However, the improvement of instrumentation allowed researchers to obtain fast, high-resolution 124 
EEM collection, which increased the method popularity in the research community. In addition, 125 

EEMs offer varied possibilities of data interpretation, from simple peak-picking and Fluorescence 126 
Regional Integration to the more complex Parallel Factor Analysis (PARAFAC) and Self-127 
Organizing Maps. Among these methods, peak-picking and PARAFAC are the most popular in the 128 
research community and therefore only these two methods will be discussed in the following 129 

sections. 130 
The peak-picking method is a very simple tool to identify components based on their 131 

maximum intensity and corresponding excitation and emission wavelength pairs (Coble 1996). An 132 
example of peak-picking analysis is shown in Figure 1 (a). According to Goldman et al. (2012), 133 

peak-picking is a viable analysis technique and can be employed for the development and use of a 134 
real-time tool and may be related to custom sensors available today. However, its applicability may 135 

be limited due to peak shifts, possible overlapping and interferences between peaks (Yang et al. 136 
2015b). Moreover, it may lead to misleading observations by associating each peak with a specific 137 
fluorophore, when two excitation wavelengths are seen at fluorescent components (Fig. 1). 138 

PARAFAC is a mathematical tri-liniar model that deconvolutes EEMs into chemically 139 
meaningful components (Fig. 1b). It separates the contribution of different fluorophores without 140 
additional assumptions about their excitation and emission spectra (Cohen et al. 2014). A thorough 141 

description of PARAFAC method and components in wastewater is given by Yang et al. (2015b). 142 
PARAFAC has become common practice in water quality studies, over the past 10 years (Murphy 143 

et al. 2014). Yang et al. (2015b) proposed that PARAFAC be developed into a surrogate method for 144 
conventional water quality parameters, treatability of organic matter (OM) and performance of 145 
treatment processes. Yu et al. (2014) suggested that the PARAFAC tool, the EEMizer, developed 146 

by Bro and Vidal (2011), could be implemented to monitor on-line the WwTPs performance. The 147 
studies of Yu et al. (2015a) implied that PARAFAC is able to identify contamination events and can 148 

be used for early warning, but the component that indicates contamination must be spectrally 149 
different from the existing components, without major spectral overlap, which may undermine the 150 

online monitoring strategy. Similarly, Murphy et al. (2011) showed that at times PARAFAC had 151 
difficulties distinguishing between components, returning hybridized spectra. Also, in a comparison 152 
between chromatographic fluorescence fingerprints and EEM-PARAFAC, Li et al. (2014) showed 153 
that the latter method could not reflect the variety of organic matter species with similar 154 

fluorescence, but different physico-chemical properties. In addition, PARAFAC is currently applied 155 
only as post-processing technique, making it unsuitable for continuous monitoring. Also, there is no 156 

consensus regarding the optimum model in terms of sample size and variability (Yu et al. 2015a). 157 

._ENREF_155 158 
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 a) 159 

b) 160 
Figure 1. Main techniques of processing fluorescence EEMs. Examples of a) peaks identified with the 161 

peak picking method, and b) components identified with PARAFAC, for samples of water systems impacted 162 
by domestic wastewater. 163 

 164 

All these techniques have been employed successfully to analyse OM from various natural to 165 
engineered sources. A thorough review on OM fluorescence is provided by Hudson et al. (2007) 166 

and (Fellman et al. 2010). Crude sewage is a combination of domestic waste, industrial discharges, 167 
surface runoff and storm flow. Its composition varies depending on the age and type of sewerage, 168 
time of day, weather conditions and type of incoming sewer (Ahmad and Reynolds 1995, Hudson et 169 

al. 2007). Ellis (2004) showed that the general organic composition of wastewater is 50 % proteins, 170 
14 % carbohydrates, 10 % fats and oils and trace amounts of priority pollutants and surfactants, 171 
which are present in detergents, soaps, shampoo and similar consumer products. More recently, 172 

Huang et al. (2010) found that fibres, proteins and sugars are the largest groups of OM in 173 
wastewaters, accounting for 20.64 %, 12.38 % and 10.65 %, respectively, of the total TOC. 174 

According to the researchers, food related substances are the main source of OM in wastewaters 175 
(Huang et al. 2010). Using gas chromatography/mass spectrometry, Huang et al. (2010) detected 90 176 

compounds from the groups of alkyls and aromatic hydrocarbons, alkenes, alcohols, organic acids, 177 
ketones, phenols, nitrogenous compounds, ethers, amines and esters. In addition, they found lipids, 178 
volatile fatty acids, humic acids, DNA + RNA, tannic acids and linear alkylbenzene sulfonates. 179 

Within the organic composition, there are numerous overlapping fluorophores that contribute to the 180 
EEMs (Aiken 2014). Due to the difficulty of assigning specific fluorophores to the peaks identified 181 

in EEMs, the fluorescence of wastewater will be discussed as two regions based on the 182 
classification provided by Li et al. (2014): region Em < 380 nm associated mostly with fluorophores 183 
containing a limited number of aromatic rings and the region > 380 nm with polycyclic aromatic 184 
fluorophores.  185 

2.2 Region Em < 380 nm 186 
Based on the peak-picking method, fluorescence in this region is represented by peak T 187 

(λexcitation / λemission ~225 (~280) / ~350 nm) and peak B (λexcitation / λemission ~225 (~280)  / ~305 nm) 188 
(Fig. 1a). Peaks T and B have been observed in all studies that used the peak-picking method for 189 
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EEM processing, irrespective of the wastewater source (Table SM1). These peaks have been 190 
associated with living and dead cellular material and their exudates and indicate microbial activity 191 

(Bridgeman et al. 2013) and material derived from anthropogenic activities (Yu et al. 2014). In 192 
PARAFAC, the region Em < 380 nm is generally identified as components with 2 excitation 193 
wavelengths and 1 emission wavelength (Fig. 1b) in the same wavelength ranges as peaks T and B 194 
in the peak-picking method. These components are identified in both municipal and industrial 195 
wastewater samples; however, the component similar to peak T is more common in wastewater 196 

compared to other components in this region (Table SM2).  197 
By examining the list of wastewater organic components (Dignac et al. 2000, Huang et al. 198 

2010, Navalon et al. 2011), and the literature review of Aiken (2014), Stedmon and Cory (2014) 199 
and Baker et al. (2014), the following components were considered as contributors to the 200 
fluorescence in the region Em < 380 nm: phenols (for example cresols), indoles, mono and 201 

polyaromatic hydrocarbons, DNA, aromatic amino acids (phenylalanine, tyrosine), degradation 202 
products of lignin (lignin phenols, vanillic acid, syringic acid etc.). These compounds are derived 203 
from domestic waste, chemical, pharmaceutical, plastic, petrochemical, paper, leather or textile 204 

industries (del Olmo et al. 1996, Pokhrel and Viraraghavan 2004, He et al. 2007, Tchaikovskaya et 205 
al. 2007, Tertuliani et al. 2008). The potential contributing fluorophores to this region are presented 206 
in Table 1.  207 

 208 

2.3 Region Em > 380 nm 209 
The peak-picking method classifies this region as follows: Peak A (λexcitation / λemission ~225 / 210 

400 - 500 nm), peak C (λexcitation / λemission 300 - 350 / 400 - 500 nm) and peak M (λexcitation / λemission 211 
310 - 320 / 380 – 420 nm) (Fig. 1a). All studies done so far on wastewater OM have identified peak 212 

C and most studies found peak A (Table 1); however, peak M was analysed only by Yu et al. (2014) 213 
at municipal wastewater. Most of the studies that employed PARAFAC for EEM analysis identified 214 

a maximum of 4 components associated and microbially and terrestrially derived DOM (example of 215 
two components in Fig 1b). However, Ishii and Boyer (2012) have identified the PARAFAC 216 

components common in natural and engineered water systems: Component 1 similar to peak A with 217 
excitation in the region < 230 – 260 nm and emission between 400 and 500 nm; Component 2 218 

similar to peaks A + C found in excitation region < 240 – 275 (339 – 420 nm) and emission within 219 
434 – 520 nm; and Component 3 similar to peak A + M appearing in the excitation domain <240 – 220 
260 nm (295 – 380 nm) and within the 374 – 450 nm emission range. According to Ishii and Boyer 221 

(2012), component 1 is found mostly in OM sources dominated by terrestrial precursor material. 222 
Component 2 was defined as reduced quinone-like and was identified in OM from a wide variety of 223 
aquatic systems, including those dominated by terrestrial and microbial inputs. While, component 3 224 

fluorophores were defined as oxidised quinone-like and were similar to those with terrestrial and 225 
marine precursors. Component 1 has not been reported in wastewater studies, but components 2 and 226 

3 were seen at studies made on municipal and industrial wastewater (Table SM2). Additional 227 
components were observed in wastewater (Table SM2), but they vary depending on source. 228 

As shown in Table 1, there are several fluorophores that could contribute to the fluorescence 229 

of region Em > 380 nm: lignins, PAHs, flavonoids, humic acids, quinones, aromatic ketones, 230 
fluorescent whitening agents (FWAs), pharmaceutically active compounds (Dignac et al. 2000, 231 

Huang et al. 2010, Aiken 2014, Baker et al. 2014, Stedmon and Cory 2014). Among these 232 
components, FWAs have been proposed as an indicator of human faecal contamination (Assaad et 233 

al. 2014), sewer misconnections (Chandler and Lerner 2015) and presence of landfill leachates 234 
(Graham et al. 2015). FWAs are highly soluble and poorly biodegraded, and therefore likely to pass 235 
through biological treatment in WwTPs (Kramer et al. 1996, Poiger et al. 1998, Assaad et al. 2014). 236 
Research has shown that these components can be detected with handheld fluorometers, which 237 

enhances the capability for in situ water monitoring (Hartel et al. 2007). Nevertheless, issues with 238 
detecting FWAs in waters have been reported: the fluorescence of other peak C fluorophores 239 

overlap the peaks of FWAs, these components are easily photodegraded and DOM hinders the 240 
reaction of FWAs (Kramer et al. 1996, Baker 2002b, Hartel et al. 2007, Assaad et al. 2014). 241 
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Solutions to overcome fluorescence overlap have been proposed, yet the other issues identified may 242 
limit the method’s applicability in detecting sewage. The following solutions have been proposed: 243 

a) to use the photodegradation rate to separate FWAs from organic matter (Hartel et al. (2007); b) to 244 

take into account the differences in shape of the photodecay curve between FWAs and natural 245 
organic matter (Cao et al. (2009)); c) to use a baseline correction method to compare the differences 246 

in fluorescence intensity of FWA, between the regions 320 nm – 345 nm and 345 nm – 360  nm, 247 
with the same values for the water samples (Takahashi and Kawamura (2006)); and d) to apply 248 
three-way analysis of EEMs assisted by second-order chemometric analyses (Gholami et al. 2015). 249 
Discrimination between humic substances and FWAs was achieved by Boving et al. (2004), who 250 
analysed FWAs in solution with humic acid and tannic acid. FWAs were recorded at 344 nm and 251 

422 nm emission wavelength, and 250 nm excitation wavelength. The authors found that the second 252 
peak of the FWAs was separated from humic acids by 22 nm, but there was a 4 nm separation from 253 
tannic acid. Therefore, the λexcitation / λemission = 250 / 422 nm peak could be used for FWAs detection 254 
without interference from humic acid.    255 

 256 
Table 1. Fluorophores contributing to regions Em < 380 nm >. 257 

Potential 

fluorophores 
Component Region 

Peak position 

(nm) 
Reference Potential sources in Ww 

Lignins 

Lignin phenols 

Em < 

380 nm 

 

~ 245 (295) / 

302 

Walker et al. 

(2009)  Partially degraded food waste, 

undigested dietary fibre, toilet paper 

etc. Wastewater of paper and pulp 

industry (Pokhrel and Viraraghavan 

2004) fibres from food (Huang et al. 

2010)  

 
270-290 / 300-

350  

(Hernes et al. 

2009)  

Vanilic acid / 326 
(Stedmon and 

Cory 2014)  

Syringic acid / 338 
(Stedmon and 

Cory 2014)  

Breakdown  

products 

Em > 

380 nm 

230-275 (300-

390) / 400-520 

(Baker 2002b, 

Ciputra et al. 2010, 

Osburn and 

Stedmon 2011, 

Cawley et al. 2012, 

Bassandeh et al. 

2013) 

Paper mill effluents (Baker 2002b, 

Ciputra et al. 2010, Cawley et al. 

2012, Bassandeh et al. 2013) 

Aromatic 

hydrocarbon 
Toluene 

Em < 

380 nm 

 

266 / 300 - 400 
(Persichetti et al. 

2013)  

Municipal Ww (Huang et al. 2010, 

Mrowiec 2014); Ww with petrol 

derivatives (Mehdizadeh et al. 2011)  

Phenols Cresols 
210-285 / 290-

310 

(del Olmo et al. 

1996)  

Pharmaceutical, fossil fuel or 

pesticide industries (Tchaikovskaya 

et al. 2007); 

Domestic Ww from disinfectants 

(Tertuliani et al. 2008)  

Aromatic 

amino acids 

Tyrosine 275 / 304 (Lakowicz 2006)  

Proteins and peptides (Lakowicz 

2006); Domestic Ww(Burleson et al. 

1980, Dignac et al. 2000, Huang et 

al. 2010)  

Tryptophan 295 / 353 (Lakowicz 2006)  

Proteins and peptides (Lakowicz 

2006); Livestock Ww (Choi et al. 

2013)  

Indole  230 / 330-350 
(Determann et al. 

1998)  

Municipal Ww (Dignac et al. 2000, 

Tertuliani et al. 2008, Huang et al. 

2010); Coal tar, oil shale, personal 

care products, pesticides and 

pharmaceuticals (Gu and Berry 

1991, Tertuliani et al. 2008, Aiken 

2014)  

DNA  267 / 327 (Vayá et al. 2010)  
Proteins (Lakowicz 2006); 

Municipal Ww (Huang et al. 2010)  

Polyaromatic  Em < Short UV (Baker et al. 2014)  Municipal Ww (Guo et al. 2010, 
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hydrocarbons 380 nm Huang et al. 2010); Landfill leachate 

(Baker and Curry 2004)  

Phenanthrene, 

anthracene, 

pyrene, 

fluoranthene, 

benzo[a]pyrene 

Em > 

380 nm 

220-300 / 370-

430 

(Schwarz and 

Wasik 1976, Patra 

and Mishra 2001, 

Yang et al. 2016)  

Industrial Ww  (Cohen et al. 2014, 

Ou et al. 2014); Municipal Ww 

(Huang et al. 2010)  

 

Quinones  

Em > 

380 nm 

 

  

Microbes, fungi, plants (Aiken 

2014); Activated sludge (Hu et al. 

2000)  

Flavonoids    

Plants (Aiken 2014); food (Egert and 

Rimbach 2011); olive oil mill Ww 

(Leouifoudi et al. 2014)  

Humic acids  
220-320 (400-

500) / 400-550 
(IHSS 2015)  

 

Municipal Ww (Huang et al. 2010)  

Pharmaceutical

ly active 

compounds 

Carbamazepine 

308 / 410 (in  

2 mol L−1 HCl, 

and 20 min 

irradiation time) (Hurtado-Sanchez 

Mdel et al. 2015) 
Faeces, urine (Zhang et al. 2008)  

Fluorquinolone 290 / 500 

Piroxican 

294 / 372 (in 

media with pH < 

2) 

Fluorescent 

whitening 

agents  

 
360-365 / 400 - 

440 

(Takahashi and 

Kawamura 2006, 

Tavares et al. 

2008)  

Laundry detergents, sanitary 

products, toilet paper and tissues; 

Papermaking industry (Takahashi 

and Kawamura 2006, Assaad et al. 

2014)   

Ww – wastewater 258 
 259 

As shown above, there are several fluorophores that contribute to the < 380 nm > Em regions, 260 

but the list is not exhaustive. More studies are needed to identify new fluorescent components and 261 
especially those specific to source with the highest contribution to EEMs.  Since the regions exhibit 262 
the fluorescence of xenobiotic compounds, both can be used for wastewater quality assessment. In 263 

particular, peaks T and C, and the PARAFAC analogous components, are present in all wastewater 264 
studies (Tables SM1 and SM2) and may be applied to the control of wastewater treatment 265 
processes. However, it may be difficult to identify the source and type of sewage pollution in 266 

receiving water bodies. In this sense, Baker et al. (2014) advise caution and stress the importance of 267 
using a good sampling framework combined with an appropriate multivariate analysis of data for 268 

successful investigation of water pollution.  269 

 270 
3 Correlation of the fluorescence peaks with BOD, COD and TOC 271 

In order to assess the capability of fluorescence spectroscopy to act as a monitoring tool it is 272 
important to consider the correlations between fluorescence peaks and BOD, COD and TOC, 273 

commonly used indicators of OM concentration in natural waters and wastewater. As reviewed by 274 
Bourgeois et al. (2001) and (Jouanneau et al. 2014), BOD is a desirable measurement in treatment 275 

processes, it presents several disadvantages, which make this technique unsuitable for on-line 276 
monitoring and process control: it is slow to yield information, it is labour intensive, toxic 277 
substances affect bacteria, it may not reflect conditions in the treatment processes, it is insensitive 278 

and imprecise at low concentrations and has an uncertainty of 15-20% in the results. COD takes less 279 
time to give a result than BOD (2-4 h) and is not affected by toxic substances. However, it is still 280 

not suitable for on-line monitoring and process control due to the measuring time and because it 281 
requires hazardous chemicals. Also, COD is able to discriminate between biodegradable and 282 
biologically inert organic matter only in conjunction with BOD and not on its own (Bourgeois et al. 283 
2001, Chen et al. 2014). TOC is very fast, as triplicates can be analyzed in minutes. However, it 284 
cannot differentiate between biodegradable and nonbiodegradable OM (Orhon et al. 2009). Also, 285 
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conflicting results have been reported between different techniques of measuring TOC (Bourgeois 286 
et al. 2001). 287 

Correlation between fluorescence and standard parameters revealed that peaks T and C relate 288 
to BOD, COD and TOC, as reviewed by (Henderson et al. 2009). Slightly better correlation with 289 
BOD is seen at peak T compared to peak C. An exception to the above observation is found at the 290 
study of Wang et al. (2007) who obtained better correlation with the PARAFAC component 291 
exhibiting fluorescence in the peak C region, compared to the peak T component (Table 2). They 292 

observed the best correlation with BOD at the component similar to peak M (0.73). The researchers 293 
concluded that this component contributed the most to BOD for wastewater-impacted lakes. 294 
Nevertheless, these results highlight the complexity of the source and that there are potentially 295 
several fluorophores, which display fluorescence in the peak T/C regions. It also shows that both 296 
regions could contribute to BOD. The difference in correlation coefficients could also be 297 

determined by the low sample sizes in some studies, which might under or overestimate the 298 
relationship between fluorescence and BOD, COD and TOC (Table 2). Another cause of the 299 
difference could be the method used for data processing, as PARAFAC offers better separation of 300 

overlapping components compared to peak-picking.  301 
 302 
Table 2. Correlation coefficients for peaks T and C (or PARAFAC analogous components) with BOD, 303 

COD and TOC. 304 

Reference Samples 
Sample 

size 

Sample 

pH 

Analysis 

temperature 

Fluorescence 

Peak 
BOD COD TOC 

Reynolds and 

Ahmad (1997)  

Raw, settled and 

treated Ww 
129 N/A 

Room 

temperature 
280 / 340 

0.94-

0.97 
N/A N/A 

Ahmad and 

Reynolds (1999)  

Raw Ww 
25 3 - 7 10-800 C 248 / 350 0.97 N/A N/A 

Reynolds (2002)  Raw Ww 56 6.8 ±0.4 26 ±100 C 280 / 350 0.93 0.94 0.93 

Baker and Inverarity 

(2004)  

Ww effluents and 

effluent impacted 

rivers 

434 N/A N/A 220 / 350 0.85 N/A N/A 

Wang et al. (2007)  Ww impacted lake 
26 N/A 

Room 

temperature 

294 / 320 0.54 0.16 N/A 

360 / 425 0.65 0.03 N/A 

Hudson et al. (2008)  Ww effluents 

141 N/A 200 C 

280 / 350 0.71 N/A 0.77 

300-370 / 

400-500- 
0.34 N/A 0.75 

Bridgeman et al. 

(2013)  

Domestic Ww, raw 

and treated 
48 N/A 

 

200 C 

275-285 / 

340-360 
0.92 0.56 N/A 

320-355 / 

410-470 
0.88 0.78 N/A 

Cohen et al. (2014)  Domestic and 

industrial Ww, raw 

and treated 
25-34 7.8 – 8.5 

Room 

temperature 

<240 (275) / 

346 
0.82 

0.82-

0.99 

0.85-

0.99 

<240 (305) / 

422 
0.72 0.91 0.99 

Ou et al. (2014)  Industrial Ww, raw 

and treated 
120 7 - 9 

Room 

temperature 
280 / 320 N/A 0.92 N/A 

Ww – wastewater; N/A – not available 305 
 306 

Based on the correlation between BOD and peak T fluorescence, Hur and Kong (2008) tried 307 

to estimate, using SFS and first derivative spectra, the concentration of BOD of samples from urban 308 
rivers affected by treated sewage. They found that the relative fluorescence intensity, at 283 nm to 309 

245 nm from SFS, is the optimum estimation index as it has the best positive correlation with BOD 310 
values (0.91). It has been reported that the multiple regression method, using the light scattering 311 
intensity at 633 nm or turbidity, greatly enhances the correlation between measured and predicted 312 

BOD values. Hur and Kong (2008) also observed that filtered samples presented enhanced 313 
correlation; however, Bridgeman et al. (2013) reported slightly higher correlation coefficient 314 
between BOD and fluorescence at unfiltered samples compared to filtered with 0.45 or 0.2 µm. 315 
These differences could be site specific and may depend on the sizes of OM components. 316 

As reviewed by Baker et al. (2014), the correlation between BOD and peak T fluorescence 317 
suggests a direct link with microbiological activity in this region of fluorescence, although the 318 
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source of peak T fluorescence is generally unknown. It was also implied that handheld instruments 319 
could be used in the future to investigate the temporal variability of BOD (Baker et al. 2014). Due 320 

to the relation with microbiological activity, peak T fluorescence was suggested as indicator of the 321 
presence / absence faecal coliforms (Sorensen et al. 2015, Sorensen et al. 2016). Pfeiffer et al. 322 
(2008) obtained excellent correlation (0.90 – 0.95) with faecal coliforms on samples from a 323 
wastewater polluted river and (Tedetti et al. 2012) found a good correlation (0.78) between the 324 
PARAFAC component and Escherichia Coli + enterococci on wastewater impacted coastal water 325 

samples. More recently, (Baker et al. 2015) obtained a log correlation of 0.74 between fluorescence 326 
and E. Coli measurements. These findings are encouraging, but more work should be done to 327 
explore the link between fluorescent components and faecal coliforms and its potential use in on-328 
line monitoring applications. In a comparison with flow cytometer measurements, peak T intensity 329 
correlated with an increase of total live and dead bacteria numbers (Bridgeman et al. 2015). The 330 

researchers found that four bacteria isolated from a potable water tap sample showed different 331 
responses in the fluorescence signal, although the intensity of peak T fluorescence did not correlate 332 
with the bacteria counts. Nevertheless, peak T fluorescence could be used to assess the 333 

microbiological activity in a water system. 334 
 335 

4 Fluorescence detection of wastewater pollution 336 
Fluorescence spectroscopy has shown its capabilities as a real-time assessment tool for 337 

wastewater quality due to its advantages and correlation with standard parameters. This technique 338 
could be very effective in detecting raw wastewater contamination in water bodies. Also, the impact 339 
of wastewater effluents on natural waters could be evaluated, since effluent organic matter has 340 
different composition and characteristics from naturally occurring OM (Wang et al. 2015). 341 

Therefore it is important to look at the different types of wastewater for particular characteristics 342 
that may facilitate identification in the receiving water bodies. 343 

 344 

4.1 Sources of wastewater 345 
Studies published so far on fluorescence spectroscopy have focused on domestic, farm and 346 

industrial wastewater, which includes textile, pulp mill, coke or brewery industries. More studies 347 

are needed on wastewater from oil refineries, metal processing, fermentation factories, 348 
pharmaceutical industry, chemical plants, meatpacking and processing etc. 349 

 350 

4.1.1 Domestic wastewater 351 
Wastewater is the flow of water used by a community and includes household wastes, 352 

commercial and industrial waste stream flows, and stormwater (Drinan and Spellman 2012).  353 

Domestic wastewater contains the solid and liquid discharges of humans and animals, contributing 354 
with millions of bacteria, virus, and non-pathogenic and pathogenic organisms. It may also contain 355 

sanitary products, cleaners and detergents, trash, garbage and any other substances that are poured 356 
or flushed into the sewer system (Drinan and Spellman 2012). Public treatment facilities may also 357 
collect industrial effluents and thus chemicals, dyes, acids, alkalies, grit or detergents can be found 358 

in municipal wastewater (Drinan and Spellman 2012). Stormwater runoff, if collected by WwTPs, 359 
may bring into the system large amounts of sand, gravel, road-salt and other grit (Drinan and 360 

Spellman 2012). 361 
As discussed in the previous sections, there are numerous compounds that may contribute to 362 

the fluorescence peaks. Generally, fluorescence spectra of untreated and treated domestic 363 
wastewater are characterized by intense peaks in the region Em < 380 nm, especially peak T, 364 
associated with high microbial abundance, and by significantly lower intensity peaks A and C 365 
fluorescence (Baker 2001, Hudson et al. 2007, Bridgeman et al. 2013). In some studies, the 366 

fluorescence spectra of effluents showed a higher prevalence of peaks A and C, compared to peaks 367 
T and B (Ghervase et al. 2010a, Riopel et al. 2014). Among peaks, T and C seem to be present at 368 

most municipal wastewater samples (Tables SM1 and SM2) and may serve as indicators of 369 
wastewater contamination. Peak B is rarely analysed at wastewater EEMs due to the potential 370 
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interferences from scattering; however, this fraction could indicate the proximity of the 371 
measurement point to the discharge point or freshness of the contamination. According to Pfeiffer et 372 

al. (2008), the fluorescence of both peak T and peak B decreases in intensity with increasing 373 
distance from the release point, but peak B is completely removed at longer distances, due to 374 
dilution or breakdown of the organic fraction. For peak B removal, seasonal shifts should also be 375 
taken into account as rainfall could contribute to dilution, sunlight irradiation could cause 376 
photodegradation or increase microbial uptake during summer (Meng et al. 2013).  377 

From the myriad of fluorophores, FWAs may display distinctive features in the EEMs for 378 
municipal wastewater samples (Bridgeman et al. 2013). However, this fraction is not specific to 379 
domestic wastewater, as it has been detected at paper mill effluents (Baker 2002b, Ciputra et al. 380 
2010, Bassandeh et al. 2013) or landfill leachates (Graham et al. 2015). Therefore, peaks T and C 381 
seem to be the best tools of monitoring domestic wastewater quality. 382 

In addition to fluorescence intensity increase, it has been shown that discharge of domestic 383 
sewage may change the properties of OM from the receiving water bodies. For example, Xue et al. 384 
(2011) found that sewage effluents change the capacity of OM to form disinfection by-products and 385 

decrease its sensitivity to UV light. Also, changes in aromaticity and hydrophobicity of OM have 386 
been reported. These OM characteristics have been assessed after discharge, using the emission 387 
wavelength of peak C. In two studies undertaken by Goldman et al. (2012) on OM wastewater 388 
effluent and by Ghervase et al. (2010b) on untreated sewage discharge, it was found that the 389 

fluorescence signal of the two types of samples presented lower peak C emission wavelength, 390 
indicating lower aromaticity compared to natural OM. While, Spencer et al. (2007a) reported higher 391 
aromaticity of the OM from an estuarine sample with anthropogenic impact from domestic 392 
wastewater effluents, compared to the estuarine OM. Goldman et al. (2012) found that the mixture 393 

of effluent and river waters produce midrange values and, therefore, a potential increase in 394 
aromaticity with distance from discharge could be expected. In marine environments, fluorescence 395 

measurements on wastewater discharges showed great complexity of the mixing properties. 396 
Petrenko et al. (1997) observed 4 layers in the seawater column, 2 layers being affected by sewage 397 

representing the “old” and “new” plume waters and 2 layers unaffected by effluent. According to 398 
the researchers, the release of wastewater increased 2 fold to the concentration of ammonium, 399 

silicate and phosphate in sewage affected plumes and could stimulate the growth of phytoplankton. 400 
Baker and Inverarity (2004) also found an increase in nitrate and phosphate concentrations 401 
downstream of discharge into urban rivers. 402 

 403 

4.1.2 Animal wastewater 404 
Animal wastes represent an important source of water pollution, through the release of 405 

untreated wastewater or surface runoff from farms. This type of wastewater produces BOD values 406 
that are 1 to 3 times higher than sewage BOD (Baker 2002a). Most meat processing units treat the 407 

wastewater prior to release, however animal wastewater varies temporally in composition, requiring 408 
continuous monitoring for effective detection and removal of pollutants. Relatively few studies 409 
have looked at the potential of using fluorescence spectroscopy to monitor the quality of animal 410 

wastewater. However, data gathered so far can help define particular characteristics of animal 411 
wastewater OM. The fluorescence of animal wastewater is generally dominated by the region Em < 412 

380 nm. In particular, peak T fluorescence seems to be common to all samples, as it has been 413 
detected at farmyard runoff (Old et al. 2012), pig and cattle slurry, silage liquor, sheep barn waste 414 

(Baker 2002a), poultry processing unit (Ghervase et al. 2010b) and cattle slaughter house (Louvet et 415 
al. 2013). The researchers also observed a low peak C fluorescence relative to peak T. Baker 416 
(2002a) calculated the ratio between the fluorescence intensity of these two peaks and found that 417 
peak T intensity was 2 to 25 times higher than that of peak C, the highest ratio being obtained for 418 

silage liquor, while the lowest was seen at the sheep barn waste. A similar peak T/C ratio was 419 
obtained by Old et al. (2012) at farmyard runoff samples. The ratio of peaks T and C fluorescence 420 

intensity shows that farm waste pollution events could leave a signature in river waters (Baker 421 
2002a) and confirm the potential of using fluorescence as a low cost and rapid technique for tracing 422 
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animal derived pollutants (Old et al. 2012). Interestingly, pig and cattle slurry presented peak B 423 
fluorescence at a similar intensity to that of peak T. Peak B was also detected at poultry wastewater 424 

(Ghervase et al. 2010b), having even higher fluorescence than that of peak T. Ghervase et al. 425 
(2010b) suggested using the ratio of peak T and peak B to detect poultry wastewater pollution in 426 
rivers. However, this ratio applicability could be limited only to certain types of animal 427 
wastewaters. 428 

Cattle slaughterhouse wastewater may contain albumin and haemoglobin that would 429 

contribute to the Em < 380 nm fluorescence region (Louvet et al. 2013). Also, bovine serum 430 
albumin may contribute to the fluorescence region of Em > 380 nm. Louvet et al. (2013) found 431 
another fluorescence peak that could belong to metalloporphyrins (λexcitation / λemission = 400 - 440 nm 432 
/ 450 - 510 nm). These components are attributed to red blood, which is a major pollutant in 433 
slaughterhouse wastewater. Again, the ratio of peaks T and C fluorescence intensity was found to 434 

be an effective indicator of biodegradation of slaughter house wastewater (Louvet et al. 2013). 435 
Nevertheless, the composition of animal derived pollutants is highly variable in time and depends 436 
on the animal species, physiological state and diet (Baker 2002a, Louvet et al. 2013). Therefore, 437 

more studies are needed to better understand the properties of OM from animal derived wastewater 438 
and set clear characteristics for enhanced detection of pollution events.  439 

 440 

4.1.3 Industrial sources of wastewater 441 
Industrial wastewater is primarily derived from the manufacturing and processing of 442 

chemicals, textiles, wood, pulp mill or paper. The composition of effluents varies depending on the 443 
raw materials used, the type of process and the efficiency of material removal (Sánchez Rojas and 444 
Bosch Ojeda 2005). Studies on continuous monitoring and evaluation of industrial wastewater using 445 

fluorescence spectroscopy are scarce, limiting identification of particular features of wastewater 446 
fluorescence spectra. Few studies focussed on wastewater from petrochemical, chemical and 447 

biochemical industry (Borisover et al. 2011), brewery (Janhom et al. 2009, Janhom et al. 2011), 448 
textile (Li et al. 2015), pulp mill and paper processing (Baker 2002b, Ciputra et al. 2010, Cawley et 449 

al. 2012, Bassandeh et al. 2013) computer components manufacturing (Cohen et al. 2014) and coke 450 
industry (Ou et al. 2014). In one short-term monitoring study, Yang et al. (2015a) analysed and 451 

compared the fluorescence spectra of samples from the effluents of 57 facilities belonging to 12 452 
industrial categories (non-alcoholic drinks, electronic devices, food, leather and fur, meat, organic 453 
chemicals, pulp and paper, petrochemical, resin and plastic, steel, steam-power and textile dyeing) 454 

aiming to evaluate the potential of fluorescence spectroscopy to identify wastewater sources. The 455 
researchers were able to characterise and differentiate industrial effluents using cluster analysis, 456 
EEM-PARAFAC and FT-IR. Components from both < 380 nm > regions were observed, but no 457 

component dominated over all samples. For instance, the peak T component presented the highest 458 
fluorescence intensity at leather and fur wastewater, while peak C components dominated the EEMs 459 

of food wastewater samples. Therefore, Yang et al. (2015a) concluded that, without additional 460 
analyses it may be difficult to identify an industrial source with fluorescence spectroscopy. 461 
However, Borisover et al. (2011) observed a bathochromic shift of the peak T component induced 462 

by polarity and composition of local environment. They studied samples collected from rivers 463 
impacted by industrial effluents of oil refineries, petroleum and chemical and biochemical plants. 464 

The researchers recommended using this component as fluorescent tracer of non-specific industrial 465 
pollution.   466 

Studies that evaluated wastewater samples from particular industries have identified specific 467 
fluorophores. For example, at pulp mill wastewater effluents, Cawley et al. (2012) found a 468 
component that was attributed to lignosulfonic acid or to a mixture of fluorophores from the many 469 
lignin degradation products. However, the authors highlighted that this component may exhibit 470 

different emission maxima depending on variations in the actual chemical moieties present in each 471 
sample. A similar component was found by Bassandeh et al. (2013) at samples collected from the 472 

biologically treated effluent of a newsprint mill and the authors attributed it to lignins or chemicals 473 
involved in the paper making process. Cawley et al. (2012) and Bassandeh et al. (2013) both 474 
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identified distinctive PARAFAC peaks for the lignin derived components. However, Santos et al. 475 
(2001) observed very intense peaks and additional shoulders at the peak C for samples collected 476 

from rivers downstream of pulp mill effluent discharge. Also, compared to samples upstream, the 477 
researchers detected an additional peak at λexcitation / λemission ~290 / ~340 nm, which coincides with 478 
the peak T fluorescence. Baker (2002b) suggested that peak T fluorescence results from the lignin 479 
and sugars produced by the pulping process, which are likely to be rich in aromatic proteins. This 480 
component correlated with TOC (r=0.62, N=18), indicating that peak T fluorescence was a 481 

significant contributor to the TOC at paper mill effluents, as this correlation was not seen at the 482 
river samples. In addition to lignin derived components, Baker (2002b) identified a peak associated 483 
with FWAs, which are commonly used in papers. The differences in results, found by these studies, 484 
could be attributed to variations in chemical moieties or to the fact that Cawley et al. (2012) and 485 
Bassandeh et al. (2013) used PARAFAC for data processing to provide better separation between 486 

lignin and other peak T or peak C fluorophores.  487 
A distinctive feature was also detected at textile industry effluents by Li et al. (2015), who 488 

found a triple excitation component with emission wavelength at 460 nm. They considered this 489 

feature as specific to textile-derived components, because most fluorophores in region Em > 380 490 
nm present dual excitation peaks at emission wavelength between 400 and 500 nm. The triple 491 
excitation peaks were associated with 1-amino-2-naphtol structure, based on a spectral comparison 492 
with the standard solution and were suggested to be used as specific indicators in textile effluents. 493 

Li et al. (2015) also found that for peak T fluorescence there were much more species with varying 494 
emission wavelengths, which could relate to azo dyes as these substances emit similar fluorescence 495 
in this region. 496 

As shown in section 2.2 and Table 1, peak B fluorescence could represent phenol-like matter, 497 

hydrocarbons or cresols as found by Ou et al. (2014) at coke wastewater samples. In addition to 498 
peak B and peak C fluorophores, Ou et al. (2014) identified a component associated with 499 

heterocyclic components and polycyclic aromatic hydrocabons (PAHs), such as fluoranthene or 500 
naphtol. PAHs were also detected by Cohen et al. (2014) at samples collected from a WwTPs that 501 

receives 50% of its crude wastewater from a computer component factory. Based on spectral 502 
similarities, Cohen et al. (2014) suggested that this component contains a pyrene-like moiety. 503 

While for textile, pulp mill or coke wastewater, distinctive components have been identified, 504 
brewery wastewater has been shown to contain only the typical peaks T, A and C (Janhom et al. 505 
2009, Janhom et al. 2011), generated by the cleaning and washing of raw materials. They also 506 

showed that the fluorescence of brewery wastewater samples belonged primarily to hydrophobic 507 
acids and hydrophilic bases OM fractions. 508 

 509 

4.2 Wastewater tracking in aquatic systems 510 
Discrimination between sources using fluorescence spectroscopy may be challenging since 511 

domestic wastewater can be mixed with industrial effluents and agricultural runoffs (Andersen et al. 512 
2014). Industrial wastewater could also contain domestic discharges from the toilets and kitchens 513 
within factories (Reynolds and Ahmad 1995). Moreover, organic pollutants like optical brighteners, 514 

PAHs or lignins have widespread application and thus can be found in any type of wastewater.  515 
In particular for industrial wastewater it may be more difficult to separate sources due to the 516 

varied composition of the solution. The release of industrial effluents in water bodies may lead to 517 
the production of fluorescent fractions formed of a mixture of proteinaceous and non-proteinaceous 518 

substances, which generates a bathchromic shift in the typical peak T fluorescence emission 519 
wavelength. According to Borisover et al. (2011) this component may be used as a tracer of non-520 
specific industrial pollution. However, various industrial wastewaters produce high quantities of 521 
particular fluorophores like PAHs or heterocyclic compounds, differentiating them from domestic 522 

wastewater. As shown by Cohen et al. (2014) the pyrene-like components separated the wastewater 523 
with 50% industrial input from the more domestic wastewater sources. Also, the devices, developed 524 

by Tedetti et al. (2013) and Puiu et al. (2015), that separate PAHs from other peak T fluorophores, 525 
hold great promise in detecting both domestic and industrial sources of pollution.  Additionally, 526 
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chemical separation can be undertaken by the use of time resolved laser induced fluorescence, 527 
which is capable to identify components based on their lifetimes. PAHs have a relatively long 528 

fluorescence lifetimes and great quantum efficiency, which help at distinguishing PAHs from the 529 
OM background (McGowin 2005).  530 

However, the question remains as to how to differentiate between wastewater from domestic, 531 
animal farms and industry sources, which are characterized by intense Em < 380 nm region. 532 
Domestic wastewater contains PAHs (Huang et al. 2010), which have a distinctive fluorescence 533 

signal; however, the quantities could be too low in comparison to other fluorophores and therefore 534 
the fluorescence of PAHs could be exceeded by other compounds. 535 

Component distinction can also be undertaken by PARAFAC, which may be able to separate 536 
overlapping components or identify specific pollutant indicators (Cohen et al. 2014, Yang et al. 537 
2015b). However, in case of low concentrated pollutants, such as detergents, peak picking has been 538 

shown to be more effective than PARAFAC (Mostofa et al. 2010). Therefore, a combination of 539 
these techniques could better provide a thorough view of the sample composition and OM 540 
interaction with pollutants. Fluorescence spectroscopy could be used as an early warning system in 541 

case of accidental pollution and could serve as a quick method in initial identification of the source 542 
of wastewater, before more complex and expensive analyses would be employed. 543 

 544 

5 Control of wastewater treatment processes using fluorescence spectroscopy 545 
 Two decades ago, the studies of Reynolds and Ahmad (1995) and Tartakovsky et al. (1996) 546 

demonstrated the potential of using fluorescence spectroscopy for both off- and on-line monitoring 547 
in wastewater treatment. Recent studies have suggested that this technique could be applied to 548 
process control and optimization (Bridgeman et al. 2013). With increasingly stringent regulation it 549 

will be more difficult to control treatment efficiency with current techniques, (BOD, COD and 550 
TOC), which are expensive, time-consuming and unreliable (Bridgeman et al. 2013, Rehman et al. 551 

2015). More pressure is put on WwTPs when other environmental implications, such as energy and 552 
chemical consumption or greenhouse gases emissions are considered (Wang et al. 2015). 553 

Fluorescence spectroscopy offers a robust technique available for a rapid and low cost estimation of 554 
effluent quality. However, studies on fluorescence monitoring of WwTPs processes are scarce and 555 

only one long-term study at 5 municipal WwTPs has been achieved (Cohen et al. 2014).  Also, only 556 
one real-time monitoring study has been published on two recycled water systems (Singh et al. 557 
2015). According to Reynolds (2002), WwTPs are hostile environments, making continuous and 558 

dynamic monitoring of wastewater quality difficult due to problems associated with fouling. This 559 
would require regular cleaning, which is time consuming. In addition, the fluorescence signal could 560 
be affected by pH, IFE, temperature and metal ions, requiring subsequent corrections. However, 561 

recent development of devices, already on market, show great promise since they convert the on-562 
line peak T fluorescence signal into BOD equivalent values, using an internal calibration factor or a 563 

multispectral approach (ChelseaInstruments 2015, ModernWater 2015, ZAPSTechnologies 2015). 564 
This type of instruments could provide an immediate estimation of changes in wastewater quality, 565 
displaying capabilities of effective process control. 566 

 567 

5.1 Monitoring of fluorescent OM 568 
Fluorescence real-time monitoring of wastewater quality is difficult to implement due to 569 

multiple potential factors that may interfere with the signal. The only real-time monitoring study 570 

was undertaken by (Galinha et al. 2011a) on a pilot scale membrane bioreactor system to predict 571 
performance parameters. EEMs were recorded for 10 months and processed with multivariate 572 
techniques. They concluded that although fluorescence was able to describe total COD for influent 573 
and effluent, it could not accurately predict other performance parameters and hence, fluorescence 574 

cannot totally replace conventional monitoring of membrane bioreactors (Galinha et al. 2011a). 575 
Nevertheless, real-time monitoring studies at full-scale WwTPs should be undertaken in order to 576 

assess the feasibility of the method and the issues that can arise from its implementation. The 577 
studies done on the monitoring of surface waters identified major issues and offered solutions, 578 
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which could be used to build a strategy for wastewater on-line monitoring. The issues reported so 579 
far include: biofilm formation, temperature, turbidity, inner filter effect, calibration procedure, 580 

presence of quenching elements. Most of these problems are thoroughly reviewed by Henderson et 581 
al. (2009). Therefore, only the recent studies will be discussed. Before the study of Carstea et al. 582 
(2010) no long-term, real-time monitoring experiments were done due to fouling issues. Carstea et 583 
al. (2010) showed that over a period of 11 days of continuous EEM recordings on an urban river, 584 
biofilm formation on the water extraction system had no influence on the fluorescence signal. 585 

However, higher rates of biofilm formation are expected in wastewater, compared to surface water, 586 
due to the large quantities of extracellular polymeric substances that enhance cell adhesion to solid 587 
surfaces (Tsuneda et al. 2003).   588 

Regarding temperature, (Chen et al. 2015) tested a newly developed, portable laser induced 589 
fluorescence system, for its monitoring capabilities, on estuarine water and found that temperature 590 

changes affected the fluorescence results. (Yamashita et al. 2015) and (Khamis et al. 2015) also 591 
reported the impact of temperature on the fluorescence of OM, at monitoring studies on open ocean 592 
and urban river. Carstea et al. (2014a) have shown that peak T fluorescence suffers more thermal 593 

quenching at samples with higher urban anthropogenic impact compared to natural sources.  594 
Therefore, temperature could have a major impact on OM fluorescence from wastewater. However, 595 
a temperature-compensating tool has been proposed and texted by (Watras et al. 2011). (Khamis et 596 
al. 2015) also proposed a compensating tool for turbidity, which can have a great impact on the 597 

fluorescence signal when large particles are present. It is yet to be tested on wastewater samples.  598 
The inner filter effect (IFE) is another major issue at wastewater samples. The IFE is the 599 

apparent decrease in the emitted fluorescence intensity or a distortion of the band-shape resulting 600 
from the absorption of the excited and emitted radiation (Henderson et al. 2009). (Kothawala et al. 601 

2013) found that the best correction tool for the IFE is the absorbance based approach, proposed by 602 
Lakowicz (2006). This approach can be applied to samples with absorbance values of up to 1.5 cm

-603 
1
; at samples above this value a dilution of 2x is recommended (Kothawala et al. 2013). However, 604 

the study of Kothawala et al. (2013) was undertaken on lake water samples and it is not known if 605 

these rules apply to wastewater monitoring. As seen in Tables SM1 and SM2, for the wastewater 606 
evaluation studies there are two preferred methods for reducing the IFE: dilution and post-607 

measurement mathematical correction. A dilution factor of 10 was used in some studies, while in 608 
others the samples were diluted until a specific absorbance value was achieved. Most studies report 609 
the absorbance values at wavelengths within the excitation region of peak T. In specific studies, no 610 

dilution was used to analyse samples as this procedure in not applied to on-line measurements (for 611 
example, (Baker and Inverarity 2004, Louvet et al. 2013, Li et al. 2014). However, IFE could be a 612 
serious issue for monitoring studies, as this factor might lead to an underestimation of the degree of 613 

pollution and poor prediction of BOD, COD or TOC. In this case, dilutions to a certain absorbance 614 
value (< 0.05 cm

-1
, as used in most studies, Tables SM1 and SM2) or post-measurement IFE 615 

correction are recommended. However, other solutions should be found
 
to counteract

 
IFE, as the use 616 

of UV absorbance measurements, in addition to fluorescence spectroscopy, reduces the practicality 617 
of the method for on-line monitoring. 

  618 

In addition, Yamashita et al. (2015) proposed fluorescence sensors calibration for dark blanks 619 
and/or sensitivity.  Solutions of L-tryptophan (Sorensen, Khamis, Tedetti) and quinine sulphate 620 

(Chen, Conmy, Yamashita) are generally used as calibration standards for the two fluorescence 621 
regions. However, (Khamis et al. 2015) mention that uncalibrated systems may be used if 622 

qualitative data is needed.  623 
Finally regarding the presence of quenching components, Wang et al. (2014) have proved that 624 

the presence of humic-like components could reduce the fluorescence of peak T in effluent organic 625 
matter. However, even more complex interactions could occur in wastewater samples. Galinha et al. 626 

(2011b) found that the addition of bovine serum albumin to domestic wastewater samples 627 
determined a decrease with 31-58 % of peak T fluorescence. They concluded that the complexity of 628 

interferences on the fluorescence signal might not allow the simple and direct quantitative 629 
measurement of specific fluorophores in complex biological systems, such as wastewater. Also, in a 630 
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study aiming to identify the contribution of extracellular polymeric substances to dye removal, (Wei 631 
et al. 2015) showed that methylene blue has a substantial quenching effect on peaks T and C 632 

fluorescence. Several studies (Baker 2001, 2002a, Spencer et al. 2007a, Xue et al. 2011) have 633 
stressed that, although peak T is dominant in fluorescence spectra of wastewater, it is very likely 634 
that sewage generates high quantities of other components, which may significantly impact peak T 635 
fluorescence. Nevertheless, a study conducted by Zhou et al. (2015) on a drinking water source 636 
contaminated with domestic wastewater, showed that all peaks were sensitive to pollutant 637 

concentration, especially peak T, which could be used as an early warning tool for contamination. 638 
Moreover, Goldman et al. (2012) were able to predict the percentage of municipal wastewater in 639 
rivers with 80 % confidence, by the use of multivariate linear regression and the fluorescence of 640 
both peak T and peak C. They recommended applying this model to develop in situ instruments, 641 
inform monitoring progress and develop additional water quality indicators.  642 

 643 
5.2 Monitoring of treatment processes with fluorescence spectroscopy 644 

Typical wastewater treatment begins with a series of physical operations (pre-treatment and 645 

primary treatment), such as screening and sedimentation to remove the floating and settleable 646 
solids. These steps are followed by biological processes, which are used to convert the finely 647 
divided and dissolved OM from wastewater into flocculant settleable biological solids 648 
(Tchobanoglous et al. 1991). Biological processes include the suspended growth activated sludge 649 

process, anaerobic/anoxic/oxic, sequencing batch reactor, membrane reactor, trickling filter, etc. 650 
Activated sludge is the most common process, involving the entrainment of air for microbial 651 
degradation of OM. In the final steps of the biological treatment, the sludge flocs are separated from 652 
the treated effluent, through sedimentation, before the effluent is discharged to a water body. In 653 

some WwTPs, additional treatment processes (tertiary and quaternary), such as filtration, 654 
chlorination, UV disinfection or reverse osmosis are adopted after the biological treatment and 655 

subsequent sedimentation (Yang et al. 2015b).  656 
Few studies have focused, so far, on wastewater quality monitoring in treatment works, using 657 

fluorescence spectroscopy, to understand the behavior of OM along the process train, the removal 658 
of components and the potential of applying fluorescence as a control tool. Among these studies, 659 

some looked into the treatment of specific domestic/industrial wastewater (Janhom et al. 2009, 660 
Janhom et al. 2011, Zhu et al. 2011, Yu et al. 2013), the removal and behavior of refractory OM in 661 
treatment works (Hur et al. 2011), characterization of reverse osmosis permeates (Singh et al. 2009, 662 

Singh et al. 2012, 2015) or compared fluorescence EEM-PARAFAC and HPLC/HPSEC techniques 663 
(Li et al. 2014). Fluorescence monitoring of wastewater quality was performed at time frames 664 
spanning from 1 month to 20 months, by collecting samples from the inlet and outlet (Reynolds 665 

2002, Riopel et al. 2014) or along different treatment steps (Singh et al. 2009, Hambly et al. 2010, 666 
Murphy et al. 2011, Singh et al. 2012, Bridgeman et al. 2013, Cohen et al. 2014, Ou et al. 2014, 667 

Singh et al. 2015). The longest monitoring study was undertaken by Cohen et al. (2014), who 668 
analyzed the wastewater quality from municipal treatment plants during 20 months. Most of the 669 
monitoring studies involved WwTPs that employed activated sludge, as biological treatment 670 

process. Nevertheless, a few long-term and short-term monitoring studies have proven the capacity 671 
of fluorescence to evaluate the treatment performance in plants that used trickling filters 672 

(Bridgeman et al. 2013), anaerobic/anoxic/oxic (Yu et al. 2014), a novel anoxic/aerobic/aerobic 673 
system (Ou et al. 2014) or other advanced biological treatments, such as phase isolated ditches, bio-674 

Denipho process, sequencing batch reactors (Hur et al. 2011). Hur et al. (2011) found no difference 675 
in OM fluorescence characteristics between conventional and advanced biological treatment, while 676 
Bridgeman et al. (2013) were able to show, using fluorescence spectroscopy, that activated sludge 677 
was more effective than trickling filters, in removing the organic fraction. Variations in the 678 

fluorescence signal among WwTPs were also observed by Murphy et al. (2011). Nevertheless, the 679 
general consensus is that the behavior of certain fluorescence peaks can be followed along 680 

treatment plants to test performance. Cohen et al. (2014) suggested using both peak T and peak C 681 
components as indicators of total microbial activity in wastewater. Therefore, varied 682 
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instrumentation available on market or under development (Bridgeman et al. 2015) that measure 683 
both components may be applied to monitor treatment efficiency.  684 

  685 

5.3 Removal of fluorescence components along the treatment plant processes 686 
Studies have shown that the OM, especially in the region Em < 380 nm is significantly 687 

removed after the biological treatment process (Fig. 2). This is to be expected since the biological 688 
treatment removes biodegradable material (Cohen et al. 2014). Riopel et al. (2014) reported a 60% 689 

reduction in the peak T fluorescence. Within the Em < 380 nm region, peak T component 690 
experiences a different degree of removal compared to peak B component. Yu et al. (2013) found 691 
that peak T fluorescence decreases with 60 % in the anaerobic/anoxic zone, almost 40 % in the oxic 692 
zone and 5% in the final clarification process, whilst peak B fluorescence is reduced by 55%, 693 
almost 100% and 0% in the respective zones. Yu et al. (2014) reported slightly higher reduction 694 

percentages for peak B in the anaerobic/anoxic/oxic system. They also observed that peak T 695 
remained relatively consistent in the treatment process (41 - 48 %), but peak B decreased 696 
dramatically (33 - 7 %). However, Murphy et al. (2011) and Janhom et al. (2009) found a poor 697 

removal of peak B fluorescence. Janhom et al. (2009) stated that peak B substances are not 698 
considered refractory and suggested that these substances could be related to some humic-bound 699 
proteinaceous constituents, which may be biologically resistant. Nevertheless, Cohen et al. (2014) 700 
advises caution when comparing the sensitivity of fluorescent components to wastewater treatment 701 

due to possible multiple differences in the treatment system. In addition to the biological treatment, 702 
Cohen et al. (2014) found that soil-aquifer treatment causes a further significant decrease in the 703 
concentration of the OM fluorescing in the Em < 380 nm region. Murphy et al. (2011) and Hambly 704 
et al. (2010) also observed that chlorination generated a high removal rate of the peak T fraction at 705 

recycled treatment plants. 706 
Compared to peaks T and B components, peaks A and C are removed to a lower extent in the 707 

first stages of the treatment works (Fig. 2). Riopel et al. (2014) reported a reduction in the peak C 708 
component of 28 % and an increase in peak M with 4 % from influent to effluent. Cohen et al. 709 

(2014) found that one component in the Em > 380 nm region, sensitive to microbial activity, was 710 
removed, while other two components could not be removed by the biological treatment. Yu et al. 711 

(2013) observed a reduction in peak C - like component below 10 %. Later, Yu et al. (2014) showed 712 
that one component in the region Em > 380 nm increases from 6 % in the primary treatment to 19 713 
% after the biological treatment. An increase in the fluorescence of this component was observed by 714 

Ou et al. (2014) in anoxic and aerobic treatments. Poor degradation of these components was also 715 
reported by Janhom et al. (2011) at an activated sludge treatment process. Yu et al. (2015b) found 716 
that with increasing retention times at sequencing batch reactor the peak C components increase in 717 

the soluble microbial products. These products are generated by substrate utilization or biomass 718 
decay and cell lysis, and are regarded as autochthonous matter. Cohen et al. (2014) and Riopel et al. 719 

(2014) suggest that these fluorescent components are either potentially produced during the process 720 
or are recalcitrant to decomposition. Riopel et al. (2014) mention that large molecules degrade into 721 
smaller molecules that have a fulvic-like behavior, based on the polyphenol postulate of humic 722 

susbtances formation. They explain that due to the high microbial activity in WwTPs, the secreted 723 
exocellular enzymes will oxidize the polyphenols into quinones. The quinones will agglomerate 724 

with metabolites like amino acids or peptides, leading to the formation of humic polymers, which 725 
could be fulvic acids because they are smaller in size. Another explanation for the poor removal of 726 

these components is provided by Hur et al. (2011) who studied the fate of refractory OM in 727 
WwTPs. Refractory OM is not easily removed by the biological treatment process due to its 728 
recalcitrant nature. Moreover, Hur et al. (2011) showed that in most WwTPs, the percentage 729 
distribution of refractory OM increases in the effluents.  730 

Tertiary and quaternary treatment stages are responsible for removing most of the fraction 731 
that fluoresces in the region Em > 380 nm (Fig. 2).  Hambly et al. (2010) observed that chlorination 732 

generated a higher reduction in peak C compared to previous treatment steps. Singh et al. (2012) 733 
found a minimum of 97 % removal of peak C fluorophores after the reverse osmosis process. 734 
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Murphy et al. (2011) also reported almost complete removal of components following reverse 735 
osmosis treatment step. 736 

 737 

 738 
Figure 2. Removal of fluorescent components during treatment; the removal percentages represent collective 739 
values from several studies (Tchobanoglous and Burton 1991, Reynolds 2002, Hambly et al. 2010, Janhom 740 

et al. 2011, Murphy et al. 2011, Singh et al. 2012, Cohen et al. 2014, Ou et al. 2014, Riopel et al. 2014, Yu et 741 
al. 2014) and unpublished data. Blue arrow – low decrease, Orange arrow – moderate removal, red arrow – 742 

high removal.  743 
 744 
Removal of fluorescent compounds, like FWAs and PAHs, was also analysed. Bridgeman et 745 

al. (2013)  found FWAs only in crude wastewater and not after other treatment steps, concluding 746 
that this fluorescent fraction associates with particulate matter, which is removed by the primary 747 

treatment stage. In addition, Tavares et al. (2008) stated that subsequent disinfection processes may 748 
further remove FWAs from wastewater. According to Hayashi et al. (2002), up to 80 % of FWAs 749 

are removed after the biological treatment, and thus these compounds could be used as molecular 750 
markers of less effective treatment processes. Ou et al. (2014) found that, for coke wastewater, the 751 

novel anoxic/aerobic/aerobic system successfully removed PAHs. While, Cohen et al. (2014) 752 
observed no reduction in the pyrene-like component along the treatment steps.  753 

In most monitoring studies, other changes in the fluorescence spectra with regard to peak 754 
shape and position were observed. However, the findings regarding peak position are not consistent 755 

across studies, potentially due to differences in the treatment process or source of wastewater. For 756 
example, Zhu et al. (2011) observed that peak C presented a blue shift of 5 nm for the excitation 757 
wavelength and of 21 nm for the emission wavelength, from influent to effluent, at membrane 758 
bioreactor treated supermarket wastewater. Hur et al. (2011) reported a 20 nm excitation 759 
wavelength red shift between influent and effluent, at refractory OM from municipal wastewater. 760 

Yet, Riopel et al. (2014), using PARAFAC, found no change in the peak C position or shape 761 
between sample locations. Riopel et al. (2014) observed that the PARAFAC component similar to 762 

peak T was elongated to longer wavelengths at influent samples compared to effluent. They 763 
attributed this elongation to the free or bound nature of the components. In the study of Zhu et al. 764 
(2011), peak T fluorescence displayed a red shift of 5 nm in the emission wavelength, from influent 765 
to effluent (Zhu et al. 2011). According to Zhu et al. (2011), the red shift is associated with the 766 
presence of carbonyl containing substances, hydroxyl, alkoxyl, amino groups and carboxyl 767 

constituents, while a blue shift is linked to a decomposition of condensed aromatic moieties and the 768 
break-up of the large molecules into small molecules.  769 

 770 



 18 

5.4 Fluorescence control and optimisation of treatment processes 771 
Increasingly stringent regulation has put major pressure on water utilities to find new 772 

technologies and implement control concepts that would improve the overall performance of 773 
WwTPs (Rehman et al. 2015). As discussed in previous sections, fluorescence spectroscopy has the 774 
potential to be used as a highly effective monitoring technique of treatment quality. This could be 775 
achieved through the use of peak T fluorescence, which could replace the out-dated and inaccurate 776 
BOD (Bridgeman et al. 2013). Consequently, fluorescence spectroscopy could provide the WwTPs 777 

with the optimum tool for real-time control and remediation of plant performance failures (Chong et 778 
al. 2013).  779 

Additionally, Bridgeman et al. (2013) and Ahmad and Reynolds (1995) suggested that 780 
fluorescence could improve the process control in activated sludge process. The bacteria and 781 
microorganisms that form the activated sludge are fed with wastewater containing organic waste. In 782 

order to sustain the biological activities into the activated sludge process for BOD reduction, air is 783 
pumped into the tanks to provide sufficient quantities of dissolved oxygen. Aeration is one of the 784 
most energy intensive operations from the WwTPs, almost 65 % of energy being consumed for the 785 

activated sludge process (Rehman et al. 2015).  Water utilities often over aerate to ensure meeting 786 
discharge regulations (Bridgeman et al. 2013). It is estimated that, by monitoring OM in WwTPs, 787 
40 % of the energy costs could be saved (Ahmad and Reynolds 1995). Thus, fluorescence may be 788 
used to optimize process control in treatment works and eliminate the unnecessary costs associated 789 

with overtreatment (Bridgeman et al. 2013). 790 
Promising results regarding online monitoring and process control were obtained by Singh et 791 

al. (2015), who published the first real-time study on two municipal recycled treatment plants. The 792 
researchers used a peak C sensor to prove the robustness of the technique in detecting reverse 793 

osmosis membrane fouling and integrity. They showed that the sensor was sufficiently sensitive to 794 
detect subtle differences between membrane permeates and identify underperformance issues. Also, 795 

no indication of fouling on probe and no deviation of probe performance were observed, during the 796 
experimental period. This study demonstrated the potential of using fluorescence for treatment 797 

process assessment and control. 798 
 799 

6 Conclusions and future considerations 800 
Fluorescence has been shown to be a valuable technique to characterize and monitor 801 

wastewater in surface waters for tracking sources of pollution and in treatment plants for process 802 

control and optimization. The use of real-time fluorescence could lead to a positive change in the 803 
water industry, as they would be able to start immediate remedial actions in case of accidental 804 
pollution events, cut costs associated with complex analytical approaches and comply with 805 

discharge regulation.  806 
In general, wastewater presents higher fluorescence intensity compared to natural waters, 807 

especially for peaks T and C. Several fluorophores, with varied origins, were shown to contribute to 808 
peaks T and C, hindering the identification of the source of wastewater pollution in natural water 809 
systems.  810 

Wastewater treatment processes reduce the OM fluorescence . In particular, peak T is mostly 811 
reduced by the biological treatment, while peak C is removed through chlorination and reverse 812 

osmosis. Therefore, simple fluorometers with appropriate wavelength selectivity, particularly for 813 
peaks T and C could be used for online monitoring, in WwTPs.  814 

In response to these findings, there are several simple probes or fluorometers available on 815 
market that measure these two components or more complex systems that convert the peak T 816 
fluorescence signal into BOD values. However, in case of monitoring surface waters contaminated 817 
with wastewater, the use of simple fluorometers may not be the best solution to identify the exact 818 

source and take the appropriate remedial actions. Single or double wavelength instruments could 819 
only be used as a time and cost effective first measure for early warning.  820 

Implementation of fluorescence instrumentation for on-line monitoring is relatively slow due to 821 
several factors, such as high quantities of suspended solids, temperature, fouling etc. There are 822 
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fewer issues when dealing with effluents, but it is more difficult to extract quantitative data in the 823 
case of untreated or poorly treated wastewater.  824 

In order to counteract these issues, dilution of samples is recommended: to a factor of 10 or to 825 
an absorbance value < 0.05 cm

-1
, in the peak T absorbance region. Considering the high 826 

concentration of components it is very likely that the fluorescence of peaks T and C will be 827 
quenched. Moreover, wastewaters are highly variable in concentration and composition and 828 
therefore a general dilution factor may not be recommended. Also, post-measurement mathematical 829 

correction could be applied to fluorescence spectra of wastewater samples. The correction and 830 
compensation tools, developed in the recent years, for the fluorescence signal could correct the 831 
impact produced by external factors. Some correction methods have been added to PARAFAC and 832 
it is expected that more uniform tools would generate another significant leap forward into the 833 
development of fluorescence based monitoring tools. 834 

 835 

Highlights 836 

 Wastewater shows higher peak T and peak C fluorescence compared to natural waters  837 

 Peak T reduced after biological treatment and peak C after chlorination and RO  838 

 Fluorometers measuring peaks T and C may be used for online wastewater monitoring 839 

 Dilution of samples, typically up to x10, useful to limit inner filter effect 840 

 Research gaps: online application of fluorescence and rapid data processing tools 841 
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Table SM1. Fluorescence peaks identified with the peak-picking method. 1301 

Samples Dilution factor 

Em < 380 nm region components (nm) Em >380 nm region components (nm) Other peaks 

(nm) Reference 
B (nm) T1 (nm) T2 (nm) A (nm) C (nm) FWA (nm) 

Ex Em Ex Em Ex Em Ex Em Ex Em Ex Em Ex Em 

Ww N/A  300  350    400  500     
Ahmad and 

Reynolds (1995)  

Raw, settled and treated Ww N/A   280 340           
Reynolds and 

Ahmad (1997)  

Ww impacted river N/A   
276-

281 

340-

370 
    

326-

339 

416-

422 
    Baker (2001)  

Paper mill discharge 

N/A 

  277 351     344 433 300 425   

Baker (2002b)  River sample downstream of 

Ww discharge 
  280 351     344 436   386 472 

Single Ww works, synthetic 

sewage 
N/A   280 350           Reynolds (2002) 

River samples with Ww 

effluents 
0   280 350 220 350 

220-

260 

400-

460 

300-

350 

400-

460 
    

Baker and 

Inverarity (2004) 

River samples with Ww 

effluents 
x 5 – x 100   280 

350-

360 
          Baker et al. (2004) 

River samples downstream 

of domestic WwTPs 
N/A           

320, 

345, 

360 

430   
Takahashi and 

Kawamura (2006) 

Ww effluents x 1 – x 10   
276-

296 

330-

378 

221-

247 

331-

378 

217-

253 

395-

443 

318-

347 

405-

445 
    

Hudson et al. 

(2008)  

Municipal effluent N/A   280 335 235 335   315 410     An et al. (2009) 

Brewery Ww N/A 
230, 

275 
315 285 365 230 365 255 455 

335-

355 

405-

465 
  

290, 

500  

400, 

525  

Janhom et al. 

(2009)  

Recycling plant with RO N/A     
235-

250 

340-

382 

235-

260 

400-

440 

305-

340 

406-

430 
    Singh et al. (2009)  

Paper mill Ww effluent x 10 230 300 280 300   230 
400-

450 

320-

330 

410-

450 
  290 425 

Ciputra et al. 

(2010)  

Recycled water treatment 

plant 
N/A   300 350 225 350 235 426 325 426     

Hambly et al. 

(2010)  

Raw and effluent domestic 

Ww 

Dilution to absorbance of 

< 0.1 cm-1 at 254 nm 
    

250 - 

310 

280 - 

340 
  350 380   

370, 

390  

400, 

420 
Hur et al. (2011)  

Brewery Ww 
Dilution of fractions from 

resin fractionation 
  

265-

295 

315-

390 
230 

340-

365 

255-

265 

435-

455 

330-

335 

395-

410 
  

290, 

365  

400, 

455  

Janhom et al. 

(2011)  



 29 

Ww N/A   
280-

285 

320-

330 

235-

240  

335-

350 
  

315-

330 

410-

420 
    Zhu et al. (2011)  

RO water recycling plant N/A   285 350 235 350 240 
400-

426 
340 

400- 

426 
    Singh et al. (2012)  

Paper mill Ww effluent x 10 230 300 280 300   230 425 325 425   290  425 
Bassandeh et al. 

(2013)  

Municipal WwTPs x 10   275 340 
225-

237 

340-

380 

237-

260 

400-

500 

300-

370 

400-

500 
370 410   

Bridgeman et al. 

(2013)  

River contaminated with 

Ww and fishery effluents  

Ww samples x 10 

Fishery effluent x 20 

270-

280 

300-

320 

270-

280 

320-

350 
  

250-

260 

400-

500 

330-

350 

420-

480 
    

Chiarandini Fiore 

et al. (2013)  

Slaughterhouse Ww 0     
260-

290  

300-

375 
250 460 

320-

370 

410-

460 
  

400-

440  

450-

510 
Louvet et al. (2013)  

Domestic and industrial 

WwTPs 
IFE correction   

275-

296 

340-

380 

216-

237 

340-

380 

237-

260 

400-

500 

300-

370 

400-

500 
    Yu et al. (2013)  

Downstream of municipal 

WwTPs 
N/A   285 335     355 405   325 375 

Gutierrez et al. 

(2014)  

Municipal WwTPs 0 280 310   235 340 240 430 340 435     Li et al. (2014)  

Coke Ww  x 10 275 310 275 340 210 340 260 
380-

460 
350 

420-

480 
    Ou et al. (2014)  

Municipal WwTPs  N/A 
225-

235 

290-

310 

265-

285 

330-

370 

225-

235 

330-

370 

230-

260 

430-

470 

290-

320 

380-

420 
  

290-

320 

380-

420 
Yu et al. (2014)  

Textile Ww effluents N/A   280 325 230 340 250 460 310 460   365 460 Li et al. (2015)  

Ww – wastewater; WwTPs – wastewater treatment plants; RO – reverse osmosis; IFE – inner filter effect; N/A – not available; FWAs – fluorescent whitening agents. 1302 
 1303 
 1304 
 1305 
 1306 
 1307 
 1308 
 1309 
 1310 
 1311 
 1312 
 1313 
 1314 
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Table SM2. Fluorescence peaks identified with PARAFAC method. 1315 

Samples Dilution factor 
Em < 380 nm region components (nm) Em >380 nm region components (nm) 

Reference 

Ex/Em Ex/Em Ex/Em Ex/Em Ex/Em Ex/Em Ex/Em Ex/Em Ex/Em 

Ww effluents 

impacted lake 
N/A 

 
 294 / 320 322 / 407 360 / 425   

  Wang et al. 

(2007)  

Municipal WwTPs 

Dilution of concentrated samples 

to absorbance at 350 nm < 0.08 

cm-1 

220, 275 / 

339  230 / 345 
220, 275 / 

300 

240, 280 / 

370 

260, 380 / 

467 

230, 340 

/ 422 
 

 

 
Guo et al. 

(2010)  

Ww effluents 

impacted river 

N/A 

275-280 / 

337-351          

 

225-230 / 

340-347 
 

300-310 / 428-447 

235-255 / 425-447 

Mostofa et al. 

(2010)  
Household 

sewerage drainage 

230 / 338-

351 

280 / 339-

346  

  
335-345 / 432-437;     

240-250 / 425-443 

Washing machine 

sample 

280 / 344   

235 / 348 
  345 / 437   250 / 441 

Industrial effluent 

impacted river 
N/A  280 / 368   

<250, 345 

/ 438 
  

 
 

Borisover et 

al. (2011)  

Recycled  WwTPs 

IFE correction  

Samples with absorbance > 0.3 

cm-1 were eliminated from 

database 

<250 / 348 

290 / 352  
 

250 / 304 

270 / 300  

<250, 320 

/ 400  

<250, 370 

/ 464  
  

 

350 / 428  
Murphy et al. 

(2011)  

WwTPs IFE correction 
230, 275 / 

345  
 

220 / 305, 

345  

245, 323 / 

425  
   

 
 

Yu et al. 

(2013)  

Pulp mill Ww 

effluent 

Dilution to absorbance of <0.2 cm-

1 at 254 nm 
230 / < 350   

250, 370 / 

450 

<250, 320 

/ 454 

<250 / 

436 

270, 390 

/ 512 
<250, 305 / 396 

275, 330 / 

436 

Cawley et al. 

(2012)  

Municipal effluent IFE correction 
<230, 270 / 

346 

<235, 275 

/ 306 
 280 / 386    235, 340 / 410 

255, 365 / 

444 

Tedetti et al. 

(2012)  

Municipal and 

industrial WwTPs 

Dilution to absorbance of <0.05 

cm-1 at 240 nm 

<240, 275 / 

346  
  

<240, 305 

/ 422 

255, 380 / 

468 

270, 350 

/ 432 
 

245, 270, 280, 

350, 375 / 384, 

402 

<240, 300 / 

368, 444 

Cohen et al. 

(2014)  

Municipal WwTPs 0 
235, 290 / 

340  

225, 280 / 

330 

225, 280 / 

300; 

230, 280 / 

310 

250, 350 / 

440 
   

 

 Li et al. (2014)  

Coke WwTPs x 10   280 / 320 
280, 300 / 

380 
   

 250, 345 / 

450 

Ou et al. 

(2014)  
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Treated and 

untreated Ww 
N/A 280-290 / 305-350 

325 / 380-

410 

350 / 410-

420  
  

 
 

Riopel et al. 

(2014) 

WwTPs  N/A 
235, 275 / 

354 
  

235, 320 / 

411  

254, 360 / 

450  
  

 
 

Qin et al. 

(2015) 

Industrial Ww 

effluents 

Dilution to absorbance of <0.05 

cm-1 at 254 nm 

< 250, 285 / 

347  
 280 / 316 

< 250, 

275 / 385  

265, 360 / 

447 
 

<250 / 

445 
335 / 413  

Yang et al. 

(2015a) 

Domestic Ww 
Dilution to absorbance of <0.05 

cm-1 at 254 nm 
280 / 336   270 / 316 

240, 290 / 

392  

260, 365 / 

444  
  

  
Yu et al. 

(2015b)  

Treated municipal 

Ww effluents 
N/A 280 / 334 225 / 338 270 / 316     245, 300 / 402 

260, 360 / 

444 

Yu et al. 

(2015a) 

Ww – wastewater; WwTWs – wastewater treatment works; IFE – inner filter effect; N/A – not available. 1316 


