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Abstract

Emergency logistics in disasters is fraught with planning and operational challenges, such as uncertainty
about the exact nature and magnitude of the disaster, a lack of reliable information about the location
and needs of victims, possible random supplies and donations, precarious transport links, scarcity of
resources, and so on. This paper develops a new two-stage stochastic network flow model to help decide
how to rapidly supply humanitarian aid to victims of a disaster within this context. The model takes
into account practical characteristics that have been neglected by the literature so far, such as budget
allocation, fleet sizing of multiple types of vehicles, procurement, and varying lead times over a dynamic
multiperiod horizon. Attempting to improve demand fulfillment policy, we present some extensions of
the model via state-of-art risk measures, such as semideviation and conditional value-at-risk. A simple
two-phase heuristic to solve the problem within a reasonable amount of computing time is also suggested.
Numerical tests based on the floods and landslides in Rio de Janeiro state, Brazil, show that the model
can help plan and organise relief to provide good service levels in most scenarios, and how this depends
on the type of disaster and resources. Moreover, we demonstrate that our heuristic performs well for real
and random instances.
Keywords: OR in disaster relief; Humanitarian logistics; Emergency logistics planning; Two-stage
stochastic programming; Risk-aversion.

Preprint submitted to European Journal of Operational Research March 15, 2016

*Manuscript
Click here to download Manuscript: Manuscript EJOR Revision 2016.pdf Click here to view linked References



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1. Introduction

Floods and landslides are just two of the various types of disaster that plague Brazil year after year,
leaving a trail of huge destruction. According to Valencio (2014), the problem of disasters in Brazil
should not be considered residual; it suffices to analyse the number of municipalities which declared an
emergency situation or state of public calamity between the years 2003 and 2013 to confirm that disasters
are, in fact, recurrent events. During this period, an average of 1,368 municipalities, about 24% of
Brazilian municipalities, had some sort of socioeconomic problem as a result of environmental disasters
− from droughts in the northeast to flooding in the south region. In the same line, Yodmani (2001)
argues that disasters should not be seen as simply extreme events caused only by natural forces, but also
as symptoms of under-development in countries.

In July 2013, the Civil Defense of Brazil and its Postal Service signed a contract for the prepositioning
of strategic stocks for humanitarian assistance in certain regions of the country in an attempt to mitigate
disaster impacts (Presidency of the Republic, Brazilian Government, 2013). The main idea behind such
a policy is to provide a faster response, possibly by decreasing lead times between the request and arrival
of supplies. For this purpose, though, an optimized system is needed to cross-check information about
safety stocks (location, availability, etc) with updated information about the disaster (e.g., affected areas,
number and need of the victims, road damage) and to determine the quantity and sizes of existing vehicles
required to deliver supplies. Such prepositioning, without mentioning the provision of emergency relief
and supplies to disaster victims, is fraught with planning and operational challenges (Balcik et al, 2010)
mostly due to the scarcity of overall resources and the inherent uncertainties of disasters.

Thus, in order to respond to disasters effectively, governments and humanitarian organisations need
to consider these issues when designing effective relief supply chains. However, Gonçalves (2011) showed
that humanitarian decision makers often make non-optimal decisions in the field by over-reliance on past
experience, over-confidence in their own unaided decision-making abilities, and the use of simple decision
heuristics. The resulting poor decisions motivate this paper to explore stochastic and dynamic models
that can handle the urgent complexity and uncertainty faced by decisions makers. In particular, we
propose an optimization model that could be used within a decision-aid tool by the Brazilian agencies
that are currently responsible for providing rapid responses in disaster relief. Our model encompasses
common decisions regarding logistics planning, such as how to dispatch emergency aid from warehouses
to affected areas over a number of time periods in order to alleviate suffering during relief operations,
that is, to decide the most suitable routes, which vehicles should be used, in which periods and in which
quantity, and so on.

The model also balances the immediate lack of external supplies by allowing (i) the procurement of
emergency aid during a response; and (ii) the prepositioning of emergency aid before a disaster strikes.
The first option is based on Brazilian humanitarian practices where procurement usually occurs some
days or more after the start of the humanitarian operations in the same area where the disaster struck.
However, only a few emergency aid items are likely to be available, in very limited amounts and at a very
high cost, since local vendors often take advantage of the vulnerable situation. The second option may
be seen as a global trend to overcome the suddenness of disasters (Salmerón and Apte, 2010; Duran et al,
2011; Jr. et al, 2012; Davis et al, 2013). Additional decisions supported by the proposed model concern
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defining appropriate inventory levels and budget allocation among the various operations. Backlogging
is permitted at a very high cost, as we know that in practical problems there are not enough resources
to meet the demand from all victims.

For Oztaysi et al (2013), uncertainty is a crucial challenge that must be overcome in disaster manage-
ment. In fact, immediately after or during a natural disaster, the number of affected people (homeless,
displaced, injured, deaths) may be only vaguely known and recipient demand will be difficult to predict
in terms of timing, location, type, and size. Suddenly-occurring large demand and short lead times for
a wide variety of supplies will contrast with periods of low demand (Kovács and Spens, 2009; Sarkis
et al, 2010). In addition, since the situation is often unclear in the immediate aftermath of the disaster,
some routes might be total or partially blocked, with uncertain information about any damage. In the
megadisaster of the Serrana region of Rio de Janeiro (Brazil) in 2011, 14 state highways from 7 different
cities suffered traffic blockages due to landslides and flooding, besides the countless number of urban
and rural access roads that were also damaged. Although many emergency aid supplies can be strategi-
cally prepositioned, only some of them will remain usable, depending on the impact and location of the
disaster.

Supplies and monetary funds may also be affected by the degree of the disaster. Recent studies suggest
that donor behaviour may depend not only on measurable parameters − such as an aid agency’s use of
donated funds, fund-raising cost factors, and donors’ unit utility of donations (Toyasaki and Wakolbinger,
2011) − but also on subjective factors that influence the decision to donate, such as how people perceive
a certain disaster (Zagefka et al, 2011), and the role of the media, social networks, etc. (Brito Junior
et al, 2013). As supplies and monetary budgets usually come from a variety of organisations, they are
considered to have uncertain values as well. This uncertainty is further complicated by the phenomenon
of material convergence (Fritz and Mathewson, 1957; Holguín-Veras et al, 2012) whereby well-meaning
non-professional donors supply huge quantities of unsolicited goods of doubtful usefulness that can (and
often do) clog the supply chain, disrupting the flow of urgent aid to recipients in need.

In this paper, uncertainties are modelled via scenario-based two-stage stochastic programming. The
first-stage plans the prepositioning of emergency aid and the overall capacity of each type of vehicle (fleet-
sizing). The second-stage response makes operational decisions for transportation− including the detailed
decision regarding the assignment of vehicles to routes − as well as inventory, shortages, and procurement.
The objective function is flexible, being able to minimise total expected costs or prioritize the meeting of
recipient demand while avoiding excessive inventory. We also show how that the stochastic programming
model can be straightforward extended to consider different risk-averse preferences to produce less risky
or reliable solutions and/or to improve fairness.

As the mixed-integer stochastic programming models are huge and computationally challenging even
for small-sized instances, we develop a two-phase heuristic that performs very well for real and random
instances. The first phase solves a (smaller) simplified version of the model that overestimates the overall
number of vehicles in the first-stage. The second phase then fixes the first-phase decisions regarding
the operational distribution flow and re-solves the original model to determine the remaining decision
variables.

Our overall numerical results have important implications in terms of roles within the humanitarian
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supply chain in efficiently managing both the preparedness and response phases of most sudden-onset
disasters.

This paper is organised as follows. Section 2 reviews the most relevant literature. Section 3 develops
the proposed stochastic optimization model. Section 4 shows how to extend the risk-neutral stochastic
model to incorporate risk preferences. Section 5 presents a two-phase procedure to determine good-
quality solutions within a reasonable amount of time. Section 6 implements the model on real data from
the 2011 floods and landslides in Rio de Janeiro state, Brazil, and analyses the computational results.
The paper concludes in section 7 with a discussion of the model’s value and flags remaining challenges
and opportunities for future research.

2. Related Literature

Possibly due to the increased frequency and severity of disasters around the world and to their greater
visibility on television and social media in recent decades (Franks, 2013; Seib, 2013), these wrenching
events have been the subject of growing public concern and research interest (Smith et al, 2009). This
paper will not review all decision models for disaster management and emergencies, but rather will focus
on the quantitative management of uncertainty in emergency logistics planning in disaster relief, consid-
ering only recent research on scenario-based stochastic programming approaches in transportation and
distribution relief within network flows. The reader who is interested in wider surveys of the application
of quantitative models and operational research to humanitarian logistics can consult Altay and Green
(2006); Van Wassenhove (2006); Caunhye et al (2012); De la Torre et al (2012); Holguín-Veras et al
(2012); Ortuño et al (2013); Galindo and Batta (2013); Leiras et al (2014) and Özdamar and Ertem
(2015) amongst others.

Two-stage stochastic programming with recourse models have been successfully used in humanitarian
logistics and disaster management as they allow the modeller to represent pre- and post-event phases
together via first- and second-stage decision variables. Barbarosoğlu and Arda (2004) appears to be the
pioneer paper that developed a two-stage stochastic model for both pre-event and post-event stages in
disaster response, considering supply capacity and demand as random variables approximated by multiple
scenarios. In addition, following a two-stage paradigm, but with different first- and second-stage decisions,
Chang et al (2007) presented a scenario-based model adapted to represent a multi-echelon network in a
flood disaster rescue system.

Relief resource allocation problems have also been researched in the following papers. Mete and
Zabinsky (2010) designed a two-stage stochastic model to first locate possible medical storage centres
and their stock levels before the disaster, then to deliver medical supplies to hospitals for each disaster
scenario. Salmerón and Apte (2010) used a two-stage stochastic optimization model for the strategic
positioning and sizing of a variety of relief resources, followed by scenario analysis to deploy the resources
in the event of a disaster. Prepositioning decisions were also the focus of Rawls and Turnquist (2010), and
are discussed in Rawls and Turnquist (2012), Noyan (2012), and Hong et al (2015). Rawls and Turnquist
(2010) sought the pre-event prepositioning of relief supplies, using multiple scenarios to represent the huge
amount of uncertainty regarding the date, location, and intensity of an eventual disaster and the difficulty
of forecasting its impact on transport infrastructure. Noyan (2012) extended Rawls and Turnquist’s model
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to include attitudes to risk by making use of the approach known as conditional-value-at-risk (CVaR),
widely used in financial optimisation. Rawls and Turnquist (2012) developed a short-term planning
model for pre-disaster use to meet uncertain needs in the first few days after the start of the disaster,
requiring that a given high percentage of all scenarios (a type of α−reliable constraint) should fully
meet needs. Hong et al (2015) focused on location of distribution centers and positioning of emergency
supplies in long-term pre-disaster planning in an attempt to improve network reliability. For this purpose,
their paper developed a chance constrained model and proposed tractable reformulations to solve more
efficiently problems with moderate-size networks and a large number of scenarios.

The last mile distribution in post-disasters was investigated by Noyan et al (2015). The authors
followed the two-stage paradigm to define the location of points of distribution in the first-stage and to
determine the amount of supplies delivered to them in the second-stage in an attempt to maximize the
expected accessibility to the distribution centers. Two-stage programming with recourse was adopted to
plan relief shelters and then the allocation of evacuees to shelters in Li et al (2011) in which the authors
adopted a two-echelon network to represent both evacuee and resource flows to permanent and temporary
shelters. In contrast, Döyen et al (2012) developed a two-echelon stochastic model for modelling flows
between regional and local rescue centers, as well as locating them, prepositioning inventory, and then
optimising cover and transport after the disaster, testing over many scenarios.

The integration between location and routing in emergency logistics is also tackled in Rennemo
et al (2014) and Ahmadi et al (2015). The former authors have developed a first multi-stage stochastic
programming model to deal with a facility routing model in humanitarian logistics. Their three-stage
model incorporates the opening of local distribution facilities in the first-stage, the initial allocation of
supplies in the second-stage, and the last mile distribution of emergency aid in the third-stage. The
authors illustrated the outperformance of the model in comparison to deterministic approaches via the
evaluation of both the expected value of perfect information and the value of stochastic solution. Ahmadi
et al (2015) proposed a location-routing model under network failure, multiple uses of vehicles, and
standard relief time. Network failure is modelled via a two-stage stochastic program with random travel
time and analysed using a case study in the San Francisco district.

A different stochastic approach to deal with the issue of the imbalance between supply and demand in
post-disaster emergency logistics operations was suggested by Sheu and Pan (2015). Stochastic dynamic
programming was used to determine the amount and the type of emergency resources to the affected
areas. The authors pointed out the importance of collaboration among relief suppliers to alleviate the
impact of an imbalanced relief supply chain through a number of numerical experiments.

To take advantage of the temporal nature of the disaster, Rottkemper et al (2012) developed a rolling-
horizon transshipment and inventory relocation model to reallocate goods as a disaster unfolds without
prejudicing ongoing relief operations, resolving the model repeatedly for each time period, and updating
as the situation changed over time.

Only a few authors have incorporated robustness issues within humanitarian operations. Bozorgi-
Amiri et al (2013) considered multiple sources of uncertainty, including possible damage to prepositioned
supplies, applied to earthquake scenarios in Iran. The authors used so-called robust optimization in the
sense of Mulvey et al (1995) to simultaneously reduce the variability of the second-stage costs and the
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infeasibility of the demand constraints. Kelle et al (2014) adapted a min-max regret model that results
in good but wasteful cover in worst-case scenarios, so that it provides a range of cover-waste tradeoffs to
choose from. The p−reliable regret criterion used by the authors resembles the α−reliable criterion in
Rawls and Turnquist (2012).

Table 1 summarizes the literature review with respect to scenario-based stochastic programming
network flow models in disaster relief and shows the main differences between the existing literature and
this paper. Only a few papers consider dynamic or multiperiod settings, although most authors recognize
a disaster as also being a temporal event. In fact, most papers that present dynamic models ignore their
inherent uncertainties, e.g., Özdamar et al (2004). Note too that some practical characteristics have been
neglected by the literature so far, such as time-varying lead times and multiple modes of transportation.
Regarding the decisions supported by the model, budget allocation, fleet sizing and procurement are rarely
jointly considered in the current literature. Even though many papers account for random demands,
networks and capacities, it seems that random supply has only recently been considered and random
budgets have never been studied before. Most authors ignore the potential disadvantages of using risk-
neutral approaches, i.e., very pessimistic worst-case solutions, or the high-variability of the second-stage
decisions. In fact, the importance of analysing robust or risk-averse policies in stochastic network models
for disaster relief has been pointed out only recently by Noyan (2012). Most papers develop solution
procedures in order to obtain fast good-quality solutions. Exact and heuristic methods are usually based
on decomposition schemes in an attempt to produce smaller and easier solvable problems. Finally, note
that flooding and landslides are only rarely studied by the specialised literature as most papers deal with
hurricane and earthquake disasters in USA.

Specifically, our contribution in this article can be summarized as follows. Firstly, we propose a new
stochastic model that combines important characteristics in terms of network structure, decisions and
stochastic treatment. Although some articles have already studied various sources of uncertainty in similar
contexts, we combine them to analyse their relationship. Moreover, we use a scale system to categorize
historical data from flooding and landslide disasters in Rio de Janeiro State to generate plausible scenarios.
Secondly, we extend the traditional risk-neutral model to consider risk-averse attitudes via state-of-art
risk measures, namely, so-called minimax-regret, semideviation and CVaR. Thirdly, we develop a solution
procedure that exploits a simplified model to construct a feasible solution and demonstrate its good
performance in different instances.

[Insert Table 1 here]

3. A Two-stage Stochastic Network Model for Disaster Relief

Our two-stage network flow model encompasses multiple types of emergency aid, multiple types
of vehicles, multiple time periods, and multiple scenarios. The core of the model is the transport of
emergency aid among nodes, but it is possible to adapt the model for the evacuation of people from
affected areas to relief centers via simultaneous flows and counter-flows. Although the mathematical
model is general enough to represent different disaster types, it is particularly suitable for help in logistics
planning of sudden and localized onset disasters (Apte, 2009), due to its main characteristics in terms
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of parameters, uncertainty treatment, and decision variables. Thus, we believe that different institutions
(the Red Cross, ONG’s, etc.) can then flexibly use the model to represent their particular challenges.

3.1. Assumptions and limitation of the model

At first, nodes are partitioned only into two subsets: nodes with and without demand. We assume that
nodes with demand represent relief center points and that nodes without demand represent warehouses
points where emergency aid will be prepositioned. In addition, prepositioning is permitted only in the
first time period, in an attempt to represent its strategic allocation well before a disaster strikes. Unused
prepositioned emergency aid in the first time period becomes regular inventory afterwards. Procurement
of emergency aid is allowed in all periods, but only at relief center points.

The optimal distribution of emergency aid among nodes is defined by their flow along each route (a
network arc between two nodes) and by determining a suitable size of transport fleet, i.e., the quantity of
each type of vehicle necessary to carry the emergency aid, considering both weight and volume loading
capacities. The model is formulated assuming there is just one connection from one node to another
for each type of vehicle − if not then dummy intermediate nodes can be inserted to represent different
connections. There is a maximum amount of emergency aid that can be prepositioned and procured, and
a maximum available number of each type of vehicles that can be hired in the first stage.

The model attempts to minimise clogging within the supply chain due to material convergence
(Holguín-Veras et al, 2012) by pulling aid through as a function of specific recipient needs rather than
pushing supplies into the chain. However, the elimination of unneeded donated goods at prepositioning
warehouses remains a modelling challenge that is beyond the scope of this paper.

The monetary budget may be used for transportation and procurement of emergency aid; any unused
budget in period t is passed to period t+ 1 without interest.

To take uncertainty into account, we propose a scenario-based approach within a two-stage stochastic
programming paradigm. We consider a probability space (Ξ,F ,Π), where Ξ is the set of realizations, F is
the set of events F ⊆ Ξ, and Π is the probability measure. Associated with a particular realization ξ ∈ Ξ,
there is a probability of occurrence πξ, such that πξ > 0 and

∑
ξ π

ξ = 1. In this paper, we also assume
that the random variables become known only at a single moment after disaster strikes, thus not revealing
themselves “by time”. In addition, the random variables and decisions are not intertwined; our scenarios
are independently sampled over the full horizon, justifying our choice for two-stage programming instead
of a multistage version.

Before disaster strikes, we have to strategically define the quantity and location of prepositioned
emergency aid, as well as determine the overall capacity of each type of vehicle to perform (in the “future”)
effective emergency logistics, since hiring a suitable fleet can be a very bureaucratic and time-consuming
public bidding procedure. Thus both decisions are naturally considered as first-stage variables. After
disaster strikes, we determine the second-stage decision variables based on the updated information on
the quality of the routes, supplies, demands and donation. Those decisions include the flow of emergency
aid among arcs, the number and type of vehicles necessary to perform distribution, procurement issues,
inventory and backlogging. The first use of the second-stage model should be as soon as possible after
the start of the disaster. Its use thereafter will be on a rolling-horizon basis with updated information
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and scenarios as the impact of the disaster becomes clearer and fresh resources become available. An
overview of the model’s structure and usage is depicted in Figure 1.

[Insert Figure 1 here]

Although the location of relief centers and warehouses may have an important impact in certain relief
supply network, we assume that they are well located beforehand so we focus on prepositioning, distri-
bution, fleet decisions, etc. In our application, we consider all possibilities of location of both warehouses
and relief centers, since we consider one relief center for each affected area and one warehouse for each
big city. Other model’s limitations include its data requirements, both deterministic and stochastic. The
latter in particular are often guestimates for a given scenario, as acknowledged in the computational tests
of Section 6. Moreover, the identification of a representative set of scenarios requires knowledge and ex-
perience of past or similar disasters, while climate change may cause new scenarios to occur, for example,
flooding on a scale not seen before in many regions (Arnell and Lloyd-Hughes, 2014). In addition, the
risk-aversion extensions developed in section 4 take much longer to solve and tend to increase first-stage
costs (but reduce the variability of second-stage costs) as shown and discussed in Section 6.

3.2. Model Formulation

The full mathematical model uses the following notation.

Indices and Sets

I Set of types of emergency aid indexed by i (food, water, medicine kits, etc.).
R Set of types of vehicles indexed by r (trucks, boats, helicopters, etc.).
N rc Subset of demand nodes, or relief center nodes, indexed by n and m.
N w Subset of supply nodes, or warehouses, indexed by n and m.
N Set of all nodes, indexed by n and m (N = N rc ∪N w).
T Set of time periods, indexed by t.
Ξ Set of scenarios, indexed by ξ.

8
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Deterministic input data

cmax
r Available number of vehicles of type r.
cwi and cvi Weight and volume of emergency aid i, respectively.
gwr and gvr Weight and volume capacities of vehicles of type r, respectively.
`rnmt Lead time to transport any emergency aid by vehicles of type r along arc n→ m

in period t.
pmax
i Maximum amount of emergency aid i that can be prepositioned.
omax
in Maximum amount of emergency aid i that can be procured at node n.
αrnm Unit shipping cost by vehicles of type r through the arc n→ m.
βr Unit rental cost for using vehicles of type r.
ι+in Unit holding cost for emergency aid i at node n.
ι−in Unit penalty cost for the shortage of emergency aid i at node n.
oin Unit procurement cost of emergency aid i at node n.
ρin Unit prepositioning cost for emergency aid i at node n

(procurement plus opportunity cost).

Stochastic input data

bξint Incoming supplies of emergency aid i at node n in period t in scenario ξ.
dξint Demand for emergency aid i at node n in period t in scenario ξ.
f ξt Financial budget available in period t in scenario ξ

(donations, federal funding, etc.).
qξrnmt = 1 if a vehicles of type r can cross arc n→ m in period t in scenario ξ

= 0 if not.
sξin Fraction of the prepositioned emergency aid i at node n that remains usable

in the first period in scenario ξ.
First-stage decisions

P 0
in Amount of emergency aid i prepositioned at node n at the start of the first period.
Y C
r Number of vehicles of type r contracted in the first-stage to transport emergency aid

over the periods.

Second-stage decisions

Iξ+int Available inventory of emergency aid i at node n in period t in scenario ξ.
Iξ−int Shortage (unmet demand) of emergency aid i at node n in period t in scenario ξ.
Oξint Amount of procured emergency aid i at node n in period t in scenario ξ.
V ξ
rnmt Number of vehicles of type r used on arc n→ m in period t in scenario ξ.
Xξ
irnmt Flow of emergency aid i shipped by vehicles of type r on arc n→ m in period t

in scenario ξ.
Zξt Unused budget at the end of period t in scenario ξ.

The risk-neutral two-stage stochastic network model for emergency logistics planning is formulated

9
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as follows:

(F1: RiskNeutral)

Min
∑
i∈I

∑
n∈N w

ρin · P 0
in +

∑
r∈R

βr · Y Cr +
∑
i∈I

∑
n∈N

∑
t∈T

∑
ξ∈Ξ

πξ ·
(
ι+in · I

ξ+
int + ι−in · I

ξ−
int

)
(1)

s.t.:
∑

n∈N w

P 0
in ≤ pmax

i , i ∈ I (2)

Y Cr ≤ cmax
r , r ∈ R (3)

∑
r∈R

∑
m∈N

[
Xξ
irnmt −X

ξ
irmn(t−`rmnt)

]
=



Iξ+in(t−1) − I
ξ−
in(t−1) + Iξ−int − I

ξ+
int +Oξint + bξint − d

ξ
int,

i ∈ I , n ∈ N rc, t ∈ T , ξ ∈ Ξ

Iξ+in(t−1) − I
ξ+
int + sξin · P

0
in + bξint,

i ∈ I , n ∈ N w, t = 1, ξ ∈ Ξ

Iξ+in(t−1) − I
ξ+
int + bξint,

i ∈ I , n ∈ N w, t ∈ T − {1}, ξ ∈ Ξ

(4)

∑
t∈T

Oξint ≤ o
max
in , i ∈ I , n ∈ N rc, ξ ∈ Ξ (5)

V ξrnmt ≥
∑
i∈I

cwi
gwr
·Xξ

irnmt, r ∈ R, (n,m) ∈ N , t ∈ T , ξ ∈ Ξ (6)

V ξrnmt ≥
∑
i∈I

cvi
gvr
·Xξ

irnmt, r ∈ R, (n,m) ∈ N , t ∈ T , ξ ∈ Ξ (7)

∑
(n,m)∈N

∑
t∈T

V ξrnmt ≤ Y Cr , r ∈ R, r ∈ R, ξ ∈ Ξ (8)

V ξrnmt ≤ q
ξ
rnmt · Y Cr , r ∈ R, (n,m) ∈ N , t ∈ T , ξ ∈ Ξ (9)

∑
r∈R

∑
(n,m)∈N

αrnm · V ξrnmt +
∑
i∈I

∑
n∈N rc

oin · Oξint = fξt + Zξ(t−1) − Z
ξ
t , t ∈ T , ξ ∈ Ξ (10)

Y Cr ≥ 0 and integer , r ∈ R (11)

V ξrnmt ≥ 0 and integer , r ∈ R, (n,m) ∈ N , t ∈ T , ξ ∈ Ξ (12)

P 0
in|n∈N w , X

ξ
irnmt, I

ξ+
int, I

ξ−
int, O

ξ
int|n∈N rc , Z

ξ
t ≥ 0 , i ∈ I , r ∈ R, (n,m) ∈ N , t ∈ T , ξ ∈ Ξ. (13)

The objective function (1) minimizes a weighted sum of the first-stage cost of prepositioning stock,
hiring vehicles, and the expected second-stage cost of inventory and unmet demand. Constraints (2)
limit the amount of each emergency aid that can be prepositioned across the warehouse nodes and can
be easily modified if a specific node has tight capacity. Constraints (3) limit the total quantity of each
type of vehicle that can be contracted to transport emergency aid over the humanitarian operations.

10
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The flow constraints (4) balance inventory, unmet demand, procurement and the prepositioning of
emergency aid with demand and incoming supplies over consecutive time periods at each node in the
network. The first equality in (4) represents the flow through nodes with demand (relief centers), where
there could be supply and procurement. The second equality guarantees the flow of the available quantity
of emergency aid (supplies and/or prepositioned goods) through nodes without demand (warehouses) in
the first-period. In this case, prepositioning is possible, but shortages are not allowed. The last equality
is similar, but it refers to the second time period onwards, in which case prepositioning is not a valid
policy. Without loss of generality, initial inventory and unmet demand (in t = 0) are considered to be
zero. Note that constraints (4) combined with the minimization of inventory and unmet demand in the
objective function (1) means that material convergence clogging is lessened by not pushing unwanted
donated supplies into the supply chain.

Constraints (5) limit the amount of emergency aid that can be procured across the relief center nodes.
Constraints (6) and (7) determine the type and number of vehicles required to transport emergency aid
through the network. A number of different vehicles, such as trucks, boats and helicopters, are likely
to be used to reach precarious areas, such as flooded and collapsed regions. Both weight and volume
loading are considered to determine the most suitable vehicles, as a particular emergency aid can be
light-weight but bulky, or vice-versa. Constraints (8) guarantee that the total number of vehicles used to
transport emergency aid after disaster strikes is not greater than the fleet of vehicles contracted in the
first-stage. Constraints (9) link the number of vehicles required in each route, period and scenario to the
available arcs. For example, depending on the disaster, qξrnmt might be zero for road transportation, but
not necessarily for air transportation. If qξrnmt = 1, then the number of vehicles of type r used in the
second-stage is limited by Y C

r , which is a sufficiently large number in this case. Constraints (10) ensure
that the total cost of using vehicles to ship emergency aid plus the procurement cost stays within the
financial budget. Constraints (11), (12) and (13) specify the domains of the decision variables.

4. Model Extensions via Risk Management

Although the scope of this paper does not include a comprehensive analysis of possible extensions
of the proposed stochastic model, we also analyse some models from the risk management viewpoint.
The research question that motivates this discussion is: “Can risk-averse models improve humanitarian
operations optimized by the risk-neutral model, by, for example, reducing a key variability measure or
mitigating the risk of non-wanted scenarios?”.

To answer, we investigated the classical minimax-regret approach (MinMax) and two state-of-art risk
risk measures: semideviation (SD) and conditional value-at-risk (CVaR). The reasons behind the choice
of those risk measures are as follows. Minimax is well-known and used in the literature, and various
authors claim that it can provide “robust” solutions from a worst-case scenario perspective (Kouvelis
and Yu, 1997; Shapiro and Ahmed, 2004; Riis and Andersen, 2005). It means that optimal solutions
present relatively good stability regarding perturbation of the underline distribution. This strategy can
be particularly useful when the probability of the different scenarios is difficult to estimate accurately, or
simply when we cannot assess the probability distribution due to a lack of historical data, for example.
In this case, though, scenarios can be estimated based on statistical information on the random data.
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The motivation for adopting semideviation and CVaR as risk measures are their coherency, as well as
their consistency with stochastic dominance principles − thus allowing us to search for stochastically
non-dominated solutions (Ogryczak and Ruszczyński, 2001). Moreover, the corresponding optimization
problems are computationally tractable (due to the convexity of the risk measures), which is an appealing
feature when dealing with mixed-integer problems.

The minimax-with-regret aims to obtain the best worst-case deviation from optimality among all
feasible decisions over the entire set of scenarios (Kouvelis and Yu, 1997). The regret is simply measured
as the difference between the value of the recourse cost and the value of the corresponding scenarioW ?(ξ).
The resulting Minmax problem is as follows:

(F2: Minmax)
Min Φ

s.t. Constraints (2)− (13)
Φ ≥

∑
i∈I

∑
n∈N w

ρ · P 0
in +

∑
r∈R

βr · Y C
r +

+
∑
i∈I

∑
n∈N

∑
t∈T

[
ι+in · I

ξ+
int + ι−in · I

ξ−
int

]
−W ?(ξ), ξ ∈ Ξ

Φ ≥ 0,

where W ?(ξ) is the optimal value for the single scenario wait-and-see problem.
The CVaR risk measure accounts for the expected cost of exceeding VaR at confidence level u. VaR

is the so-called value-at-risk, i.e., the loss that is expected to be exceeded with a small probability (1−u)
during a certain time period. CVaR is defined as follows:

CVaR[Q(Y , ξ)] = infVaR∈R
{
η + 1

1− uE[Q(Y , ξ)−VaR]+
}
, (14)

where E(·) is the expected value a random variable, [Q(Y , ξ) − VaR]+ = max{0, Q(Y , ξ) − VaR}, u ∈
(0, 1), and Q(Y , ξ) is the random recourse that depends upon the first-stage decisions Y . By assuming
a finite support Ξ with probabilities π1, π2, · · · , π|Ξ| associated to the instances ξ1, ξ2, · · · , ξ|Ξ|, then
problem CVaR becomes:

(F3: CVaR)
Min

∑
i∈I

∑
n∈N w

ρin · Pin +
∑
r∈R

βr · Y C
r + (1− φ) ·

∑
i∈I

∑
n∈N

∑
t∈T

∑
ξ∈Ξ

πξ ·
[
ι+in · I

ξ+
int + ι−in · I

ξ−
int

]
+

+φ ·

VaR + 1
1− u ·

∑
ξ∈Ξ

πξ ·Θξ


s.t. Constraints (2)− (13)

Θξ ≥
∑
i∈I

∑
n∈N

∑
t∈T

[
ι+in · I

ξ+
int + ι−in · I

ξ−
int

]
−VaR, ξ ∈ Ξ

Θξ ≥ 0, ξ ∈ Ξ, VaR free,

where φ ∈ [0, 1] is a weight that serves to trade off expected value and risk and u is the confidence level.
Variable Θξ is 0 if scenario ξ has a total cost lower than the VaR, otherwise Θξ is the difference between
VaR and the corresponding cost for all ξ. Both φ and u reflect risk or robust preferences. As u increases,
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fewer worst-case scenarios are taken into account. Consequently, recourse costs are expected to be more
stable across the different scenarios.

The semideviation measure of order p is defined as follows:

Dp = E[(Q(Y , ξ)− EQ(Y , ξ))p]1/p,∀p ≥ 1. (15)

For p = 1, the semideviation of order 1 or the mean-semideviation measure (Krokhmal et al, 2011)
can be stated as follows:

Dp = Emax[Q(Y , ξ)− EQ(Y , ξ); 0] = Emax[Q(Y , ξ); EQ(Y , ξ)]. (16)

There are different ways to linearise expression (16). We use the straightforward linearisation proposed
by Markert and Schultz (2005) who use an auxiliary variable, e.g. ∆ξ, to account for the maximum value
in equation (16). Under a finite number of scenarios, model SD is finally written as

(F4: SD)
Min

∑
i∈I

∑
n∈N

ρin · Pin +
∑
r∈R

βr · Y C
r + (1− φ) ·

∑
i∈I

∑
n∈N

∑
t∈T

∑
ξ∈Ξ

πξ ·
[
ι+in · I

ξ+
int + ι−in · I

ξ−
int

]
+

+φ ·
∑
ξ∈Ξ

πξ ·∆ξ

s.t. Constraints (2)− (13)∑
i∈I

∑
n∈N

∑
t∈T

[
ι+in · I

ξ+
int + ι−in · I

ξ−
int

]
−∆ξ ≤ 0, ξ ∈ Ξ∑

i∈I

∑
n∈N

∑
t∈T

∑
ξ′∈Ξ

πξ
′ ·
[
ι+in · I

ξ′+
int + ι−in · I

ξ′−
int

]
−∆ξ ≤ 0, ξ ∈ Ξ

∆ξ ≥ 0, ξ ∈ Ξ

where the two new constraints in (17) together with the minimization of the risk term
∑
ξ∈Ξ π

ξ ·∆ξ define
the semideviation risk measure represented by the second-stage decision variable ∆ξ. Note that both
CVaR and SD are mean-risk models with an objective function that is able to produce risk-neutral solu-
tions for φ = 0, solutions that are totally risk-averse for φ = 1, or solutions that consider simultaneously
both features for φ ∈ (0, 1).

Table 2 summarizes the structure of the proposed risk-averse models in terms of necessary inputs and
outputs.

[Insert Table 2 here.]

5. Solution Procedure

Solving the proposed (risk neutral and risk-averse) two-stage stochastic mixed-integer programming
models turns out to be computationally challenging. This is especially due to the number of integer
decision variables, |R|+ |R||N |2|T ||Ξ|, which can be large, even for small instances. Using the heuristic
developed just below, this problem dimensionality is manageable for the real Brazilian network instance
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used in the computational tests in Section 6. However, it may well not be for some of the more complex
and larger networks encountered in practice. Testing on larger instances will be required in future
research.

In order to provide good-quality solutions within a reasonable amount of time, we propose a simple
but effective two-phase heuristic. In the first phase, a simplified version of the mathematical model is
solved in order to obtain transportation decisions (Xξ

irnmt). In the second phase, the original formulation
is solved with the information gathered from the first phase and the remaining decision variables are
determined. The overall approach is illustrated in Figure 2.

[Insert Figure 2 here]

The simplified model SMIP (17) links the first-stage decisions Y C
r directly with the second-stage flow

variables Xξ
irnmt via the parameters cwi

gwr
and/or cvi

gvr
, without needing the integer decision variables V ξ

rnmt.

(SMIP)



Min expression (1)
Constraints (2), (3), (4), (5), (11), (13)

qξrnmt · Y C
r ≥

∑
i∈I

cwi
gwr
·Xξ

irnmt, r ∈ R, (n,m) ∈ N , t ∈ T , ξ ∈ Ξ

qξrnmt · Y C
r ≥

∑
i∈I

cvi
gvr
·Xξ

irnmt, r ∈ R, (n,m) ∈ N , t ∈ T , ξ ∈ Ξ

Y C
r ≥

∑
i∈I

∑
(n,m)∈N

∑
t∈T

cwi
gwr
·Xξ

irnmt, r ∈ R, ξ ∈ Ξ

Y C
r ≥

∑
i∈I

∑
(n,m)∈N

∑
t∈T

cvi
gvr
·Xξ

irnmt, r ∈ R, ξ ∈ Ξ

∑
i∈I

∑
r∈R

∑
(n,m)∈N

αrnm · max

∑
i∈I

cwi
gwr
·Xξ

irnmt,
∑
i∈I

cvi
gvr
·Xξ

irnmt

+

+
∑
i∈I

∑
n∈N rc

oin · Oξint = f ξt + Zξ(t−1) − Z
ξ
t , t ∈ T , ξ ∈ Ξ.

(17)

The non-linear budget constraint in (17) is then approximated by the linearisation (18) in which both
the weight and volume of the emergency aid are taken into account to avoid infeasible solutions in the
second phase. Subsection 6.6 shows that the differences between the exact and approximated solutions
are negligible from the practical point of view, even though the number of vehicles in the first-stage is
overestimated due to the linearisation:

∑
r∈R

∑
(n,m)∈N

αrnm ·
∑
i∈I

(
cwi
gwr

+ cvi
gvr

)
·Xξ

irnmt +
∑
i∈I

∑
n∈N rc

oin · Oξint = fξt + Zξ(t−1) − Z
ξ
t (18)

for all t ∈ T and ξ ∈ Ξ.
In the first phase, we still have a two-stage stochastic mixed-integer programming model, but with only

|R| integer decisions. In practice, as the number of different types of vehicles (modes of transportation)
is relatively small, we expect to obtain (sub)optimal solutions rapidly. Note that the simplified model
only serves to provide the flow decisions for the original problem. Given the flow variables, V ξ

rnmt is
trivially determined, as well as the overall solution of the original problem. We also tested the two-phase

14
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procedure by varying the fixation criteria, but found that the most encouraging results are obtained by
fixing the flow variables only. In the computational tests, we show that this procedure is indeed more
efficient than solving the exact models directly via CPLEX. Note that the two-phase procedure is suitable
for solving the risk-averse models as well.

6. Computational Tests

The aim of this section is to analyse the performance of the proposed mathematical models and
provide practical insights that can help decision-makers in the humanitarian logistics field. We also show
the efficiency of the solution procedure in finding good-quality solutions within a reasonable amount
of time. The mathematical model was tested and analysed using data from the flooding and landslide
disaster in January 2011 in the Serrana region of Rio de Janeiro state, Brazil.

All the mathematical models were coded in the GAMS 24.0.2 modelling language and solved with the
CPLEX 12.5 solver. Preliminary tuning experiments with GAMS/CPLEX led us to adopt the following
nondefault options: do not solve the fixed problem (“solvefinal = 0”); use compressed node files on disk
(“nodefileind = 3”); enable an opportunistic parallel search mode (“parallelmode = −1”); and use all but
one core (“threads = −1”). The stopping criteria were either elapsed times exceeding 14,400 seconds or
optimality gaps relative to the best lower bound smaller than 0.01. The experiments were performed on
an Intel Core i7 computer with 16 GB RAM and the Windows 7 operating system.

6.1. Brief description of the case-study

According to the state Geological Service (DRM, 2011), the disaster in January 2011 in the Serrana
region of Rio de Janeiro state, Brazil, occurred due to three main factors: (i) predisposing factors, such as
geology, geomorphology and the climate of the region; (ii) active factors, such as land use and occupation,
previous rainfall, pre-storm rainwater and fluvial erosion; and (iii) the igniting factor, i.e., torrential rain
that lasted 4 hours. The Brazilian Yearbook of Natural Disasters (Brasil, 2012) pointed out that the
megadisaster caused hundreds of deaths and thousands of homeless and displaced people. It was the
largest disaster ever recorded in Brazil in number of fatalities, causing Serrana to be the Brazilian region
with the highest number of deaths caused by a natural disaster (40% of the national total between 1988
and 2012).

According to the categorization scheme proposed by Apte (2009), the megadisaster is a type III
disaster, being a sudden onset from the temporal coverage viewpoint, and a localized onset from the
spatial coverage standpoint. In fact, many floods and flash floods are sudden events. Despite the fact
that the megadisaster reached several cities, it is still considered a geographically contained event, mainly
in comparison to the 2004 Indian Ocean Tsunami that affected 14 dispersed countries. Figure 4 depicts
the complete categorisation and provides some examples of disaster events for each category.

Basically, the idea behind this classification is to understand and analyse the level of difficulty that
each type of disaster imposes for carrying out humanitarian operations in terms of geographical/spatial
and temporal coverage. Higher uncertainty levels are also reflected in more difficult humanitarian op-
erations. For example, prepositioning strategies can be more challenging in sudden onset and localized
disasters than in sudden onset and dispersed (more uncertain) disasters as, in the second case, extra
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coordination mechanisms are needed among the players in the humanitarian supply chain in order to
provide fast relief, even with decentralized stockpiles of emergency aid (Apte, 2009). Note too that a
dispersed and slow onset disaster (type II), such as the 2015-16 Zica virus epidemic in Brazil and parts
of Latin America, presents different levels of difficulty regarding humanitarian operations, but given that
it is not a sudden event, humanitarian logisticians can benefit from time to prepare for relief operations.

[Insert Figure 4 here.]

6.2. Data of the base case

The base case was designed to be as realistic as possible through interviews with governmental organi-
sations, and by extracting information from a variety of technical reports, websites, and existing literature
(Rawls and Turnquist, 2010; Lin et al, 2012; Peixoto Filho, 2013; dos Santos, 2013; Brasil, [n.d.]). Due
to the limited availability of information on Brazilian disasters, some parameters were estimated from
previous papers, so the example should be treated as illustrative. For the sake of brevity, we present
the main data here, but the detailed description of the remaining parameters are presented in the online
supplementary content (Appendix A.1; see Tables A, B, C, D, and E).

The requirement is to provide humanitarian aid to fulfill daily demand over a horizon of 7 periods of
1 day each by supplying emergency emergency aid across a network structure composed of 9 relief centers
(demand nodes) and 4 depots (non-demand nodes). Motivated by real-life cases, the examples assume
that prepositioning and incoming supplies occur only at depot nodes and procurement only at demand
nodes from the first time period onwards. However, it is possible to transport emergency aid across any
arc n → m (n and m being relief centers and/or depots) as long as it is available. Initially, all arcs are
assumed to be available for any type of vehicle (qξrnmt = 1) and that both the capacities cmax

rnm and cmax
r

are sufficiently large.
The following nine affected areas (demand nodes) were considered: Teresópolis (TRS), Petrópolis

(PTP), Nova Friburgo (NFB), São José do Vale do Rio Preto (SVRP), Bom Jardim (BJD), Sumidouro
(SMD), Areal-Sapucaia-Três Rios (AST), Santa Maria Madalena (SMM) and São Sebastião do Alto
(SSA). There are four depots (non-demand nodes) located in Teresópolis (TRS-D), Petrópolis (PTP-D),
Nova Friburgo (NFR-D) and Rio de Janeiro city (RJ-D). Figure 3 shows the district map of Rio de
Janeiro state where Serrana is the inland central region.

[Insert Figure 3 here.]

We consider six emergency emergency aid items that are commonly distributed among disaster vic-
tims: food, water, hygiene, cleaning products, medical products, and mattress. A kit of food represents
a basic food basket covering the nutritional requirements of a five-person family. Each unit of water
represents a container with 20 litres. A kit of personal hygiene products serves only one person. A unit
of cleaning products (or one kit) serves a five-person family. On the other hand, a kit of medical products
serves 90 people. A mattress serves one person. A summary of these requirements, the characteristics of
the emergency aid (weight cwi , volume cvi , the prepositioning cost per emergency aid ρin, and the maxi-
mum amount of each emergency aid that can be prepositioned (pmax

i ) is shown in Table 3. Prepositioning
costs correspond to the procurement price of emergency aid before a disaster strikes; the penalty for
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unmet demand of each emergency aid item (ι−in) is 100 times greater than the procurement price, and
holding costs (ι+in) are 25% of the procurement price. Procurement costs after a disaster strikes (oin) are
5 times those before the disaster. The procurement capacity for each emergency aid and node (omax

in ) is
limited to 20% of the corresponding prepositioning capacity.

[Insert Table 3 here]

We consider three types of vehicle: trucks, boats and helicopters, whose capacities and costs are
summarized in Table E in Appendix A.1. Shipping costs were evaluated as follows:

αrnm = fuel(r)
consumption(r) · dist(n,m), (19)

where dist(n,m) is the distance (in km) between two nodes. In the absence of the exact address of the
relief center or depot, the distance was approximated via the centroid of each area.

Finally, the total monetary donation (ft) was estimated to be 25 million Brazilian Reais (BRL) in
the first period only. Lead times were assumed to be 1 day only for the first time period and for truck
vehicles. The remaining lead times were considered to be zero.

6.3. Scenario Generation

To draw up plausible scenarios, historical data from previous disasters was investigated and classified
according to the scaling system proposed by Eshghi and Larson (2008), who categorized any disaster
in one of six magnitude classes: emergency situation, crisis situation, minor disaster, moderate disaster,
major disaster and catastrophe. Through extensive data sourced from the Emergency Events Database
EM-DAT (Centre for Research on the Epidemiology of Disasters, 2014) of the last 105 years of disasters
around the world, the distribution of disasters was analysed for different values of fatal and affected
victims. The output of this analysis consists of (a) six ranges or intervals for the number of fatal victims
and the corresponding proportion of disasters that fall within each interval; and (b) six ranges or intervals
for the number of affected victims and the corresponding proportion of disasters that fall within each
interval. For example, it was concluded that 78.1% of all disasters cause the number of fatal victims to be
in the interval (10; 100]. We now present the main data for the scenario generation procedure. Additional
data are presented in the online supplementary content (Appendix A.2; see Tables F, G, H, and I).

The magnitude class of a particular disaster is calculated from the number of fatal (µ+) and affected
victims (µ) using a mathematical expression to represent the impact of the disaster, as follows:

ψ = max
{
µ+ − Lµ+

Uµ+
+ log Lµ+ ,

µ− Lµ
Uµ

+ log Lµ − 1
}
, (20)

where Lµ+ (Lµ) and Uµ+ (Uµ) are the lower (L) and upper (U) bounds of the intervals that contain
the exact number of fatal (affected) victims. We then analysed the value of ψ to further classify the
type of the disaster; see Table F in Appendix A.2 for the detailed intervals proposed for the number of
fatal and affected victims, as well as the value of the magnitude ψ of each disaster and its corresponding
classification.
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Based on this methodology, we determined the magnitude ψ and classified the disasters in the state
of Rio de Janeiro from 1966 to 2013, as depicted in Table G in Appendix A.2. For example, consider
the last recorded disaster that caused 67 fatal victims and 2,300 affected people for which µ+ = 67 and
µ = 2, 300. The number of victims lies in the interval (10; 100] and the number of affected people in
(1, 000; 10, 000], so that Lµ+ = 10, Uµ+ = 100, Lµ = 1, 000, Uµ = 10, 000. Thus the magnitude ψ is
evaluated as follows:

ψ = max
{67− 10

100 + log 10; 2, 300− 1, 000
10, 000 + log 1, 000− 1

}
= max{1.57; 2.13} = 2.13,

which lies on the interval [2, 3) and corresponds to an emergency situation (as classified in Table G).
We used the frequency Table H in Appendix A.2 to estimate the probability of occurrence of all types

of disasters in the state of Rio de Janeiro. The transition probabilities among different types of disasters
are shown in Table I in Appendix A.2. Note that, although there are only 21 recorded events, they cover
a period of 47 years of analysis. For this reason, we assume that the relative frequency of each disaster
event can be used as a reasonable approximation for the underlying probability distribution.

The number of affected people (column 3 in Table G) corresponds not only to the displaced and
homeless, but also to anyone who was directly or indirectly affected. Thus only some of these victims
need emergency supplies. The actual number of victims requiring aid is estimated via the percentage of
displaced, homeless and fatal victims from the overall number of affected people in the disaster of 2011,
being 10.96% (33,370 victims from 304,562 total affected). Thus we use this percentage to estimate the
amount of needed emergency aid for all scenarios. The daily number of victims was generated using a
random-based generator that we devised for this paper. Basically, the random generator assumes that
large amounts of demand occur abruptly over short lead times (Sarkis et al, 2010), contrasting with
periods of low demand.

The other stochastic parameters were taken into account as follows: a first scenario is constructed
with the same magnitude as the demand; a second scenario with magnitude one demand level lower;
and a third scenario with magnitude one level higher. For example, a moderate demand scenario splits
into 3 supply-donation pair scenarios corresponding to a minor disaster (one level below), a moderate
disaster (same level), and a major disaster (one level above). This (−1, 0,+1) split assumes that the
amount of collected supplies and donations will not follow exactly the magnitude of the disaster, but
could be somewhat lower or higher. It also assumes that the route damage is partially proportional
to the number of victims in the sense that worse disasters provoke more damage, but major disasters
could cause slightly less damage (as in minor disasters), or slightly worse damage (as in catastrophic
situations). The conditional probabilities among states (−1, 0,+1) are assumed to be those in Table J of
the supplementary material. Thus, for example, scenario 23 has

π[demand is moderate] = 0.1429

π[supply-donation is minor-minor | demand is moderate] = 0.25

π[damage is minor | demand is moderate] = 0.25
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so that the corresponding probability of scenario 1 [moderate, minor-minor, minor] = 0.1429 × 0.25 ×
0.25 = 0.0089.

The resulting set of scenarios is the combination of the four stochastic parameters, totalling 40
scenarios, as depicted in Figure 5. Statistical independence among the parameters is assumed so that the
probability of each scenario is determined by the product of the probabilities of each stochastic parameter.
It is worth noting that our proposed scenarios are not time-dependent. Thus we simply independently
generate a number of instances over the full horizon and combined them in the proposed scenario-tree.

[Insert Figure 5 here]

Note that the categorisation based on temporal and spatial coverage (Apte, 2009) previously discussed
could be used in conjunction with this current scale system to generate alternative scenarios in an attempt
to analyse, for example, the effectiveness of both preparation and response operations when localized and
dispersed disasters occur at the same time in Brazilian territory. Testing via alternative scenario use is
left for future research.

6.4. Presentation of the Test Cases
Based on the nominal data (base case), we construct 16 additional cases, totalling 17 instances. The

motivation in proposing extra instances is to obtain insights into the performance of the model over a
spectrum of practical situations commonly observed in humanitarian contexts. These cases were designed
with the same parameters as the base case (A0), but by considering different assumptions, as follows.
(A1) without prepositioning; (A2) prepositioning in all nodes is allowed; (A3) 25% of stockpiling is lost;
(A4) procurement is not allowed; (A5) doubled supply; (A6) doubled donations; (A7) doubled supply
and donations; (A8) without damaged arcs; (A9) with more damaged arcs; (A10) without trucks; (A11)
without helicopters; (A12) without trucks and boats; (A13) truck capacity is 5 times larger; (A14) without
lead time; (A15) objective function prioritises medicine kits; (A16) scenarios are equiprobable. These 16
variants from the base case overlap to some extent and are not exhaustive, but do provide an interesting
range of representative cases against which to test the model.

6.5. Numerical Results and Managerial Insights
This section presents the numerical results and discusses the managerial insights. Additional material

to support our insights is presented in the online supplementary content (Appendix A.3; see Tables J, K,
L, M, N, O, and P, and Figure A).

In stochastic programming, it is common to (i) evaluate the impact of randomness in the problem, and
(ii) analyse if simpler approaches (e.g., replacing all random variables by their expected values and solving
the resulting problem) are sufficient to take uncertainty into account. These two issues can be addressed
by analysing the Expected Value of Perfect Information (EVPI) and the Value of Stochastic Programming
(VSS) (Birge and Louveaux, 1997). EVPI compares stochastic with wait-and-see approaches and provides
an idea of how a solution would be under perfect information. It is computed as the difference between the
objective function (RP) of the stochastic programming model (the recourse problem) and the expected
wait-and-see solution (WS), i.e., EVPI = RP−WS, where WS =

∑
ξ∈Ξ π

ξW ?(ξ) and W ?(ξ) is the single-
scenario deterministic problem associated with scenario ξ. VSS compares stochastic with expected value
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(EV) approaches by quantifying the possible gain in solving the stochastic problem instead of simpler EV
approaches (whose corresponding random variables are replaced by their expected values). To evaluate
VSS, we have to solve the EEV problem, which exhibits the same structure as the stochastic programming
model, but the corresponding first-stage decision variables are fixed according to the EV solution. Then
VSS = EEV− RP.

The main results in terms of costs and decision variables for the stochastic problem (RP) associated
with the 16 cases are provided in Table 4. Table 5 summarises the key values involved in EVPI and VSS.

Consistent with theoretical results, we found that WS ≤ RP ≤ EEV. Moreover, EVPI ranged from
356,542 (0.5374%) to 148,153,582 (18.97%), with a corresponding average value of 23,435,039 (3.341%).
Note that the average value is far from negligible, corresponding to 94% of the financial budget provided
by the government. On the other hand, the VSS values are high in most cases; the average value found
of 404,351,193 (66.28%) indicates that it is possible to achieve significant gains by solving RP instead of
EV, which also justifies the use of the stochastic programming model.

The importance of prepositioning is evident. Without it (A1) EVPI and VSS decreases due to the
high increase in backlogging costs compared to the base case (A0) that affects WS, RP and mostly EV.
In this case, gathering perfect and accurate information about the random parameters would be more
attractive than solving the stochastic model, since randomness plays a minor role in the problem. The
stochastic solution without prepositioning presents a service level almost 4% worse with an increase of
22% in the objective function. Case A2 shows that prepositioning in all nodes has a negligible effect on
EVPI and VSS values, since the WS, EEV and RP problems do not benefit much from prepositioning at
RC nodes when prepositioning capacity is tight.

If some facilities were struck by a disaster so that 25% of depot inventory were lost (A3), then
backlogging costs would increase, but without leading to deteriorated service levels. The result could be
much worse if prepositioning in all nodes were permitted (A2). As the impact of the lost inventory is
more pronounced in both RP and WS, but less evident in EEV, we found that EVPI slightly increases
and VSS decreases accordingly.

Interestingly, EVPI increases dramatically without procurement (A4), but VSS drops more than
30%. In fact, procurement does not improve the distribution of emergency emergency aid under perfect
information, so WS does not vary significantly with or without procurement. However, this strategy
is an important contingency decision for the stochastic problem. When it is not possible to purchase
emergency aid in disaster areas, it is necessary to travel more among depots and warehouse in order to
supply more demands. This in turn increases the first-stage costs of the fleet and the second-stage costs
of the shipments. Due to the limited budget, the service level is then 3.45% worse. RP increases up to
21% in this case, approaching the upper bound value given by EEV. Thus RP-WS increases and EEV-RP
decreases.

The effect of increasing supply and/or financial donations (A5, A6 and A7) in both EVPI and VSS is
not clear due to the complex inter-relationship between these two random variables. A further increase in
supply (A5) yields higher EVPI and VSS, but by assuming that an increase in budget that is sufficient to
supply most demands (A6) decreases EVPI and VSS; similar results were found in Rennemo et al (2014).
In the latter case (A6), uncertainty is reduced by increasing the investment in procurement by 30% and
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by improving fleet usage, instead of hiring a larger (possibly more expensive) fleet. Finally, EVPI and
VSS experience a cross-effect when supply and donation increase simultaneously (A7): on the one hand,
the improvement of service levels by almost 2.5% indicate that it is more likely to satisfy demand (the
EVPI decreases); on the other hand, the EV solution leads to an underestimated fleet of vehicles that in
turn increases substantially the backlogging costs of the EEV problem, thus increasing VSS.

When all arcs/routes are available (A8), the decision maker can contract a smaller fleet of vehicles to
ship emergency aid, with fewer trucks and helicopters. This in turn helps to decrease perfect information.
Conversely, with more damaged arcs (A9), more vehicles are required, mainly those that depend less on
existing infrastructure; as a result, the EVPI increases. The availability of arcs has a minor impact on
VSS. In both cases, service levels are only marginally affected.

Cases A10, A11, A12 and A13 suggest that it becomes more difficult to meet demand without one
or more types of vehicle (A10, A11 and A12), particularly if trucks are not available in which case
boats are the most used vehicle. Reducing the capacity of the trucks (A10) leads to a less efficient
distribution of emergency aid, mostly in the RP, EV and EEV problems, since trucks present the best
capacity/cost ratio among the vehicles. The result is a large increase in the value of perfect information,
but a minor increase in the VSS. On the contrary, far fewer transport resources are used when truck
capacity is larger (A13). This in turn decreases rental, shipping and backlogging costs. Using the same
rationale as in case A10, we have smaller EVPI and VSS values. Without trucks and boats (A12),
perfect information increases substantially more than in case A10, thus being impractical and adopting
wait-and-see solutions instead of using stochastic ones. On the other hand, the stochastic solution value
decreases up to 15%. All the aforementioned behaviours are due to the great impact of a less diversified
fleet on rental and backlogging costs, particularly in the RP problems. Finally, case A11 suggests that
without using helicopters, backlogging slightly increases, but this effect has a minor impact on EVPI and
VSS.

In the absence of lead times (A14), only trucks are used to ship emergency aid, since the one-day
lead time for trucks in the first period enforced the utilization of the remaining modes of transportation.
As a consequence, rental, shipping, procurement, and backlogging costs were reduced significantly, but
inventory costs increased 150% in comparison to the base case. Most extra inventory in relief centers
results from extra shipments due to efforts to increase transportation efficiency (fleet usage is about 98%).
The consequence is an increase in EVPI and VSS, thus indicating that the cost of uncertainty cannot be
ignored.

Prioritising the delivery of the medical kits (A15) improves the service level for this emergency aid
up to 8%, but this provides a very low fleet efficiency. In this case, the objective values of all of problems
WS, RP, EV and EEV may represent the “cost of urgency” of the medical kits. The relative EVPI and
VSS values indicate not only the low impact of randomness in the problem, but also that a stochastic
solution is less justified than in most of the remaining cases.

Finally, (A16) shows that, even though the probabilities do not change substantially the structure of
the solution, the objective function is much worse for equiprobable scenarios, as the probability of the
more pessimistic and expensive scenarios (moderate and major) increases from 0.24 to 0.45. As a result,
both EVPI and VSS increase.
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Cases A1, A3, A4, A9, A10, and A12 suggest that in a situation of scarce resources, there is a trend
of increasing EVPI and/or decreasing VSS values. This apparent behaviour is particularly pronounced
in the cases where prepositioning and procurement are not allowed (A1 and A4), without trucks (A10),
and without both trucks and boats (A12). Considering that decision-making is often more complex (and
expensive) in the presence of uncertainty, it is natural that scarcity impacts more in these situations than
in situations under perfect information. Mathematically, we have an increase in RP greater than in WS,
which intensifies EVPI. Due to the pre-determined first-stage decisions based on average values, the EEV
problem is not as sensitive to resources shortage as RP, and then VSS tends to decrease.

[Insert Table 5 and Table 4 here]

Since the prepositioning capacity can be viewed as a strategic decision, specially useful in sud-
den/localised onset disasters (Apte and Yoho, 2011), and decision-makers may have few bases on which
to decide its value in practical contexts, we perform a sensitivity analysis to show the impact of increasing
it with respect to the main decision variables of the model. Table J in Appendix A.3 shows the detailed
results. As expected, the objective value decreases as the amount of prepositioned stock increases due to
the great reduction experienced by the level of overall unmet demand. However, the increase in prepo-
sitioning capacity has only a marginal effect in service levels, e.g., the double amount of prepositioned
stock improves service levels in less than 1.7%. In practice, it is not desirable to manage high amounts of
prepositioned stock, as it may involve extra coordination among the different players of the humanitarian
chain.

Increasing the prepositioned capacity also helps to improve the fleet usage via contracting a smaller
fleet of vehicles in the first-stage, but using the overall vehicle capacity more efficiently in the second-
stage. This strategy is partially responsible for the increase in the holding costs. Figure 6 illustrates
these behaviours. Shipping and procurement costs do not present any particular trend as prepositioning
stock increases.

[Insert Figure 6 here]

6.6. Risk-Averse Results

The proposed risk-averse models were analysed for φ = 0.7 and u = 0.9 (CVaR), and φ = 0.4 (SD),
by considering all the proposed instances A0-A16. Tables K and L in Appendix A.3 summarize the
performance of the models. The results of all instances were enhanced by at least one risk approach in
either unmet demand or second-stage costs at the expense of a minor “price” of risk aversion. In fact,
with exception of the minimax approach that incurs a high price for less risky solutions in case A4 (when
procurement is not allowed), the average price varies from 0.5% (SD) to almost 3% (minimax).

The semideviation model presents the lowest price of risk aversion, but the overall results are not very
encouraging. In fact, its average and best performances across all the instances are clearly dominated by
the CVaR model in terms of unmet demand and second-stage costs. On the other hand, CVaR provides
the best improvement in unmet demand and second-stage costs in most instances. With CVaR, the
distribution-aid plan is able to fulfill promptly 56,351 more emergency aid units than in the risk-neutral
approach, approximately 1,400 more emergency aid units per scenario. Although this number sounds
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negligible in a commercial supply chain, since it represents less than 1% of total demand, it is sufficient
to supply overall demand in affected areas with a lower number of victims, which is in accordance with
the attitude of humanitarian logistics. CVaR also mitigates unmet demand in the worst-case scenario
in 12 cases. On average, almost 5,000 more emergency aid units are delivered right-on-time in the
most pessimistic scenario. This gain is substantially better in case A10 (without trucks), where the
corresponding improvement is 52,000 emergency aid units. As a consequence of this better policy for
demand fulfillment, overall costs associated with worst-case scenarios reduce accordingly, as well as the
standard deviation of second-stage costs.

The minimax-regret model is the most conservative approach to deal with risk aversion. Besides the
higher increase in objective values, the model still fails more often in improving both unmet demand and
costs, and provides the worst overall performance. On average, expected service levels deteriorate 6%,
and unmet demand worsens in the worst-case scenario. However, in the instances where minimax succeed
in improving unmet demand in the worst-case scenario, it achieves the best average performance and the
best overall result: up to 91,000 extra emergency aid units are delivered in the worst-case scenario of
instance A1.

Compared to the risk-neutral results, the overall trend of the risk-averse models is twofold: (i) in-
creasing first-stage costs; and (ii) decreasing the standard deviation of the second-stage costs. In the first
case, the increase is consequence of a larger fleet of vehicles, or a more expensive fleet composed of bulky
vehicles, that in turn helps to decrease second-stage costs, as more emergency aid is promptly delivered,
avoiding as much as possible shortage and holding costs. Given that shortages are much higher than
holding costs, the consequence of enforcing risk aversion is decreasing unmet demand. This behaviour
is more pronounced when resources are very limited, e.g., without prepositioning, trucks and/or boats,
and less evident with excess of resources. Decreasing the cost standard deviation over the scenarios leads
to more equity regarding unmet demands over scenarios and affected areas. The concept of equity or
fairness in humanitarian operations is important because all affected areas (or a set of emergency aid)
need to be fulfilled as equitably as possible.

In order to further analyse which risk approach provides fewer changes in the operational results,
i.e., which one is the most “stable” from the relief operations standpoint, we evaluated the standard
deviation (StDev), the coefficient of variation (CV), and the quartile coefficient of variation (QCV) for
each type of cost (first-stage, second-stage, and expected total) obtained for each risk-averse approach in
the 17 proposed cases. CV was determined as (standard deviation/mean), whereas QCV was calculated
as (Q75−Q25)/(Q75 + Q25), where Q25 and Q75 are the corresponding first and third quartiles of the
sample. Figure 8 suggests that CVaR not only leads to overall lower statistics (StDev, CV, QCV), but
also that it is not the worst approach in any of the cases analysed. These results indicate that CVaR is
indeed the most stable method. On the other hand, minimax presents the least stable behaviour over the
proposed instances. Interestingly, semideviation is particularly efficient to reduce the quartile coefficient
of variation of the first-stage decisions. Basically, more stable solutions are also more reliable. It means
that, for example, the fleet of vehicles provided by the CVaR framework has a higher chance to be feasible
(or it is easier to make that decision feasible) under disruptions compared to the same decision provided
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by the other approaches.

[Include Figure 8 here]

6.7. Computational Efficiency of the Two-Phase Approach

The computational efficiency improvement of the two-phase procedure compared to the exact method
over the 17 proposed cases for RN, minimax, CVaR and SD approaches is now discussed. Here, the exact
method means solving the original model directly via CPLEX 12.5. Averages, medians, upper and lower
quartiles and extreme points of the elapsed times (in seconds) for all approaches are shown in Figure 7.
Table 6 summarizes the results of two metrics that analyse the overall quality of the heuristic procedure:
(i) the relative difference between the objective value of the two-phase procedure and the (sub)optimal
objective value (gap); (ii) the ratio between elapsed times (ratio). Tables M and N in Appendix A.3
present the detailed results.

It is clear from the plots that, as expected, minimax was the most time consuming risk-averse frame-
work: over the 17 cases, elapsed times of the exact approach varied from a minimum of 4,000 s (seconds)
to a maximum of 14,000 s. The risk-averse model SD exhibited the second worst performance. Despite
presenting more variation in performance, the CVaR instances were solved 14% faster than the corre-
sponding RN instances, on average. The results show that the computational efficiency resulting from the
two-phase procedure is much better than when solving the original model directly. In fact, most heuristic
solutions are very near to the optimal, and their corresponding elapsed times are at least 17 times faster
than solving the original model directly. The plots reveal that the elapsed time of the heuristic is at
most 500 s, against 14,400 s for the exact method. The heuristic procedure also exhibits less variation in
performance than the exact approach. In some instances, the two-phase approach improved the solution
of the original model, which is possible because of the 1% relative gap at termination, meaning that
exact solutions had not been verified as optimal. The improvement is particularly noticeable in the min-
imax results regarding instances A3, A7 and A13. In many minimax instances, though, the two-phase
procedure fails to provide solutions with tighter gaps.

As expected, heuristic and exact solutions are similar in structure, since both optimization models
(approximate and exact) exhibit basically the same set of constraints. The overestimation of the number
of vehicles by using the sum of weight and volume of emergency aid, though, generated an average of
12% more vehicles contracted in the first-stage in comparison to the exact solution (over the 17 cases of
the risk neutral model), in which 4.5% are trucks, 60% are boats, and 1% are helicopters. In terms of
fleet usage, the results showed that the heuristic solution is 55% worse than the exact method. On the
other hand, in terms of service levels, the difference between both solutions is less than 0.1% in favour
of the heuristic ones. The results for the risk-averse models are similar, and for this reason, we omitted
them. Table O and Figure 1 in Appendix A.3 present the detailed results regarding this comparison.

Further tests based on larger networks with 30 nodes and/or 100 scenarios evidence the strong per-
formance of the heuristic procedure. Indeed, the exact method provides in 14,400 s an average gap
of 85%, whereas the heuristic procedure yields in 4,500 s an average gap of only 5.6%. These figures
were evaluated over a set of 15 randomly generated instances, whose details are provided in Table P in
Appendix A.3. Even though the elapsed times of the heuristic method increase substantially for larger
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instances, this solution procedure succeeded in finding a feasible solution even when the exact method
failed. Those results encourage the study of alternative heuristic methods to solve more efficiently the
simplified model, perhaps without solving it directly via commercial optimization packages.

[Insert Table 6 here]

[Insert Figure 7 here]

Remark. The wait-and-see problems were solved in 767.5 s (±960.8 s) on average; best and worst elapsed
times were 43.10 and 3,426 s, respectively. For the EEV problems, we have an average of 315.3 s (±944.8
s), and best/worst elapsed times of 50.60 s and 3,980 s, respectively. All EV problems were solved in less
than 40 s.

7. Conclusions and Future Challenges

Despite a growing concern to improve the distribution of aid in relief activities, it is still challenging
to deal with all the particularities of the humanitarian supply chain. This paper thus aimed to contribute
to the existing literature by developing a new two-stage stochastic network flow model under practical
assumptions that are rarely considered in previous similar papers, such as the dynamic multiperiod
nature of disaster relief operations, limited budgets, fleet sizing, and a variety of uncertain data. A set of
scenarios was generated by combining a recent classification of the magnitudes of general disasters and
historical data from the 2011 Brazilian megadisaster in the Serrana region in Rio de Janeiro state. We
also devised a solution procedure to provide good-quality solutions within plausible elapsed times and
found encouraging results. The model demonstrated that it can help plan and organise relief to provide
good service levels in most scenarios, and how this depends on the type of disaster and resources. Tests on
16 variants of the base case scenario provided further insights and pointers to the impact of single-factor
changes, for example, levels of prepositioning. Additional results suggested that it might be possible to
improve equity (fairness) in distribution by enforcing risk aversion. We demonstrated that our heuristic
has a good performance for both real and random instances.

As disasters are complex events, the solutions provided by the mathematical models are not meant
to be implemented arbitrarily, but with the involvement, input and supervision of agency experts and
local people, as well as, for example, geographic information systems (GIS). Thus, it would be useful to
contact some Brazilian agencies to get feedback from experts regarding the usefulness of the proposed
approach in terms of mathematical models and solutions. Such feedback would be used to refine the
models and better understand the applicability of our framework. Our findings also bring up new open
and challenging questions, for example, how to solve more efficiently the proposed mathematical models,
and the impact of incorporating additional equity-based objectives in the stochastic model, and a social
profit for meeting demands promptly. Also, the management of disaster relief fleets could be an interesting
future work, for example, we could analyse the impact of the heterogeneity of the fleet of each type vehicle
(e.g. trucks with different capacities). These sub-types would be interchangeable amongst themsleves,
which would change the structure of the problem (Van Wassenhove and Pedraza Martinez, 2012). Lastly,
extensions to multistage stochastic models deserve further efforts.
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Appendix: Supplementary Material

Supplementary data associated with the proposed instances can be found attached, as well as extra
results mentioned in the computational experiments.
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Table 2: Overview of the proposed risk-averse models in terms of necessary inputs and outputs.

Model

Inputs

OutputsProbability Wait-and-see Risk Confidence
of scenarios solutions parameter level

(πξ) (W ?(ξ)) (φ) (u)

F2: Minmax X Maxium regret (Φ)
F3: CVaR X X X VaR, CVaR, Θξ

F4: SD X X Semideviation (∆ξ)

Table 3: Required emergency aid for survivors of a disaster and the characteristics of each type of emergency aid.

emergency aid Weight Volume Quantity per Procurement Prepositioning
Type in kg in l day per victim price1 capacity in units

Food 23 30 1/5 kit 86.18 20,000
Water 20 20 5 l 7.50 19,000
Hygiene 3 10 1 kit 27.03 10,328
Cleaning 7 16 1/5 kit 60.27 1,000
Mattress 2 103 1 unit 29.90 30,611
Medicine 14 11 1/90 kit 85.20 0
1 All costs are given in Brazilian Real (BRL).
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Table 6: Comparison between computational efficiency of the exact and the two-phase ap-
proach over the propose instances.

RN MinMax CVaR SD
Case Gap (%) Ratio Gap (%) Ratio Gap (%) Ratio Gap (%) Ratio

A0 0.2987 29.14 36.99 44.80 0.0126 24.26 0.2065 26.11
A1 0.1198 9.535 29.61 70.06 0.0216 4.454 0.0900 19.81
A2 0.3009 21.77 34.30 50.03 0.0127 24.95 0.1866 35.35
A3 0.3457 9.856 −6.003 64.04 0.0330 10.00 0.2180 16.76
A4 0.2543 22.60 0.1925 37.16 0.0323 28.61 0.4757 23.09
A5 0.4982 19.91 11.35 34.70 0.0518 20.44 0.3996 20.97
A6 0.3372 20.30 12.59 37.15 0.0171 16.49 0.2690 29.18
A7 0.4792 11.60 -20.93 28.53 0.0403 14.11 0.4508 16.50
A8 0.0931 32.36 10.09 46.96 0.0452 8.214 0.0495 19.57
A9 0.3888 19.98 29.92 55.47 −0.0081 23.84 0.2466 19.10
A10 2.074 10.29 10.26 67.43 0.0852 8.384 0.5322 21.62
A11 0.1109 43.66 122.9 146.4 0.0568 21.92 0.2067 50.46
A12 0.2925 36.15 2.297 59.99 −0.0021 4.483 0.2611 29.75
A13 −0.0365 12.83 −67.52 41.38 −0.2581 21.29 −0.4524 23.36
A14 0.5014 9.150 25.94 57.57 −0.0076 11.91 0.2016 27.12
A15 −0.0683 61.90 100.0 39.68 −0.0107 39.32 −0.0403 44.99
A16 0.1514 7.808 9.304 47.86 0.0067 9.101 0.0258 39.82

Average 0.3613 22.28 20.07 54.66 0.0076 17.16 0.1957 27.27
1 Gap = ZH−ZMIP

ZMIP , where ZH refers to the objective value of the two-phase procedure,
and ZMIP is the objective value of the exact approach.

2 Ratio = elapsedMIP

elapsedH , where elapsedH is the elapsed time of the two-phase procedure,

and elapsedMIP is the elapsed time of the exact approach.

Stage 1: Pre-
disaster decisions

robustly over 
scenarios

Emergency aid

Transport networks

Preposition: 
Amounts and

locations

Fleet-sizing:
Allocate/contract
vehicle capacity

Stage 2: Post-
disaster decisions
for each scenario

Characteristics 
(type, size, volume, 

usability)

Prepositioning costs 
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Procurement costs 
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Holding and
shortage costs

Supply and demand

Inputs: parameters

Procurement:
Purchase

emergency aid

Distribution:
Allocate vehicles to
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distribution

Inventory and/or
backlogging of
emergency aid

Budgeting for: 
Transportation and
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rental costs
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Emergency aid flows

Transport resources flows
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Figure 1: Overview of the model’s structure and usage.
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solution
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First Phase
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Fix the flow decision

variables in the

current value

Figure 2: Overview of the two-phase heuristic method.

Figure 3: Map showing the Serrana region of Rio de Janeiro state.
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Time

Location

Slow-onset Sudden-onset

Dispersed

Localized

I: Localized and slow-
onset disaster

III: Localized and
sudden-onset disaster

II: Dispersed and
slow-onset disaster

IV: Dispersed and
sudden-onset disaster

Our case study: 
2011 Floods and

landslides in Serrana 
Region of Rio de 
Janeiro, Brazil

2004 Indian
Ocean earthquake

and tsunami

2005 Hurricane
Katrina, USA

2016 Zika virus
epidemic in Brasil and
part of Latin America

Figure 4: Disaster categorisation proposed by Apte (2009). Adapted from Apte and Yoho (2011); Apte (2009).
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Demand Supply-Donation Arc Damage Scenario Probability

Number

Emergency 1 0.1072

Emergency, Emergency

Crisis 2 0.0357

Emergency

Emergency 3 0.0357

Crisis, Crisis

Crisis 4 0.0119

Emergency 5 0.0179

Emergency, Emergency Crisis 6 0.0357

Minor 7 0.0179

Emergency 8 0.0357

Crisis Crisis, Crisis Crisis 9 0.0714

Minor 10 0.0357

Emergency 11 0.0179

Minor, Minor Crisis 12 0.0357

Minor 13 0.0179

Crisis 14 0.0179

Crisis, Crisis Minor 15 0.0357

Moderate 16 0.0179

Crisis 17 0.0357

Minor Minor, Minor Minor 18 0.0714

Moderate 19 0.0357

Crisis 20 0.0179

Moderate, Moderate Minor 21 0.0357

Moderate 22 0.0179

Minor 23 0.0089

Minor, Minor Moderate 24 0.0179

Major 25 0.0089

Minor 26 0.0179

Moderate Moderate, Moderate Moderate 27 0.0357

Major 28 0.0179

Minor 29 0.0089

Major, Major Moderate 30 0.0179

Major 31 0.0089

Moderate 32 0.0060

Moderate. Moderate Major 33 0.0119

Catastrophe 34 0.0060

Moderate 35 0.0119

Major Major , Major Major 36 0.0238

Catastrophe 37 0.0119

Moderate 38 0.0060

Catastrophe, Catastrophe Major 39 0.0119

Catastrophe 40 0.0060

Figure 5: Set of scenarios as the combination of the four stochastic parameters, totaling 40 scenarios.
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Figure 6: Effect of increasing the prepositined stock in the objective value and in the fleet of vehicles.
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Figure 7: Elapsed times of all instances regarding the exact approach (above) and the two-phase heuristic approach (below).
Box-plots represent, in this order, maximum values, 95th percentiles, 75th percentiles, medians, means, 25th percentiles,
5th percentiles, and minimum values.
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Figure 8: Stability analysis of the costs over the 17 proposed instances according to each risk-averse approach. The bars
illustrate the following statistics: standard deviation, coefficient of variation evaluated as standard deviation/mean, and
quartile coefficient of variation, evaluated as (Q75-Q25)/(Q75+Q25), where Q25 and Q75 are the corresponding first and
third quartiles of the sample.
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