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Abstract 

The construction industry contributes the largest portion of waste to landfill, and it 
consumes a significant proportion of mineral resources excavated from nature. Due to 
adverse environmental impacts of waste generation, as well as financial gains associated 
with its minimisation, waste intensiveness of the industry has remained a major concern 
across nations. This study investigates the design, procurement and construction 
strategies for waste minimisation, using a dynamic approach. Apart from an investigation 
of the key and underlying measures for construction waste mitigation, the study considers 
the interrelationship between stages of projects' lifecycle. This is as activities carried out 
at an earlier stage are capable of engendering occurrences at later stages of the dynamic 
project delivery processes.  
 
Following the tenets of critical realism philosophy and exploratory sequential mixed 
method, the study combined qualitative and quantitative approaches at intensive and 
extensive stages respectively. At the early stage of the study, data were collected through 
literature review and focus group discussions with industry experts. Results of the 
qualitative study were used to develop a questionnaire, which was analysed using 
statistical approach and structural equation modelling. As a means of investigating the 
key drivers of waste minimisation at a holistic level, a system dynamic model was 
developed to simulate the interplay and effects of different strategies that were confirmed 
through the previous process. 
 
The study suggests that design stage has the most decisive impacts on construction waste 
minimisation. At this stage, the key dimensions for designing out waste include design 
for modern methods of construction, collaborative design process, design for 
standardisation and waste-efficient design documentation. Error-free design and 
involvement of contractors at early design stage are part of the critical success factors for 
designing out waste. With design being much important for waste minimisation, 
competencies of designers in terms of waste behavioural competency, design task 
proficiency, construction-related knowledge and inter-professional collaborative 
competency are essential for designing out waste. Materials procurement process could 
enhance waste minimisation by considering its key dimensions for driving waste-efficient 
projects, which includes waste-efficient materials purchase management, suppliers' 
alliance and waste-efficient bill of quantity. Efficient materials take-off and take back 
scheme are confirmed as critical success factors for driving waste minimisation through 
materials procurement processes. During construction activities, waste could be reduced 
through prefabrication and offsite technology, contractual requirements, maximisation of 
materials reuse and improved collaboration, among others. Prefabrication, supply chain 
alliance and collaborative procurement routes are confirmed as the critical success factors 
for reducing waste during construction process. Dynamic interplay among these sets of 
strategies suggests that notwithstanding the significance of the different measures during 
design, procurement and construction processes, prefabrication technology and 
collaborative procurement route are the holistic drivers of construction waste 
minimisation. 
 
The study implies that designers could effectively drive waste minimisation through 
dimensional coordination and standardisation of design in line with standard materials 
supplies. In addition to the need for prefabrication and offsite technologies, increasing 
collaboration among project team is requisite to reducing waste generated by construction 
activities. By implementing the strategies suggested in the study, substantial proportion 
of construction waste would be diverted from landfill.  
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CHAPTER 1: INTRODUCTION 

 

1.1  Background to the Study  

The construction industry accounts for the largest portion of global waste and pollution 

(Faniran and Caban, 1998; Ibrahim et al., 2010), as it generates up to 30% of total material 

waste (Begum et al., 2009). For instance, the UK Construction and Demolition Waste 

(CDEW) amounts to about 110 million tonnes, which is over 60% of national waste 

generated (Paine and Dhir, 2010). Figures from other large economies also suggests that 

construction-related waste is up to 40% in Brazil (Saraiva et al., 2012), 35% in Canada 

(Kofoworola and Gheewala, 2009), 44% in Australia (Shen and Tam, 2002), 65% in 

Hong Kong (Esin and Cosgun, 2007), and up to a third of the US waste to landfill (Kibert, 

2000). While these figures suggest that a holistic approach to reducing construction-

related waste is indispensable to the global sustainability agenda, it is tragic that existing 

industrial practice lack comprehensive benchmark for managing waste throughout 

project lifecycle, i.e. design, procurement, and construction stages. Worst still, current 

waste tools such as WRAPNet, SmartWaste, SmartAudit, etc. mainly proffer 

opportunities for managing waste after its occurrence, thus making it a belated 

intervention. 

 

Apart from environmental sustainability, reduced resource excavation and prevention of 

several environmental hazards as likely results of material waste reduction (Yuan, 2013; 

Anderson et al., 2004), apropos waste minimisation techniques have considerable 

economic benefits (WRAP, 2007). This would result in savings in forms of the cost of 

wasted materials, cost of storage, landfill tax, and cost of disposal (Coventry and Guthrie, 

1998), which are usually shifted to the clients (Guthrie et al., 1999). Due to these 

significant benefits of waste minimisation, there has been a large body of knowledge on 

construction waste (e.g. Faniran and Caban, 1998; Poon et al., 2004; Formoso et al., 

2002; Dainty and Brooke, 2004; Treolar et al., 2003; Osmani et al., 2008; WRAP, 

2007/2009b; Wang et al., 2014, etc.). However, these series of studies lacked vigour by 

failing to produce a holistic approach that covers all stages of project delivery process. 

As such, there is a need for a dynamic approach in looking into the relationship between 

main waste-efficient indicators at design, procurement and construction stages. This 

would not only establish impacts of one waste mitigation strategy on other, but it is also 
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expected to provide practitioners with an optimum approach to prevent waste causative 

factors from design to completion.  

 

Usually referred to as “something that the producer or holder discards or intends to or is 

required to discard” (Guthrie et al., 1999), waste is caused by various activities occurring 

from design to completion. While it is usually argued by designers that waste occurs on 

site during construction activities (Osmani et al., 2008), design related flaws and 

complexities as well as procurement activities, among others, contribute to total waste 

generation (Faniran and Caban, 1998; Osmani, 2012). This suggests that a holistic 

approach to minimise project waste is a collective effort among all stakeholders, and it is 

expected to consider every phase of project delivery processes. 

 

In trying to identify its sources in projects, waste has been categorised using various 

yardsticks. Coventry et al. (2001) classified waste into bricks, blocks and mortar, 

packaging, timber, metal, special waste, dry lining and others. Spivey (1974 in Faniran 

and Caban, 1998) used similar classification with an addition of garbage and sanitary 

waste, while Faniran and Caban (1998) noted that Gavilan and Bernold (1994) classified 

waste based on their causes: design, procurement, handling, operation, residual, and 

others. Irrespective of identification models, waste is usually estimated per unit volume 

of total materials purchased or as a percentage of total cost of materials (Ekanayake and 

Ofori, 2004). 

 

Because its clear economic and environmental impacts, governments across many 

nations, especially the UK, have come with various fiscal and legislative measures aiming 

at reducing the total amount of waste that finally goes to landfill. Among these are an 

imposition of landfill tax per quantity of waste disposed in the landfill and the use of 

aggregate tax to encourage use and re-use of reclaimed materials (HM Government, 

2008; WRAP, 2009b). Further efforts include funding of Waste Resource Action Plan 

(WRAP) and other bodies to investigate and enlighten individuals and businesses on 

better ways of managing waste and strategies for enhancing recycling. 

 

Efforts to manage waste has been categorised into four hierarchical orders, known as the 

waste hierarchy. This involves reduce, re-use, recycle/recover and disposal (Guthrie et 

al., 1999), with “reduce” and “re-use” offering better environmental and economic 
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benefits. The former seeks to decrease waste generated while the latter deals with 

reabsorption of the waste generated (Faniran and Caban, 1998). Alternatively, when 

“reduce and re-use” become impracticable, processing of waste materials to produce a 

derivative product, known as recycling, becomes the best option. Despite the criticism 

that it also consumes a substantial amount of energy that results in environmental 

pollution (Chong and Hermreck, 2011; Benjamin, 2010), waste recycling reduces the 

need for extracting raw materials (WRAP, 2009b) and prevents pollution due to mining 

and production processes (Halliday, 2008). These options are usually expected to be 

explored before the decision to landfill waste, especially as it results in total economic 

loss and comes with series of negative environmental impacts, asides nations running out 

of landfill sites (Oyedele et al., 2013; Poon, 2007).  

 

However, rather than adopting any of the strategies depicted by the waste hierarchy, it 

has been argued that there is a possibility of preventing waste by using some set of tactics 

during design stages (Faniran and Caban, 1998; WRAP, 2007,2009a; Yuan, 2013). 

Government funded WRAP identified five waste spectrums that are capable of reducing 

the waste burden of construction projects. These according to WRAP involve design for 

reuse and recovery, off-site construction, deconstruction and flexibility, materials 

optimisation, and waste-efficient procurement (WRAP, 2009a). In buttressing their 

importance, Jaillon et al. (2009) and Tam et al. (2007b) argue that wastage reduction 

level in a prefabricated building is up to 52% and 84.7% respectively. Anink et al. (1996) 

also recognised that design for de-constructability ensures building materials are re-used 

at the end of building lifecycle. As such, reducing waste at source, by implementing waste 

minimisation strategies before actual waste generation, is undoubtedly preferable as it 

seeks to prevent waste generation. 

 

Accordingly, there is increasing awareness that rather than concentrating on site effort to 

reduce and manage waste during construction activities as usually entrenched in Site 

Waste Management Plan, waste minimisation should be considered throughout all stages 

of building process – design to completion (Ekanayake and Ofori, 2004). This becomes 

imperative if waste and its associated negative economic and environmental impacts are 

to be prevented, or in a worst-case scenario, minimised.   
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1.2 Problem Statement 

Construction industry consumes over 50% of mineral resources and generates largest 

portion of waste in landfill (Anink et al., 1996; Paine and Dhir, 2010). In the UK, a 2013 

figure suggests that out of 100% of waste generated, 44%, 14%, 13%, 13%, 9% and 7% 

are due to construction, commercial, industrial, household, mining and agricultural 

activities respectively (DEFRA, 2013). As this means that the industry contributes the 

largest proportion of UK waste to landfill, similar patterns exist in other large economies 

(Oyedele et al., 2014). Construction activities in the US generates about 29% of landfill 

waste (Yu et al., 2013), while the industry landfills about 40%, 44%, 27% and 25% in 

Brazil, Australia, Canada and Hong Kong respectively (Yeheyis et al., 2013; Lu and Tam, 

2013; Oyedele et al., 2014). Evidence suggests that the construction industry generates 

about 35% of waste to landfill across the globe (Solís-Guzmán et al., 2009). It has been 

argued that continuous sustainability of the industry depends on how well it manages 

waste generation (Udawatta et al., 2015); particularly since waste minimisation is 

requisite to preventing materials depletion 

 

In addition to the negative environmental impacts of waste, reducing construction waste 

could result in substantial financial gains. Research by the UK's Building Research 

Establishment (BRE) suggests that up to £130million is accruable to the UK economy by 

reducing just 5% of its construction waste (BRE, 2003). These savings are in forms of 

the cost of acquiring the wasted materials, the cost of storage, cost of transportation and 

disposal as well as the landfill tax payable for waste disposal (Coventry and Guthrie, 

1998). Thus, construction waste minimisation has significant economic and 

environmental benefits.  

 
 

1.3  Gap in Knowledge and Justification for the Study 

Research into nature, causes, environmental and economic impacts of waste is not new 

in the construction industry. However, many of the studies have narrowly focussed on 

causes and impacts of waste (Esin and Cosgun, 2007; Bossink and Brouwers, 1996; 

Kofoworola and Gheewala, 2009). Others proffer solution to waste after it is generated 

(Treolar et al., 2003; WRAP, 2009b, 2010; Guthrie and Mallet, 2005; Sassi and 

Thompson, 2008).), thus providing an avenue for reducing waste to landfill rather than 



5 
 

preventing waste generation. Other sets of studies have also investigated waste 

minimisation from a unitary perspective, while the causes of waste are dynamic 

throughout all stages of building delivery process (Yuan et al., 2012), thereby calling for 

a dynamic approach to the study. 

 

For instance, Faniran and Caban (2008), Esin and Cosgun (2007), Bossink and Brouwers 

(1996) and Kofoworola and Gheewala (2009), among others, investigated causes and 

impacts of construction waste. These studies did not only unfold some inscrutability; they 

identified design stage as a significant point for waste prevention. However, apart from 

over-reliance on subjective opinions of their respondents, identifying causes of waste, as 

carried out by the studies, does not necessarily prevent waste occurrence.  On the other 

hand, Al-Hajj and Hamani (2011), Gamage et al. (2009) and Formoso et al. (2002) carried 

out a study of different construction and procurement processes to determine case-based 

causes of waste. Again, despite the fact that these set of studies have successfully 

contributed to waste management, they have failed to provide strategic directions for 

minimising waste while they almost leave out design stages, which is crucial to waste 

prevention (Faniran and Caban, 1998).   

 

Furthermore, previous studies focussing on waste management (e.g. Treolar et al., 2003; 

WRAP, 2009b, 2010; Guthrie and Mallet, 2005; Sassi and Thompson, 2008) successfully 

advocated and provided guidelines for waste re-use and recycling as a means of waste 

management. However, they have concentrated on strategies for managing waste after it 

has been generated.  

 

The third category of waste management studies suggested different strategies for 

reducing construction waste. These studies have robustly furnished practitioners with a 

set of tactics that could be adopted to prevent waste generation (e.g. Osmani et al., 2008; 

WRAP, 2007, 2009a; Wang et al., 2014; Begum et al., 2007; Dainty and Brooke, 2004; 

Poon et al., 2004).  Notwithstanding the fact that decision made at one stage of delivery 

process (e.g. design stage) have impacts on other stages (Sterman, 1992), the studies have 

been carried out at unitary basis, while causes and effects of waste are complex, dynamic 

and interconnected (Love et al., 2000; Kollikkathara, 2010). Thus, the studies failed to 

identify the dynamic interplay between different factors required for waste minimisation 

throughout all stages of project delivery process. It is, therefore, imperative to channel 
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appropriate methodology towards unravelling dynamism of waste and preventive 

measures (Yuan et al., 2012; Sudhir et al., 1997). 

 

Based on the need to study construction waste at a dynamic level, few studies have 

adopted dynamic system methodology in studying the phenomenon. For instance, Tam 

et al. (2014) and Ye et al. (2012) developed System Dynamic Models (SDM) to 

investigate effects of different policies on waste management strategies, such as 

landfilling, prevention, reuse and recycling. Li et al. (2014) also adopt SDM in measuring 

impacts of prefabrication on waste reduction. Yuan and Wang (2014) proposed a dynamic 

model suitable for determining cost of waste disposal in China, by integrating various 

waste predictive factors. Yuan et al. (2011) used SDM to carry out cost-benefit analysis 

of different waste management approaches. Similarly, Hao et al. (2008) developed a 

simulation model that established interconnection between various onsite activities, 

towards determining ultimate waste management strategy. Love et al. (2000) and Han et 

al. (2013) also applied SDM to design management. Reworks caused by design errors 

was modelled and simulated to unravel complex problems and interrelated factors that 

lead to design errors, cost overrun and time overrun.  

 

Despite an excellent demonstration of the suitability of SDM in explaining dynamism of 

factors contributing to waste occurrence and strategies for its management, the set of 

studies failed to channel the dynamic approach in a comprehensive manner by 

incorporating design, procurement and construction stages. Also, its capacity to identify 

interconnections between waste causative factors as well as management strategies is yet 

to be adequately explored. Hence, to proffer a holistic construction waste management 

approach, there is a need for understanding dynamic relationship between all waste 

preventive measures at design, procurement and construction stage. This would help in 

proposing the design, procurement and construction strategies for waste minimisation.  

 

Further categories of study produced toolkits and frameworks for predicting and 

managing project waste. These include Building Waste Assessment Score-BWAS by 

Ekanayake and Ofori (2004), which ranks the significance of different causes of waste. 

Others include NetWaste, SmartAudit, DOWTB and BREMap. These sets of tools either 

predict the quantity of waste or suggest strategies for managing waste after it has 

occurred. This means that these toolkits either provide a belated intervention or lack the 
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strategic framework for real waste prevention. Although SmartWaste for SWMP is 

widely adopted in the UK construction industry, it only provides an avenue for site waste 

managers to plan for ways of managing their waste (Shiers et al., 2014); and it is based 

on their instinct, without any objective guides of their decision.  

 

Thus, it is based on these gaps in knowledge and the need to provide frameworks and 

guide for waste-efficient projects that this study emerges. The study seeks to build on 

existing knowledge to integrate and develop a holistic strategy for minimising 

construction waste throughout project lifecycle stages. Using dynamic system approach, 

the study focuses on design, procurement and construction strategies for waste 

minimisation as well as dynamic relationship between measures taken at different stages 

of project delivery process. 
 

 

1.4  Aim and Objectives 

The overall aim of this study is to develop the design, procurement and construction 

strategies for minimising waste in construction projects. Apart from an investigation of 

the key and underlying measures for construction waste mitigation, the study examines 

the interrelationship between stages of projects' lifecycle, as activities carried out at an 

earlier stage is capable of engendering occurrences at later stages. In a bid to accomplish 

this aim, the following research objectives would be fulfilled. 

 

a) To investigate Critical Success Factors (CSF) and underlying measures for 

engendering waste minimisation through design, materials procurement and 

construction processes.   

 

b) To determine critical competencies for designing out waste from construction 

projects. 

 

c) To develop an integrated and dynamic model of key strategies for preventing 

waste through activities at design, procurement and construction stages of project 

delivery process. 
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d) To understand the dynamic relationship and interplay among key waste 

preventive measures at design, procurement and construction stages. 

 
 

1.5  Research Questions 

In order to achieve the aim and objectives of this study, the following set of research 

questions would be answered: 

 

a) Considering the whole stages of construction project delivery lifecycle, what are 

the key and underlying strategies for driving waste minimisation? 

 

b) What are the competencies required for designing out waste in construction 

projects? 

 

c) How do waste preventive measures at design, procurement and construction 

stages of project lifecycle interplay with one another?  

 

d) What are the optimal ways of preventing and managing waste through design, 

procurement and construction processes? 
 

1.6  Summary of Research Methodology 

Several techniques and approaches were adopted in collecting and analysing data to fulfil 

the aim and objectives of this study. The study involved the use of literature review, focus 

group discussions and questionnaire survey for its data collection. Its data analysis 

involves textual interpretivism using Atlas-ti, statistical analysis with the aid of SPSS, 

Structural Equation Modelling through IBM AMOS and dynamic relationship evaluation 

using a Dynamic Modelling (SDM) tool called VENSIM.  Figure 1.1 shows a 

methodological flow chart for the study. A sample of the questionnaire used is available 

in Appendix 1. Methodological approaches used in achieving each of the study’s 

objectives are briefly explained in the following sub-sections.  
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Figure 1.1: Methodological Flow for the Study 
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 Methodology: Objective 1 

Objective: To investigate Critical Success Factors (CSF) and underlying measures for 

engendering waste minimisation through design, materials procurement and 

construction processes.   

To explore the design, procurement and construction measures for minimising waste 

generated by construction activities, two key methods were used. These include: 

1) Systematic review of extant literature to determine the factors, measures and 

strategies that are capable of contributing to, or reducing, waste generated by 

construction activities 

2) Due to the desire for comprehensiveness of the identified measure, focus group 

discussions were carried out with designers, contractors, materials suppliers, and 

other experts within the Architecture, Construction and Engineering (ACE) 

industry.  

3) Using outputs of literature review and interview, a questionnaire was design, 

pilot-tested and administered.  

4) For each of design, procurement and construction measures, descriptive statistics, 

reliability and multivariate analyses were carried out for the purpose of data 

validation and identification of CSF. 

5) In order to determine the underlying measures for engendering low waste 

construction projects, confirmatory factor analyses were carried out with the aid 

of AMOS Structural Equation Modelling tools 
 

 Methodology: Objective 2 

Objective: To determine critical competencies for designing out waste from 

construction projects.  

 

Extant literature was thoroughly reviewed about competency frameworks and 

competencies required for driving low waste construction projects throughout all stages 

of projects lifecycle. Further exploration of the competencies was carried out through 

series of focus group discussions used for achieving objective one. Other methods used 

in achieving this specific objective are as follows: 

1) Distribution of robust questionnaire designed from outputs of literature review 

and focus group discussions. 
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2) The questionnaire was then analysed with the aid of Statistical Packages for 

Social Scientists (SPSS) using various data screening techniques, reliability 

analysis and descriptive statistics.  

3) Structural Equation Modelling (SEM) was used to confirm factor structure 

underlying the competencies for mitigating waste.  
 

 

 Methodology: Objective 3 

Objective: To develop an integrated and dynamic model of key strategies for 

preventing waste through activities at design, procurement and construction stages 

of project delivery process.  

In order to fulfil the focus of this objectives, the identified factors were grouped into three 

key group based on their stage of implementation. This resulted in design, procurement 

and construction factors with each group having sub-groups as determined by 

confirmatory factor analysis.  In order to understand the interplay of waste preventive 

measures, other steps and analyses involved are as follow: 

 

1) Structural Equation Modelling (SEM) was carried out with AMOS. It allowed 

rigorous analysis to ensure that only significant factors were retained for further 

analysis. The SEM supplied factor weight that served as an input for flow rate in 

the System Dynamic Modelling (SEM) tool, VENSIM.  

2) Based on the confirmatory factor analysis, dynamic relationship between all the 

key measures was modelled with VENSIM Structural Equation Modelling tool. 

This provided a graphical cause and effect diagrams, representing the interplay of 

various waste preventive measures.   

3) Impacts and interplay of design, procurement and construction measures were 

simulated on one another to determine the optimal measures for mitigating 

construction waste.  

 
 Methodology: Objective 4 

Objective: To understand the dynamic relationship and interplay among the key waste 

preventive measures at design, procurement and construction stages. 
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As an overarching objective, this was achieved by building on previous objectives. The 

following steps were involved: 

 

1. The causal loop diagram developed was converted to allow simulation and 

quantitative analysis of the System Dynamic Model. 

2. A case study of a completed construction project was used to obtain data on the 

adoption rate of various construction waste management strategies and overall 

project waste efficiency. 

3. Relationships between various elements of the model were represented through 

mathematical modelling, which enhances simulation of the dynamic impacts of 

one strategy on the other. 

4. Various strategies included on the model were isolated to simulate their causal 

influences on the whole system. The simulation provides avenue to determine 

overall significant of different strategies and stages on other strategies, as well as 

their impacts on the overall waste efficiency of construction projects.   
 

 

1.7 Unit of Study 

Unit of study refers to the major entity that would be explored or analysed in a study 

(Hopkins, 1982). It is summarily what is examined to draw a conclusion from the study. 

Depending on the focus of research, the unit of analysis could be individuals, groups, 

organisations, projects, artefacts, geographical units, social interactions, etc. To avoid 

ecological fallacy which occurs when a conclusion is made on individuals based on 

analysis of group, or exception fallacy that occurs when group conclusion is based on 

exceptional individual cases, it is important that the unit of analysis is appropriately 

designed (Trochim, 2006).  
 

As the purpose of this study is to investigate and develop design, procurement and 

construction measures for waste-efficient construction projects, the unit of study is the 

project that the study is aimed at improving. Although the study also seeks to investigate 

the designers and contractors’ competencies for achieving waste efficiency, the ultimate 

goal of establishing the competencies is to improve projects performance with regards to 

waste efficiency. As such, the unit of study for this research is the projects, and all 
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conclusions and recommendations are meant to improve projects towards reducing waste 

generated from projects.   
 

 

1.8 Scope and Limitation  

The overall goal of this study is to investigate the optimal design, procurement and 

construction strategies for waste-efficient projects with respect to construction industry. 

As such, data was collected from such stakeholders as designers, suppliers, contractors 

and waste management experts, among others. Meanwhile, activities of the construction 

industry are diverse, and it is divided into two, which are building construction and 

infrastructural facilities. The scope of the project is limited to building construction 

projects. 

 

Within the context of LEAN, waste is studied both in terms of materials and non-

materials waste such as time loss. The materials aspect of waste has been the focus of this 

study, and no attempt has been made to look into process waste within its context, 

especially as the physical waste constitutes increasing environmental impacts (Faniran 

and Caban, 1998). Similarly, Skoyles (1976) categorised waste as direct waste which 

involves complete loss of materials due to damages or other physical activities, and 

indirect waste which may be as a result of over thickness of building elements resulting 

in excessive use of materials. In this study, waste has been approached from the concept 

of physical waste, which has more tendency of increasing waste to landfill (Oyedele et 

al., 2013). 
 

 
1.9  Significance of the Study 

The UK construction activities contributes about 60% of total waste generated (Paine and 

Dhir, 2010), US landfill site consists of about one-third waste of construction origin (Yu 

et al., 2013), while a typical Australian landfill site has up to 44% waste from 

Construction Demolition and Excavation (Shen and Tam, 2002). The figures are similarly 

alarming in other countries. The impending problems of continuous waste landfilling are 

clear. While building related activities consumes about 50% of materials taken from 

nature, wastage of the materials results in continuous extraction, with tendency of 

materials depletion (Anink et al., 1996). Also, it is commonly known that resource 
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excavation and waste landfilling contribute to environmental pollution (Manfredi et al., 

2009; Huanga et al., 2013). Equally, waste reduction and reduced resource excavation 

have significant economic benefits (Coventry and Guthrie, 1998). Evidence shows that 

reducing construction waste by 5% could save up to £130million in the UK construction 

industry (BRE, 2003). It is, therefore, imperative that studies are carried out not only to 

find solution to managing waste after it occurred but to provide construction professionals 

with relevant knowledge and guidelines for preventing and minimising waste. In such 

case, there would be opportunity to adopt optimum technique for low waste project 

delivery. 

 

The influence of this study is in two-folds, contributing to the field of practice as well as 

the body of literature and knowledge base of construction research. In design and 

construction management, the study would enhance professional practices by providing 

practitioners with a toolkit for understanding measures for improving waste efficiency of 

design, procurement and construction processes. The study provides designers, suppliers 

and contractor with strategies for mitigating waste; thereby enhancing waste-efficient 

project delivery. It would as such help in preventing economic loss and negative 

environmental impacts associated with construction waste.  

Previous studies on waste minimisation have been carried out at unitary level while 

causes of waste are dynamic and multiplicity in nature (Hao et al., 2008). This study 

contributes to existing body of knowledge by building on existing studies, using 

Structural Equation and System Dynamic Modelling, to determine interplay between 

various waste preventive and minimisation measures.  
 

 

1.10 Structure of the Thesis 

This thesis consists of eleven chapters, ranging from introduction to conclusion. Chapter 

one sets background and justifies the needs for the study. Review of literature on both 

theoretical and methodological approaches to the study is presented in chapter two, three 

and four. In chapter five, methodological approach to the study, covering philosophy, 

epistemology, strategies and approaches are presented. Data collection and analytical 

techniques for each of Qualitative and quantitative studies are presented in Chapter six 

and seven respectively. Chapters eight and nine cover Structural Equation Modelling 
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(SEM) and System Dynamic Modelling (SDM) respectively. Findings of the study are 

discussed in chapter ten, while Chapter 11 provides a concluding section for the study. Figure 2 

illustrates the contents of the thesis. 

 

 
Figure 1.2: Thesis Layout 
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CHAPTER 2: CONSTRUCTION WASTE 

MANAGEMENT  

 

2.1 Chapter Overview 

Need to understand the rudiment of waste generation and management in the construction 

industry informed this chapter, which initially provides an overview of the global 

construction industry, with some bias in the UK. It then looks into impacts of the industry 

from economic and environmental perspectives as well as its contribution to the global 

development. To provide theoretical and methodological insights for the study, existing 

waste management studies are categorised based on the perspectives from which waste 

management was approached. Each of the categories is then evaluated to determine their 

contribution, effectiveness and weaknesses towards tackling the menace of waste in the 

construction industry. A critical literature review, which evaluated effectiveness of 

existing waste management strategies towards a holistic framework for effective waste 

management strategies, is then presented. It identified and critically evaluated prevailing 

waste management strategies and developed a requisite framework required for waste 

management strategies to be effective and widely adopted in the industry. This chapter 

forms a theoretical foundation and methodological guidelines upon which the study is 

built. 
 

 

2.2 Overview of the Construction Industry 

The construction industry is a highly fragmented project-based industry that seeks to meet 

demands of its customers within limited budget, resources and time-frame. The industry 

contributes significant portion of the global economy and employs large population 

across the globe. It accounts for 13% of the global economy and contributes annual 

amount of $12trillion, which is expected to increase to $15trillion in 2025 according to a 

year 2013 analysis by Global Construction Perspectives. As at the year 2008, the UK 

construction industry accounts for 8% of Gross Domestic Products (GDP), generating 

employment for over three million workers and contributing annual value of £100billion 

(HM Government, 2008). The output of the construction industry, such as public and 

private buildings, road, rail, dams and irrigation, bridges, and so on, are indispensable to 

the survival of other sectors and sustainability of the global economy. 
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The industry is large, complex and diverse, and covers a broad range of micro, small, 

medium-sized and large business activities, all united by their output, which are buildings 

or infrastructural facilities. The industry comprises of the client who funds and drives 

projects, the designers who produce details of what to be constructed, materials suppliers, 

contractors as well as the government that regulates activities of the industry.  

 

The lifecycle of the industry’s activities ranges from project briefing, through design and 

construction to demolition or deconstruction of the project. However, due to the 

diversified and dynamic nature of construction activities, designers and contractors often 

have to make some decisions based on incomplete information, using experience in their 

judgement. As the project proceeds, this sometimes results in reworks that contribute to 

waste generation. The industry is believed to contribute about a third of waste in EU 

landfill sites (Kozlovská and Spišáková, 2013). Also, recent years has witnessed 

increased environmental impacts of construction activities. These impacts among others 

include emission of toxic gases, contribution to environmental pollution, and 

environmental depletion that is due to its consumption of large volume of mineral 

resources. In a bid to minimise its waste generation as well as resulting environmental 

impacts, while maximising the indispensable benefits of the industry, various research 

efforts have gone into waste minimisation, with many still in progress.  

 
 

2.3 Concept of waste and its management 

Construction waste refers to materials laid unwanted onsite after the purpose for which it 

is acquired is met. As such, they are meant to be discarded from the site. This could range 

from materials purchased for different construction activities to those generated onsite, 

such as excavated and demolished materials. In either case, it becomes unwanted 

(Oyedele et al., 2013) and it is required to be discarded (European Commissions, 2008). 

Evidence suggests that between 1-10% of total materials purchased by weight usually 

end up as waste (Bossink and Brouwers 1996). 

 

While it is arguable that increasing construction activities are indispensable to 

urbanisation and economic growth, there is a growing concern about environmental 
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impacts usually associated with its waste generation. For instance, as construction waste 

forms substantial proportion of waste to landfill, a typical landfill site produces CO2, 

which contribute to greenhouse gases and environmental pollution (Manfredi et al., 

2009). Atmospheric pollution resulting from waste transportation is also no trivial. As 

this suggests that implementation of appropriate waste management strategy is requisite 

to preventing impending environmental problems, it also suggests tendencies for 

economic benefits owing to effective waste mitigation. This would result in savings in 

terms of cost of acquiring the wasted materials, cost of storage, cost of transportation and 

disposal and the landfill tax (Coventry and Guthrie, 1998).  The precious value of land 

voted for landfilling is also less considered. Unfortunately, these set of hidden costs 

associated with material waste have been misunderstood and wrongly underestimated 

only as cost of disposal and landfill tax (Coventry and Guthrie, 1998). Also, the 

associated costs are usually being shifted to the clients who finance the projects (Guthrie 

et al., 1999; WRAP, 2007). 

 

In trying to identify its sources in construction projects, waste has been categorised using 

varying yardsticks. Coventry et al. (2001) categorised waste into bricks, blocks and 

mortar, packaging, timber, metal, special waste, dry lining and other wastes. Spivey 

(1974) used similar classification with addition of garbage and sanitary waste. Faniran 

and Caban (1998) noted that Gavilan and Bernold (1994) classified waste based on their 

causes: design, procurement, handling, operation, residual, and others. Guthrie and 

Mallet (1995) went a step further to categorise waste as valuable and easily reused or 

recyclable, indirectly recyclable, and those that pose disposal issues, such as asbestos. 

Other categories have involved materials list such as asphalt, concrete, soil, tiles, bricks, 

and wood, among others. Nonetheless, irrespective of varying identification models, 

waste is usually estimated per unit weight of total materials purchased or as percentage 

of total cost of materials (Ekanayake and Ofori, 2004; Bossink and Brouwers 1996); thus 

making it always results in financial and environmental cost.    

 

Various causes of waste ranging from design to completion have been identified across 

the literature. While it has been argued by several architects that waste is only caused by 

activities during construction (Osmani et al., 2008), evidence shows that design and 

scheduling remain major known causes of waste, apart from the site-based activities 

(Faniran and Caban, 1998). This is usually because of design related flaws and 
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complexities, inaccurate materials scheduling and needs for design changes earlier 

occurring before or during site activities (Faniran and Caban, 1998; Ekanayake and Ofori, 

2004; Osmani, 2012). Other causes of waste such as materials leftover from cutting, 

packaging, poor supply chain management, damages due to weather, poor materials 

handling, over-packaging, mistakes and reworks, spillage and left over, off-cuts, etc. are 

associated with procurement, construction operation and management, materials 

handling and external factors (Formoso et al., 2002; Faniran and Caban, 1998; Dainty 

and Brooke, 2004: Esin and Cosgun, 2007). This suggests that a holistic approach to 

minimise project waste is a collaborative effort among all stakeholders, and would 

consider the design, procurement and construction phases of project delivery process. 
 

 

 Construction Operations and Waste Management 

Waste management is becoming an integral part of every project delivery process, 

especially in developed nations. In the UK for instance, different strategies have been 

adopted at various RIBA plan of work stages 0-7 comprising Strategic Definition, 

Preparation and Brief, Concept Design, Developed Design, Technical Design, 

Construction, Handover and In-Use Stages (RIBA, 2013). These set of strategies include, 

among others, the use of tools for prediction, development of Site Waste Management 

Plan (SWMP), legislative and tax measures, sorting and recycling, materials re-use and 

recovery, design for flexibility and deconstruction, and use of off-site construction 

techniques. Table 1.1 categorises existing waste management strategies based on their 

stages of application within 0-7stages of RIBA plan of work. 
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Table 2.1: Existing waste management strategies 
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0 – 1  2 – 4  5 6 – 7  

1 Sorting and Recycling     

2 Reuse and Recovery     

3 Use of Waste Prediction Tools     

4 Site Waste Management Plan (SWMP)     

5 Design for Flexibility and deconstruction     

5 Off-site construction     

6 Waste-efficient Procurement     

7 Legislative and Tax measures     

8 Design for Flexibility and deconstruction     

 

Meanwhile, earlier studies have identified hierarchical order through which waste could 

be managed. Also applied to construction industry, the waste hierarchy, shown in Figure 

2.1, is a framework suggesting the order of cost effectiveness and environmental 

friendliness pattern through which waste is best-managed (Faniran and Caban, 1998). As 

such, strategies for waste management are therefore categorised as reductive measures, 

re-use, recycling, or in worst-case scenarios, landfilling. While strategies for waste 

reduction involve processes of minimising waste at source by decreasing it to the smallest 

possible quantity, re-use approach ensures that waste generated are reused (Faniran and 

Caban, 1998). This thus prevents monetary loss and energy need for further processing 

of the waste materials or its disposal.    

 
Figure 2.1: The Waste Hierarchy  
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Alternatively, when “reduce and re-use” become impracticable, processing of the waste 

materials to produce a derivative product, known as recycling, becomes the best option. 

Despite criticism that it also consumes a substantial amount of energy that results in 

environmental pollution (Chong and Hermreck, 2011; Benjamin, 2010; Saraiva et al., 

2012), waste recycling reduces the need for extracting raw materials, which affects 

biodiversity and results in materials depletion (WRAP, 2009b). It also prevents associated 

energy and pollution, which occurs owing to mining and production processes (Halliday, 

2008). These options are usually expected to be explored before the decision to landfill 

the waste. This is especially as it results in more financial loss and it is characterised by 

series of negative environmental impacts, asides nations running out of landfill sites 

(Oyedele et al., 2013).  

 

However, rather than adopting any of the strategies depicted by the waste hierarchy, it 

has been reasoned that there is a possibility of preventing waste by designing it out using 

some set of strategies during design stages (Osmani et al., 2005; WRAP, 2007,2009a; 

Yuan, 2013). UK Government funded WRAP identified five waste spectrums capable of 

reducing waste burden of construction projects. These according to them involve design 

for reuse and recovery, off-site construction, deconstruction and flexibility, materials 

optimisation, and waste-efficient procurement (WRAP, 2009a). In buttressing their 

importance, Jaillon et al. (2009) and Tam et al. (2007b) argue that wastage reduction level 

in prefabricated building is up to 52% and 84.7% respectively. Anink et al. (1996) 

similarly recognised that design for de-constructability ensures building materials are re-

used at the end of building lifecycle, thus preventing the need for new material extraction, 

recycling or landfilling. As such, reducing waste at source, using design stage 

approaches, is becoming more popular than other approaches captured on waste 

hierarchy, because it prevents waste while the latter minimises or manages waste after 

occurrence.   

 

Consequently, there is increasing awareness that instead of the typical system of 

concentrating on site effort to reduce and manage waste during construction activities, 

waste minimisation should be considered throughout all stages of building process – 

design to completion (Ekanayake and Ofori, 2004). This becomes imperative if waste and 

its associated negative economic and environmental impacts were to be prevented, or in 
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worst-case scenario, minimised. Owing to this, the design stage has become increasingly 

important as key starting point for studies into waste management. 
 

 
2.4 Research Streams in Waste Management 

Due to the growing importance of construction waste management as a means to achieve 

the global sustainability agenda, as well as a step towards environmental friendliness and 

economic benefit, a large body of literature have been dedicated to its study. These sets 

of studies are categorised and further discussed in this section. The intent is to analyse 

key findings of the previous studies and to gain methodological insights for this study. 

The existing body of literature on construction waste are categorised into quantification 

and source evaluation, waste reuse and recycling, waste minimisation/prevention, and 

waste prediction. Some studies carried out under each category are assiduously swotted. 

 
 

 Studies on Waste Quantification and Source Evaluation 

Arguably, the first step towards problem solving is the identification of the problem as 

well as its causes and effects. This phenomenon was applied to waste management 

research when Faniran and Caban (1998) argued that before formulating effective 

policies and strategies for waste minimisation, there is need for detailed understanding of 

the factors that bring waste into being. As such, waste causative factors were identified, 

and they were used in questionnaires administered to groups of industry experts. Their 

study concluded that change in design, materials’ leftover, packaging waste, design errors 

and damages due to weather are the major causes of waste in construction projects. 

Meanwhile, earlier studies have overlooked design stage as a possible stage towards 

waste-efficient projects. Thus the study set a background for further research.  

 

While quantifying and evaluating sources of waste in construction projects, Bossink and 

Brouwers (1996) carried out case studies of five construction projects. They understood 

that wastes from individual materials are caused by different activities. Nonetheless, they 

argued that improper planning of construction activities, design errors, uncertainty in 

foundation depth, poor materials handling, and over-packaging are the leading causes of 

construction waste. While carrying out a similar study, Nagapan et al. (2012) believe that 

among other things, poor site management practices, contractors’ inexperience, design 
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flaws and reworks, inadequate planning and scheduling, and mistakes during construction 

are the major causes of construction waste.  

 

Other studies also buttressed the above set of factors and corroborated the findings with 

series of interrelated factors (c.f. Lau et al., 2008; Al-Hajj and Hamani, 2011; Esin and 

Cosgun, 2007; Formoso et al., 2002; Gamage et al., 2009; Kofoworola and Gheewala, 

2009). Those factors include spillage and left over, off-cuts, improper handling, poor 

supply chain management, inadequate storage facilities, etc. as significant causes of 

construction waste. The studies adopted case studies analysis, direct observation, 

literature review, and questionnaire survey as their approaches to determining factors 

contributing to waste generation. Table 2.2 below categorised and itemised waste 

causative factors identified in the studies.   

 

Table 2.2: Studies on waste causative factors 

 

Group Causes of Construction Waste References 

 
Design 

 • Detailing Errors 
• Design Changes 
• Complexities in Design 
• Lack of dimensional coordination 
• Poor project coordination 
• Unclear specification 
• Non-standardization of spaces  

Faniran & Caban, 1998;  Coventry et al., 
2001; Ekanayake & Ofori, 2004;  Bossink & 
Brouwers, 1996; Polat & Ballard, 2004; 
Garas et al., 2001; Gamage et al., 2009. 

Procurement  • Ordering Errors 
• Left Over Due to Over Estimation 
• Packaging Materials 
• Incorrect quantity estimation 
• Use of low-quality materials 

Faniran&Caban, 1998; Greenwood, 2003; 
Gavilan&Bernold, 1994; Lu et al., 2011; 
Wang et al., 2008; Gamage et al., 2009; Esin 
and Cosgun, 2007. 

Construction 
Operation/ 
Project 
Management 

 • Reworks Due to Errors 
• Improper project planning 
• Poor workmanship 
• Leftover from cutting and shaping 
• Poor site conditions 
• Poor supervision 
• Materials off-cuts 
• Inadequate knowledge  

Tam et al., 2007a; Poon et al., 2004; 
Formoso et al., 2002; Bossink &Brouwers, 
1996; Wahab&Lawal, 2011; Kofoworola 
&Gheewala, 2009. 

Handling 
 • Poor Materials Storage 
• Poor Materials Handling 

Kofoworola&Gheewala, 2009; Lau et al., 
2008; Lu et al., 2011. 

External 

 • Damages Due to Weather 
• Accident 
• Theft and Vandalism 

Faniran&Caban, 1998; Senaratne& Wijesiri, 
2011; Bossink &Brouwers, 1996. 
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Based on the identified factors, the table shows that total waste generation in construction 

project is caused by series of inter-related factors ranging from design stage, through 

materials procurement, to the actual construction stage. Although the actual waste is 

generated on-site during construction activities, some preliminary factors contributing to 

it have been identified. This further suggests that holistic efforts towards waste 

minimisation would not look at causes of waste at unitary level. There is need for 

understanding the dynamic relationship between various causes and effects of waste in 

order to generate a holistic model for its minimisation (Esin and Cosgun, 2007; Hao et 

al., 2008). Figure 2.2 below depicts interplay between various causes of waste in 

construction. 

 
Figure 2.2: Interplay of Waste Causative Factors Categories 

 

Notwithstanding the overall benefits of the studies towards identifying waste causative 

factors, they have mostly left out strategies for minimising the waste. Although it is 

crucial to understand the causes of problems before embarking on strategies for solving 

such problems, the series of studies failed to propose agenda for rectifying the problems 

identified. Also, Yuan et al. (2012) argue that existing studies have only identified the 

waste causative factors at unitary level while there is a dynamic interplay between factors 

that resulted in waste. 
 

 

 Studies on Waste Reuse and Recycling 

In construction management, some schools of thought believe that waste could not be 

eradicated. As such, solutions were proffered to waste after it occurred so as to reduce 
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burden on landfill site, thus moving down to lower part of the waste hierarchy (see figure 

2.1). Several research efforts have been made in this perspective, by concentrating on 

reuse and recycling of waste generated. Examples of such studies include Medina et al. 

(2014), Oyedele et al. (2013), Chick and Micklethwaite (2004), Bolden et al. (2013), 

Dunster (2012), Cavalline and Weggel (2013), Dolan et al. (1999), and Chen et al. (2003), 

among others. While recycled products refer to those materials that are processed to 

produce a derivative material in such a way that their physical and/or chemical properties 

are altered, a material is reused with little or no alteration to its present form, and usually 

without change to its chemical properties (Guthrie and Mallet, 1995; Ho and Choi, 2012).  

 

Apart from the fact that these set of studies provide end of pipe treatment for waste, the 

quality of recycled materials has been a subject of controversial literature. According to 

Medina et al. (2014), while some studies (such as Yang and Kim, 2005; Mefteh et al., 

2013; Etxeberria et al., 2007) claim that the quality of concrete reduces with increasing 

recycled concrete aggregate, others (e.g. Yang et al., 2011; Thomas et al. 2013) argue 

that the quality of concrete remains unaffected as a result of recycled aggregate. 

Additionally, waste recycling has done little or no favour to the environment until the 

recycled materials are used in further activities. However, existing practices suggest that 

there has been a slow development of recycled materials market (Mansikkasalo et al., 

2014). This is because; apart from no guaranteed market and standard specifications for 

recycled products, designers feel that it requires additional time to source for the products 

(WRAP, 2010). 
 

 

 Studies on Waste Minimisation and Prevention 

Another area through which waste management has been investigated is through 

minimisation and preventive measures. This category of studies is based on the 

philosophy that the best approach to waste management is through preventive and 

minimisation strategies. The studies suggest that instead of conventional industry 

practices which concentrate on efforts to manage waste after it is generated; there is 

tendency of designing out waste during design stage or using some waste-efficient 

strategies during procurement and construction stages (Faniran and Caban, 1998; WRAP, 

2007, 2009a; Yuan, 2013). Based on this paradigm, the UK government’s funded WRAP 

identified five spectrums through which waste could be effectively designed out. These 
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include design for reuse and recovery, design for offsite construction, design for 

deconstruction and flexibility, design for materials optimisation, and design for waste-

efficient procurement (WRAP, 2009a).  

 

Other waste preventive measures identified in the literature include Just-in-Time (JIT) 

mode of materials delivery, reduction in materials packaging (Dainty and Brookes, 2004), 

modular design, and dimensional coordination of design elements (Formoso et al., 2002). 

According to Esin and Cosgun (2007), the most effective means of reducing 

environmental impacts of waste is using waste preventive measures. This would reduce 

the need for materials reuse, recycling and waste disposal thus resulting in more 

economic and environmental benefits. Although several stones remain unturned towards 

minimising waste in construction projects, series of studies carried out within this 

perspective offer promising approach to tackling construction waste. 
 

 Studies on Waste Prediction 

One of the approaches through which construction waste have been investigated is from 

predictive perspective. Evidence shows that the best attempt to mitigate waste in 

construction projects is those made at early stages (Poon, 2007). Chen and Chang (2000) 

argue that both planning and design of effective solid waste management system require 

adequate prediction of likely waste from different sources. As such, this category of study 

attempted to furnish the industry with tools and techniques for predicting likely waste 

from projects so that preventive measures could be taken to reduce it.  

 

Produced by the UK Building Research Establishment (BRE), SMARTWaste is a product 

of one of such research efforts towards waste prediction. The study was based on data 

gathered from previous construction projects, and it estimates and predicts likely waste 

from projects in 13 categories. The SMART Waste is an online waste management tool 

that obtains certain information about proposed projects and predicts possible waste from 

such project based on its statistically rich database. It has been widely used in the UK 

construction industry. Solís-Guzmán et al. (2009) also produced a Spanish model based 

on Andalusian Construction Cost Database. Enriched with data from 100 construction 

projects, the model is designed to predict likely waste from projects up to 10 floors. Poon 
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et al. (2001) similarly produced a waste index that predicts the amount of waste (in 

volume or weight) generated per m2 of Gross Floor Area (GFA). 

 

Although criticised due to its involvement of manual input, Jalali (2007) proposed 

“Component Index” and “Global Index”. The former predicts likely waste per square 

metre of project floor area based on data from multiple projects across the globe, while 

the latter estimates possible waste from projects based on types and quantity of each 

component used in the project. The set of studies offers different approaches to waste 

prediction, and furnished industry practitioners with baseline waste expected from their 

projects. However, the studies lack platform and guideline for waste minimisation, which 

could have improved their ingenuity. Again, manual input of design data and 

incompatibility with design tools questions the success of studies in this perspective. 
 

 

 BIM-Based Waste Management Studies 

Building Information Modelling (BIM) is an emerging technology that is revolutionising 

the global construction industry. The use of BIM is becoming the standard design and 

simulation platform in the construction industry, using Industry Foundation Class (IFC) 

as interoperability platform (Porter et al., 2014). Although less effort has been made to 

incorporate waste minimisation into existing BIM tools and platform such as Revit, Micro 

station, ArchiCAD, and Tekla, attempt has been made to develop BIM tools for waste 

estimation. For instance, Cheng and Ma (2013) developed a BIM solution capable of 

extracting building materials and volume information for detailed waste estimation and 

planning. Despite the study aiming at the use of the BIM solution for predicting cost of 

waste disposal, it establishes the tendency for manipulating material ontology of the 

existing BIM tools or developing BIM-interoperable tools for waste minimisation 

functions. As the wind of BIM adoption continuously blows in the industry, it is expected 

that more research attention is focussed on the use of BIM technology for waste 

minimisation. 
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2.5 Review of Strategies for Diverting Waste from Landfill  

Although studies by Shen and Tam (2002) and Oyedele et al. (2013) suggest that waste 

management strategies receive less attention than cost and project duration, different 

waste management strategies have been adopted in the industry over the years. This is 

probably influenced by increasing stringency of government fiscal and legislative 

measures aiming at reducing total amount of waste to landfill. In this section, existing 

strategies for diverting construction waste from landfill sites were reviewed. The overall 

approach used in the section is a critical review and analysis of existing literature on 

strategies for diverting waste from landfill. The existing waste strategies were grouped 

under eight categories with each having its shortcomings. These sets of strategies, 

depicted in Figure 2.3, are evaluated for waste mitigation capacity, environmental 

friendliness and economic benefits, among others. 

 
 Sorting and Recycling  

Waste recycling has been widely adopted in many industries, among which the 

construction industry is not left out. This strategy has been recognised as the next line of 

action in a bid to prevent waste landfilling, the oldest and most environmentally harmful 

form of waste treatment (Manfredi et al., 2009). Recycling is one of the strategies 

adoptable after waste has occurred and it involves sorting of the waste materials into 

"recyclable and non-recyclables" during the construction activities or at the recycling site 

(Barros et al., 1998). The option of site sorting has been widely encouraged across the 

UK, as it eases recycling operations and ensures accurate separation of inert and non-

inert materials (Poon et al., 2001). The strategy is not necessarily an approach for 

reducing waste in construction activities, but it proves valuable due to its tendency to 

divert waste from landfill sites. Also, recycling as a waste management strategy ensures 

that waste materials are reprocessed to produce derivative materials, thereby preventing 

the need for the use of virgin materials for materials production. This thus saves the 

environment from pollution due to materials excavation, transportation and processing 

(Davidson, 2011; Treolar et al., 2003). 

 

Peng et al. (1997) argue that substantial recycling operation, with respect to construction 

waste, has helped communities in freeing up large spaces in their landfill sites as 

construction and demolition usually generate significant waste. Corsten et al. (2013) 
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believe that an efficient recycling operation saves an additional annual emission of 

2.3MtCO2 in Netherland. A typical Japanese building constructed of recycled materials 

would save at least 10% of energy need according to Gao et al. (2001). Other benefits in 

forms of job creation and economic gains are also claimed to the credit of recycling as a 

strategy for waste management. However, several pre-requisites are critical to the success 

of recycling operation. A substantially large area of land of not less than 0.8 hectares, 

easily accessible site, experienced recycling specialists as well proper recycling 

equipment such as screeners, crushers and wind-sifting are expected of a typical recycling 

site (Peng et al., 1997).  

 

Nonetheless, as a strategy for waste management, waste recycling has some factors to its 

detriments. Its need of energy for transporting the waste to recycling yard as well as for 

recycling operation means that although physical waste is managed, CO2 and other 

hazardous emissions are produced (Saraiva et al., 2012; Chong and Hermreck, 2011). 

Also, apart from the fact that waste recycling is only a means of treating waste after it 

occurred, preference of time and cost over environmental policies (Oyedele et al., 2013) 

among construction operatives suggest that recycling strategies could not be seen as a 

holistic strategy for waste management in the industry. This is because, successful 

recycling operation requires dedicated sorting arrangement which required cost, time, site 

space, labour and dedication, while typical sorting process interferes with other site 

operations (Teo and Loosemore, 2001; Poon et al., 2001). Also, some materials such as 

windowpanes, excavated soil, insulation materials, etc. remain mostly unrecyclable due 

to their compositions, making recycling inadequate strategy for managing them. 

 

Consequently, while waste recycling has been helpful in diverting substantial volume of 

waste from landfill sites (Oyedele et al., 2013), more holistic efforts is required in 

adequately managing construction waste in manners devoid of environmental negativity, 

process delay, economic loss, and with ease of practice and general applicability. 
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Figure 2.3: Existing Waste Management Strategies
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 Materials Re-Use 

Materials reuse is an essential approach to diverting waste from landfill sites. Unlike 

recycling, materials reuse involves use of the materials with little or no alteration to its 

physical state, and without any change to its chemical constituents (Guthrie and Mallet, 

1995). In the Construction industry, material re-use has been adopted as a means of 

diverting own waste as well as other forms of waste from landfill. Construction 

demolition materials have been widely reused for land reclamation, road surfacing, and 

as constituents of concrete aggregates. Coal fly ash is also a valuable material, of 

industrial origin, being used to replace percentages of cement in concrete mix and 

rendering materials (Halliday, 2008). Materials leftover, off-cuts, excavated soil, etc., 

generated from construction sites are also being used in projects.  

 

Materials reuse is seen as a better alternative to recycling as the waste finds places in 

projects. However, while certain waste materials are reusable without further processing, 

many others require different forms of processing, crushing, washing and transportation. 

Although it substantially reduces pollution compared to recycling and landfilling as waste 

management strategies, waste reuse sometimes involves environmental pollution, apart 

from being an attempt to manage waste after occurrence rather than preventing it in the 

first place. Asides, different materials have its lifecycle, and a material tends to become 

non-reusable after certain numbers of use. While certain off-cuts are reusable, some are 

too small to find place in further construction, resulting in landfilling. Time constraints 

in projects could also mean that operators would rather use new materials to save time 

than combining pieces of reusable materials, especially as they usually see waste as 

unavoidable problems of managers (Teo and Loosemore, 2001). As such, concentrating 

on waste reuse as waste management approach could only prevent some quantities of 

waste from being landfilled or recycled, and it does not necessarily tackle waste at all-

inclusive level.  

 

 
 Use of Waste Prediction Tools 

In order to manage waste effectively in construction projects, different means of 

measuring and predicting possible project waste have emerged in the industry. It involves 

the use of various tools, usually at the design stage, to predict potential waste arising from 
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the construction process. NetWaste is one of the most popular tools used in the UK for 

waste prediction. It assists designers in estimating the cost and quantities of waste from 

the project and helps in selecting a suitable strategy for improving waste effectiveness of 

the project (WRAP, 2008). Developed by the UK WRAP, NetWaste collects necessary 

project information such as building volume and materials types to perform its waste 

evaluative function. Design-Out Waste Tools for Building/Civil Engineers, DOWT-

B/DOWT-CE are other tools developed by the same body for identifying the potentials 

for designing out waste and recording design solution for waste mitigation. It also helps 

in calculating the impacts of such solution and comparing impacts of different design 

alternatives for building and civil engineering projects (WRAP, 2010).  

 

Other tools and approaches have been used for projecting construction waste outside the 

UK. A Spanish model for waste prediction was developed by Solís-Guzmán et al. (2009) 

based on data from 100 construction projects. Components and Global Index measuring 

waste per square metre and material types respectively were proposed by Jalali (2007). 

A Singaporean Model for waste score determination, BWAS, was also developed by 

Ekanayake and Ofori (2004). BWAS was developed for comparing different design 

scenarios for their waste effectiveness so that adequate mitigation strategies could be 

taken. These set of tools are employed during the concept and developed design stages 

of building delivery process. 

 

The consensus that waste is best addressed at design stage where the cost of change is 

minimal points to the fact that these set of strategies have adequately contributed towards 

construction waste management (Faniran and Caban, 1998; Ekanayake and Ofori, 2004; 

Osmani, 2012). They help in projecting likely quantity of waste, and sometimes their 

causes so that the industry practitioners would act towards minimising the waste by using 

alternative design, or plan for waste reuse and recycling. However, apart from the fact 

that some of the tools in use only predict likely waste without information about their 

likely causes and predictive measures, the tools work based on manual input of project 

information. This, therefore, means that they heavily rely on the accuracy of the input 

data. Also, accuracy of data input becomes challenging when buildings combine multiple 

shapes in its form. This suggests that as this strategy proves requisite to effective waste 

minimisation at source, more efforts is needed to improve mode of capturing building 

information.  
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 Site Waste Management Planning (SWMP) 

SWMP is a legislative requirement for construction activities in many nations. In the UK 

for instance, a legislative framework, SWMP regulation (2008), required every project 

above £300,000 to produce SWMP before actual construction activities. Every 

maintenance, demolition, excavation, alteration, civil engineering project and decoration 

above the amount was required to provide SWMP before the regulation was repealed in 

December 2013. Until date, industry professionals are still expected to produce voluntary 

SWMP for effective waste management, or as a means of ensuring compliance with green 

certifications such as BREEAM. Similarly, in Hong Kong, Site Waste Plan was 

introduced to the construction industry in 2003. It has however received negative 

feedback from industry practitioners, as it is believed to reduce productivity (Tam, 2008). 

Waste Management Plan has also become an essential requirement for planning approval 

of significant projects in Australia (Hardie et al., 2007).  

 

A typical SWMP involves statement of pre-construction strategies previously taken to 

ensure waste minimisation as well as detail statement of proposed strategies for waste 

management during and after construction activities.  The SWMP is typically aimed to 

set waste diversion target, avoid flying tipping, ensure proper waste auditing and 

segregation, improve efficiency and profitability, and to ensure that adequate measure is 

taken for waste reduction, reuse and recycling. Usually prepared and managed by site 

waste managers, the plan proposes the proportion of waste to be reused and recycled, 

onsite area for waste storage, methods for waste sorting and reduction as well as the 

stakeholders that would be responsible for waste removal from site (Tam, 2008; 

McGrath, 2001; Mcdonald and Smithers, 1998). 

 

However, industry practices suggest that rather than adopting SWMP as a holistic plan 

of diverting waste from landfill, the plan has been viewed as a means of imposing 

financial burden on the industry (Tam, 2008). In the UK for instance, the SWMP was 

being prepared as part of legal requirements without adequate measures of 

implementation. This means that rather than the plan helping in waste reduction; it has 

been used only to fulfil legal requirements and to attain required BREEAM points in 
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some projects. This again was influenced by the general industry belief that waste 

minimisation is costlier than waste generation. It is held that waste sorting does not only 

requires substantial space on site, but it also affects project delivery time, requires many 

waste skips with its planning requiring additional employees. As the SWMP is perceived 

as an undue legal imposition before it was repealed in the UK, industry practices suggest 

that well-meant strategy for waste management would not only go beyond SWMP, it 

would be easily implementable and devoid of additional financial expenses and time 

consumption.   

 
 Design for Flexibility and Deconstruction 

One of the proven approaches to construction waste management is to design the building 

for flexibility and deconstruction. A design is flexible if it can adapt to both external and 

internal change. This occurs when a design is optimised to the industry's standard so that 

its materials could be easily removed and reused at the end of its lifecycle. During design, 

the elements of the building system are usually coordinated and standardised, preventing 

waste due to offcuts which is one of the major causes of waste in projects (Formoso et 

al., 2002). Industry practices submit that change is less costly at pre-construction stages, 

thus suggesting that dimensional coordination, as a design stage strategy, is a useful 

precautionary measure to ensuring waste prevention during construction activities. It is 

clear that while materials reuse and recycling seek to manage waste after it occurred, 

design coordination offers preventive measures which are both environmentally and 

financially preferable. As such, standardising design for waste efficiency through 

dimensional coordination tends to be a promising strategy for waste management when 

combined with construction stage strategies. 

 

Demolition waste contributes a significant proportion of construction waste. A holistic 

attempt to reduce end of life waste is through the consideration of deconstruction during 

the design stage (WRAP, 2009a). Deconstruction differs from demolition in that while 

the former involves careful dismantling of the building components in such a way that 

large proportion of the materials and components supports reuse and recycling, the latter 

usually lacks consideration for primary reuse of the building components. Adequate 

planning for the buildings' end of life, by considering deconstruction, would ensure that 

a significant proportion of the materials and components is reused, thereby diverting a 
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substantial portion of demolition waste from landfill. Nevertheless, apart from the claim 

that design for deconstruction requires careful planning and additional time consumption 

on the part of the designers (Durmus and Gur, 2011); deconstruction is about 17-25% 

more expensive than demolition (Dantata et al., 2005).  

 
 Waste-efficient Procurement  

Procurement stage is a vital stage for waste management planning in construction 

projects. Several causes of construction waste such as packaging materials, double 

handling, and inappropriate materials storage are all associated with procurement stage 

(Formoso et al., 2002). Owing to this, different strategies have been used to ensure waste-

efficient procurement in the construction industry, this among others include Just in Time 

delivery (JIT), reduced packaging and improved collaboration between the supply chains. 

 

Introduced by Toyota in 1987 as a means of shifting from estimation to demand driven 

production, JIT has been applied to the construction industry with various forms of 

alteration owing to the complexity and uncertainty that characterised the industry (Ballard 

and Howell, 1997). It ensures that materials are delivered to the site in batches when they 

are needed, thereby reducing the length of time the materials are stored as well as 

eliminating the likelihood of over-ordering and double handling that could result in 

breakages (Dainty and Brooke, 2004). However, despite the tendency of JIT for waste 

reduction, the strategy has been criticised from environmental and financial perspectives. 

It is believed that delivering materials on a minimum-maximum inventory basis, known 

as pull system, as against just in time, would help in saving the cost of transportation and 

reduce burning of fossil fuel which in turns result in environmental pollution. 

 

Although reduced packaging is a means of reducing waste due to materials procurement, 

it also poses a threat of materials breakage. This suggests that a proper balance needs to 

be reached between packaging reduction and adequate packaging, especially in a case of 

fragile materials. Meanwhile, as procurement strategy, improved collaboration between 

the supply chains has been encouraged as means of waste reduction in construction 

projects (Dainty and Brooke, 2004). Its call for an enhanced alliance between designers, 

suppliers, recycling companies and other stakeholders would help in excluding design 

errors that would have resulted into over-ordering.  
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 Off-site Construction 

Some design and construction techniques are identified as means of reducing waste 

generation in the industry; these include prefabrication and off-site construction (Tam et 

al., 2005; Jaillon et al., 2009; Lu and Yuan, 2013a). Although it is noted that such 

technique as the use of precast materials might not be purposely done for waste reduction, 

evidence shows that they are very efficient for waste reduction. Jaillon et al. (2009) and 

Tam et al. (2007b) suggests that waste minimisation tendency of prefabrication 

construction is up to 52% and 84.7% respectively. This means that building elements are 

manufactured offsite, assembled onsite, while several factors that cause waste such as 

materials handling, poor storage as well as design changes have been entirely prevented. 

However, although prefabrication reduces waste and ensures timely delivery, a financial 

premium is paid for it, as it could be more slightly expensive than in-situ construction 

(Jaillon and Poon, 2009). 

 
 Legislative and Tax Measures 

Various legislative and tax measures have been imposed by governments towards 

diverting waste from landfill. One of such measures is the "Pay as You Throw", which is 

a polluter pays principle through which governments have diverted substantial volume of 

waste from landfill across many nations. PAYT is a unit based pricing through which 

charges is paid per unit volume or weight of all waste disposed on a landfill site, with the 

ultimate aim of discouraging waste landfilling and encouraging waste reduction, reuse 

and recycling. Before the adoption of variable landfill tax, other landfill penalties have 

been imposed without success. In the US for example, a fixed billing that does not vary 

with the quantity of waste have been used. However, it did not show a significant 

reduction in waste compared to the PAYT scheme (Skumatz, 2008). Evidence from other 

countries such as Greece, Sweden, Canada, Netherland, Switzerland, and the UK show 

that PAYT scheme substantially reduces the burden on landfill sites (Dahlén and 

Lagerkvist, 2010; Browna and Johnstone, 2014; Morris, 1999). 

 

The variable landfill tax, PAYT, has been used to inculcate reuse and recycling attitudes 

in construction professionals. In the UK for instance, cost per tonnage of waste disposed 

has continuously been upwardly reviewed since it was imposed in 1996, up from £7 and 
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£2 in 1996 (Read et al., 1997), to £84.4 and £2.65 in 2016 per unit tonnage of active and 

inert waste respectively. This has made the industry have a rethink of how waste is 

managed, particularly since financial gains determine the industry's commitment to any 

waste management strategy (Al-Hajj and Hamani, 2008). As such, most construction 

firms have formed an alliance with recycling and waste disposal companies who help in 

segregating and processing waste to divert a substantial portion from landfill sites.  

 

Meanwhile, apart from landfill tax that is aimed at reducing waste to landfill, other 

legislative measures have raised the construction industry’s awareness about waste 

management. These are not necessarily in forms of strategies, but they have helped in 

reducing construction waste. Aggregate Levy introduced in 2001 by the UK government 

imposes a levy of £1.60, up by £0.4 to £2 per tonne since 2009. It was aimed at reducing 

consumption of virgin aggregates thereby encouraging reuse of recycled aggregates. The 

increasing use of recycled concrete could be claimed to the success of the aggregate levy. 

 

Similarly, sustainable design appraisal tools such as BREEAM and Codes for Sustainable 

Homes in the UK and LEED in the US play parts towards waste diversion from landfill 

sites. Different points are allocated for various sustainable building practices, among 

which waste management is considered. The tools have driven sustainable design 

activities within the construction industry as minimum standards are set for building 

design approval and commencement of construction activities. Also, acquisition of 

“outstanding” BREEAM rating or “platinum” level in the case of LEED has become a 

means of competitive advantages for businesses occupying the buildings as well as 

professionals in charge of the projects. Although, higher rank could be achieved by 

concentrating on other sustainable design and construction practices, consideration of 

waste management in such tools has engendered effective waste management. 

 

 

2.6  Framework for Effective Waste Management Strategies  

After analysing the existing waste management strategies, it is clear that each of the 

strategies has its strengths and weaknesses, which could be improved by using one to 

corroborate the other and by building on their weaknesses. Based on the review and 

analysis, a requisite framework of future construction waste management strategy is 
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produced and discussed in this section (See Figure 2.4). The framework does not 

necessarily propose strategies for waste management. Rather, it postulates necessary 

requisite factors that must be considered in waste management strategies to ensure the 

effectiveness of such strategies. 

 
 Multi-dimensional Holistic Solutions 

Project delivery activities are in such a way that steps taken at one stage would affect 

other stages. For instance, an error made during design or scheduling would affect 

construction accuracy, while a delay at one stage would as well affects other stages of the 

delivery processes. However, despite interrelationship and interdependence of the 

activities, most existing waste management strategies consider waste at unitary level 

while its causes and impacts are dynamic (Yuan et al., 2012). This advocate that multi-

dimensional holistic efforts to tackle waste in construction would not only consider the 

dynamic interplay between different causes and impacts of waste, but it would also 

suggest the relative effects of adopting one strategy over the other. Put simply, for a waste 

management strategy to be effective in tackling the enigma of construction waste at both 

economic and environmental level; there is a need for holistic evaluation of what brings 

the waste about, using a dynamic and interdependent approach. It is also expected that 

such solutions provide feedback loops that help practitioners to understand how their 

strategies have reduced waste and enhance profits, thus helping them in benchmarking 

one approach against others. 

 
 Whole-life Consideration 

Causes of waste have been linked to all stages of project delivery process, ranging from 

design to completion. Although the real waste is generated onsite during construction 

activities, various pre-construction operations such as design errors, scheduling mistakes, 

lack of dimensional coordination, etc. have been pointed out as major causes of waste 

(Faniran and Caban, 1998; Ekanayake and Ofori, 2003; Coventry et al., 2001). However, 

existing practices show that different strategies are adopted at various stages of building 

delivery activities. For instance, waste management tools such as WRAP NetWaste are 

used for waste predictive measures at design stage without the capability to assist onsite 

during construction activities. Existing site waste management tools such as the US 
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"Waste Spec" and the UK "Smart Waste" only consider onsite waste, suggesting 

inadequacy of current solutions in tackling preconstruction causes of waste. 

 

The dynamism of construction activities and increasing collaborative efforts between 

designers, suppliers and contractor, suggests the need for a holistic strategy that would 

consider not only all stages of project delivery but also provides guidelines for 

deconstruction at the project’s end of life. By so doing, it would mean that waste 

contributing factors have been prevented during preconstruction activities while 

frameworks for managing construction and post-construction waste are also set. As such, 

future waste management solution is not only expected to consider all stages, its 

capability to predict, monitor and prevent waste is expected to be built on most present-

day waste management strategies which proffer solutions after waste has occurred.  
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Figure 2.4: A Framework of Requisites for Effective Waste Management Strategies 
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 Building Information Modelling Compliance 

The adoption of BIM is becoming commonplace within the construction industry, not 

only because of its collaborative facilities but also because of the industry's shifts towards 

its adoption, as influenced by governments' leads. BIM is a technologically enhanced 

approach that heightens digital representation, storage, management and sharing of 

building information in a way that allows access to the projects database throughout its 

lifecycle. The process aspects of BIM give it more popularity than its software technology 

(Eadie et al., 2013), and its ingenuity is based on its ability to generate adequately 

coordinated project information that augments information management and 

collaboration (Race, 2012; Eastman et al., 2011). BIM tools have become standard design 

and simulation platform in the construction industry. 

 

Meanwhile, the primary challenge of existing waste management tools, such as NetWaste 

in the UK, is the manual input of project geometry and lack of compatibility with basic 

design tools. These result in extra efforts to predict and prevent design-related causes of 

waste. Owing to this, future waste management tools are expected to be BIM compliant 

as the industry practices shift towards full BIM adoption.  Such tools are expected to 

provide a framework of operation within BIM design platform and compatibility with 

several other BIM tools for other design related functions. This would ensure that waste 

prediction and prevention simulation is easily practised as an integral part of building 

design. Equally, to ensure efficient waste prediction and prevention as well as its broad 

adoption within the industry, such tool would automatically map its material database 

with existing BIM database. Its ability to determine the likely waste output of each design 

portion and alternative design options would establish its environmental and economic 

benefits. 

 
 Economic Viability 

Industry practices suggest that the primary driver for adopting waste management 

strategy is the financial cases it could present. Al-Hajj and Hamani (2011) and Oyedele 

et al. (2013) suggest that contractors are more likely to adopt waste minimisation strategy 

if its implementation results in more financial gains than leaving waste to occur. Tam 

(2008) claims that waste management planning is less adopted in Hong Kong 

construction industry as it is believed to reduce productivity rather than increasing profit. 
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Industry practices also show that contractors compare cost of waste minimisation to cost 

of waste landfilling, thereby adopting cheaper option for each project. This means that 

for the industry to implement waste management strategies, its economic cases has to be 

appealing. As such, for any waste management strategy to be adequately adopted and 

effectively used, such strategy would not only be easily implementable, it must have a 

cheaper cost of implementation, which presents more financial gains than the cost of 

waste disposal.  

 
 Legislation Driven 

One of the major factors that shape the construction industry is the national and regional 

legislation. By its nature, the construction industry is one of the mostly regulated 

industries. As planning approval is required before any physical construction activities, 

it means that the project has to fall within the framework provided by the legislation. In 

the UK construction industry, for example, compliance with the provision of Code for 

Sustainable Homes was a requirement for all residential building construction. This had 

driven sustainable building practices as the code became more stringent before its 

provision was incorporated into building regulations in 2015. Before the compulsory 

SWMP was repealed (in December 2013), it has been the industry's standard to prepare 

and monitor detailed SWMP for all projects above £300,000. These practices suggest 

relevant impacts of legislation in driving sustainable practices within the construction 

industry.  

 

However, Osmani (2012) argues that waste management legislation has been practically 

non-existing with respect to design stage, despite the understanding that some causes of 

waste are design related (Faniran and Caban, 1998). Equally, although the repealed UK 

Site Waste Management Regulation (2008) required detailed SWMP, no benchmark was 

set for minimum waste per unit area of projects, thus making it difficult to evaluate the 

success of construction projects in waste management. As the legislation continuously 

drives waste management strategy, it is expected that minimum benchmark is set for 

projects, while the waste preventive standard is also set for design stage.  
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 Design Stage Implementation 

Design stage is a very crucial point for waste preventive measures in construction 

activities. It is no news that change is cheaper at design stage when there would be no 

need for any reworks that would have otherwise led to materials and time wastage. 

Osmani (2012) noted that according to Innes (2004), about 33% of construction waste 

occurs because of design-related factors. This implies that attempts to tackle waste at 

design stage would result in substantial reduction in waste. UK government funded 

WRAP also claims that waste could be designed out in construction projects using some 

set of tactics known as waste spectrums.  

 

Waste management strategy is expected to be implementable at early design stage where 

designers would have the best opportunity to optimise their design and compare different 

design alternatives for waste efficiency. Existing waste minimisation strategies at design 

stage only allows waste prediction on a platform external to design tools, with many of 

the tools lacking functionality for decision support waste reduction measures. A platform 

that allows waste prediction and benchmarking, design optimisation and tendency for 

setting waste target in user interactive and decision support manner could adequately 

assist in achieving waste reduction goals for construction projects. 

 

 

2.7  Chapter Summary  

Construction industry contributes significant portion of the global economy and employs 

large population across the globe. The industry’s outputs, in terms of building and 

infrastructural facilities, are indispensable to sustainable development of global 

economy. However, due to the complex nature and multifarious level of typical 

construction activity, the industry is a major producer of waste to landfill. Also, 

construction activities consume excessive mineral resources. Thus, reduction of materials 

consumption and waste generated by construction activities is indispensable to 

environmental sustainability. Also, evidence also shows that reducing construction waste 

could substantially reduce project cost.  

 

Owing to the need to manage construction waste, several fiscal and legislative provisions 

as well as various research efforts have been made. Research streams in construction 
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waste management include waste quantification and source evaluation, waste reuse and 

recycling, waste minimisation and prevention, BIM-based studies, and waste prediction. 

Similarly, as a means of minimising global pollution and CO2 emission associated with 

waste landfilling, as well as to enhance financial benefits that could accrue from 

adequately managing waste, several waste management strategies have been adopted 

over the years. These among others include waste reuse, sorting and recycling, legislative 

and tax measures, design for flexibility and deconstruction, site waste management plan 

and waste prediction techniques. However, most of the strategies proffer solutions to 

waste after it occurs, despite the fact that the best strategies for tackling waste are 

preventive in nature. Equally, while it is clear that waste is best addressed at design stage 

when cost of change is minimal, the existing strategies are mostly implemented at 

construction stage. Few current design-stage waste prediction and prevention tools are 

majorly external to design tools. Worst still, as governments set waste minimisation 

targets to protect the environment, industry practitioners are only motivated if waste 

management strategy is cheaper than waste landfilling. 

 

The analysis suggests that for any waste management strategy to reduce waste to landfill, 

it must consider six requisite factors. These include multi-dimension holistic solutions, 

whole life consideration, building information modelling compliance, economic 

viability, legislation driven and design stage implementation. Consideration of the 

requisite framework would not only ensure that comprehensive waste management is 

developed; it would mean that such strategy is extensively adopted in the industry.  
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CHAPTER 3: THEORETICAL BACKGROUND FOR 

THE STUDY 

 

3.1 Chapter Overview 

Koskela (2000) explicitly illuminates functions of existing theories in research, by 

pointing out that as theory assist in understanding and explaining an observed behaviour, 

it serves as a valuable tool in predicting likely direction of future behaviour. When 

properly postulated, theory provides a common framework, which coordinates people in 

collective undertakings (Dubin, 1978). As such, theory is a valuable tool that condenses 

a knowledge area, thus allows novice to carry out things that only experts could have 

done. Whether validity of theory is tested or it is used to influence further studies, it 

provides strategic framework for ensuring continuity of learning and knowledge 

development. 

 

One of the distinctive features of a developed field of study is existence of well-

established theory upon which its practices is based (Seymour et al., 1997). Placement of 

theory in research is a hallmark of academic maturity in a field of study (Hauser, 1988). 

However, as elusive as it might seem, the field of project management in its entirety 

(Koskela and Howell, 2002), or construction management (Ibrahim et al., 2010) lacks 

generally acceptable theories that could be pinpointed as its underlying theory. Studies 

and literature within the field usually start with description of construction project or the 

problems intended to be solved, thus lacking significant theoretical or conceptual analysis 

at the onset (Ibrahim et al., 2010). In the same vein, existing theories are usually limited 

to a small sector of the field, thereby lacking vigour for wider applicability. 

 

Koskela (2000) however argues that theory formulated in a particular setting have 

tendency of being applied in another setting. Love (2002) also stress that when 

developing a theory, it is crucial to integrate theories from other bodies of knowledge. 

This buttresses the fact that as generally acceptable theories are lacking in the field, there 

is propensity that theories from other fields of study could be properly channelled to 

understand and predict behaviours within the field of project management in general or 

design and construction management in particular. It is on this basis that this chapter is 

dedicated to a review of existing theories found relevant to the focus of this study, with 
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intent of channelling them to fulfil the goals of this study. As such, the next sub-sections 

review the identified theories as well as their applicability in developing cutting-edge 

waste management strategy.  

 

 

3.2 Review of Pertinent Theories 

Several theories on construction, behaviour and management were evaluated for their 

relevance to both methodological and theoretical basis for the study. While many theories 

tend to contribute to construction management practices in general, those theories that 

are found particularly relevant to either methodological or theoretical issues in 

construction waste management are reviewed in this section. The section considers the 

theory of waste behaviour, competency theory, Lean production theory and dynamic 

system theory as the theoretical background to the study. Figure 3.1 depicts the theoretical 

lenses for the study. The dynamic system theory offers methodological insights for 

adopting holistic approach for addressing waste generated by construction activities. In 

line with its philosophy of optimising production processes for waste minimisation, the 

lean production/construction theory provides dimensions for investigating underlying 

processes for construction waste minimisation. The theory of waste behaviour suggests 

human and behavioural dimensions for addressing waste, while competency theory 

advocates for capacity building as a strategic approach for mitigating construction waste.   

 

 

Figure 3.1: Theoretical lenses for the study 
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 Theory of Waste Behaviour   

Teo and Loosemore (2001) were credited for significant contribution of theory within the 

context of construction waste management. Theory of waste behaviour is an important 

theory that explains waste attitude among construction professionals, towards identifying 

both impediments and strategic solution to preventing wasteful attitude within the 

construction industry. Built on theory of planned behaviour (Azjeb, 1993), the theory 

identified attitudes, subjective norms and perceived behavioural control as three main 

components of behavioural intention that constitute actual waste behaviour of 

construction operatives.  

 

As Teo and Loosemore (2001) argued, attitudinal causative of waste behaviour includes 

belief that waste is inevitable, scepticism of waste reduction, few or no incentives, and 

poor knowledge of waste management. Perceived behavioural control factors are time 

pressure, cost pressure, lack of waste facilities and poor market for waste materials among 

others. Subjective norms causative of waste behaviour, according to the theory, are 

wasteful culture in the industry, lack of clear policies, low waste priority, lack of waste 

diversion target, etc. Overall, the theory suggests that operatives have great sense of waste 

inevitability and that they are unlikely to take waste management strategies important, 

particularly since they believe waste is managers' problems. 

 

Meanwhile, apart from the theory being centred on waste management, its contribution 

in achieving effective waste management strategy is enormous. Similar to findings by 

Lingard et al. (2000), it understands the fundamental roles of top management in ensuring 

cultural change towards waste management. It also introduced the behavioural dimension 

to construction waste mitigation. This implies that in order to proffer solutions to 

construction waste generation, human and attitudinal factors should be adequately 

considered. In order to ensure broad adoption and effectiveness of any proposed waste 

management strategies, the building operatives and all members of supply chain should 

be duly involved. 

 
 

 Theory of Lean Production/Construction  

Lean production theory is a philosophy that categorised all non-value added production 

activities as wasteful, thus the need for their elimination in the process. Its underlying 
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principle is to eliminate/avoid all categories of waste, be it time, space, human resources 

or materials that do not contribute to the value and quality of finished products.  With its 

origin in Japanese manufacturing industry (Bartezzaghi, 1999), Lean production system 

was popularised by Toyota, having developed their manufacturing system in conformity 

with Lean principles (Salem et al., 2006). The Lean production theory that eventually 

serves as the underlying principle for Toyota Production System (TPS) was developed 

by Toyota engineer Ohno (1988) based on earlier work of Monden in 1983. 

 

TPS was characterised by four main elements, which are Just-in-Time (JIT), 

autonomation, workforce flexibility, and creative thinking (Salem, 2006). JIT is based on 

arrangement that units should only be made available when needed. Autonomation is a 

cost and quality management measure that ensures prevention of defects in products and 

removal of defective materials in the production process.  Workforce flexibility allows 

company to organise their workforce based on level of demand for their products, using 

standard operation and multifunctional layout design (Yang and Peters, 1998). Creative 

thinking involves continuous improvement of production process through feedback and 

support, in order to prevent defects. 

  

Within the framework of Lean production, Ohno (1988) identified overproduction, 

reworks, materials movement, processing, inventory, waiting/delay, and unnecessary 

motion as seven categories of waste, which are to be eliminated for quality assurance, 

cost reduction and respect for humanity (Salem, 2006). While adding "goods and services 

that do not meet customer needs" as the eighth category of waste, Womack and Jones 

(1996) introduced five principles of Lean production. The principles include specification 

of value, identification of steps in value system, creation of smooth flow, customers pull 

system, and pursuit of perfection in the process. They reiterated that along with 

characteristics of Lean production established by Monden (1983) and Ohno (1988), these 

principles are the core features of Lean system. 

 

Lean construction is grounded in Lean production process as a philosophy that helps in 

improving efficiency of construction process by reducing waste and providing values to 

clients. Koskela (2000, 2004) argues that although construction differs from production 

process due to uniqueness of its individual products and its static products, among others, 

the seven categories of waste exist in construction operation. According to Koskela 
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(2004), construction activities usually involve eight category of waste known as “make-

do waste”, which is described as waste that occurs when construction activities started 

without complete project documentation.  

 

Application of Lean production theory has attracted significant research efforts, which 

resulted in what is now known as Lean construction theory. Tommelin (1998) stressed 

that the development of Lean construction theory was due to complexities in direct 

application of Lean production theory into construction process.  For instance, while 

managing the combined effects of variation and dependence is the first goal in Lean 

production, the goal of construction project is to meet customer's need in timely manner 

(Howell, 1999). Nonetheless, effect of variation and dependence in project supply chain 

is paramount when the concept of Lean is applied to construction projects. This is 

expected to call for a rethink of how work is distributed and how procurement is 

organised, to ensure timely project delivery, while avoiding waste. 

 

Salem et al. (2006) describe basic tenets of Lean system that makes up Lean construction. 

Flow variability concept would assist in preventing lagging, which could otherwise affect 

other project activities. They stress that adoption of "Last Planner" technique, involving 

investigation and prevention of factors that could bring delay (Ballard and Howell, 2003), 

would assist in applying the valuable concept of Lean production in construction 

activities. Although it is very hard to use autonomation as practised in production process 

owing to difficulty in finding defects before actual construction, the concept could be 

focused on defect prevention during construction activities (Salem et al., 2006). This 

would prevent waste due to rework, a major source of waste in construction. In the same 

vein, the concept of transparency ensures that waste is eliminated through standardisation 

(Moser and dos Santos 2003). This would ensure transparent job site through effective 

and adequate materials flow that involve the use of innovative visualisation techniques.   

 

Despite the claim that there are missing links between overall Lean theory and 

construction activities (Green, 1999; Shah and Ward, 2007), its application in 

construction process is a means of identifying and eliminating activities that lead to waste 

generation. Its different categories of waste point to the new dimension by which waste 

should be considered in construction. Likewise, application of its basic elements (JIT, 

autonomation, workforce flexibility) and principles in case study projects shows 
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reduction in project cost and earlier project delivery (Salem et al., 2006). Thus, in 

developing waste management approach, consideration of Lean principles and its waste 

categories could enhance waste mitigation. 

 

 Competencies and Competency-Based Framework 

Due to diverse philosophical approaches used in its studies, the term competency has 

been used to mean different but similar things across several studies (Zemke, 1982). 

According to Spencer and Spencer (1993) however, competency refers to a set of skills, 

abilities and individual characteristics that have causative influence on effective job 

performance. Competency is taken as "a descriptive tool that identifies the skill, 

knowledge, personal characteristics and behaviour needed to effectively perform a role 

in the organisation and help the business meet its strategic objectives" (Lucia and 

Lespinger, 1999, p.5). Holtkamp et al. (2015) also defined competency as a set of 

abilities, skills and attitudes required for solving problem in a particular context. This 

description strongly suggests that competency is context-dependent, and it could vary 

from one job role to another. It covers observable and testable abilities such as skills and 

knowledge, as well as those that are less obvious such as personal characteristics and 

qualities (Vazirani, 2010). 

 

Suggesting competency as an effective measure for predicting workplace success, 

McClelland (1973) is credited with the notion of competency-based measures rather than 

using IQ test as a yardstick for recruitment and training (Getha-Taylor, 2008). Since 

McClelland’s work, competency has attracted significant research efforts leading to 

development of various forms of competency models. According to Dubois (1988), 

competency models are in four categories, which are organisational, occupational, 

job/functional/role and leadership competency models. This is in line with the claims of 

Spencer and Spencer (1993) who argue that competency models could be developed for 

specific job role, organisation, job groups, occupation or industry.  

 

Built through a process of continuous development, organisational competency addresses 

the capability required for achieving a competitive business advantage. Resource based 

view (Wernerfelt, 1984), core competency theory (Prahalad and Hamel, 1990), and 

dynamic capability theory (Teece et al. 1997) are examples of competency models in this 
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perspective. Occupational competency models, such as OCM by Shaw and Polatajko 

(2002), cover critical skills and capacity required for broad occupational areas such as 

engineering and medicine among others. Leadership competency models address set of 

competencies required of leaders to articulate coherent vision and translate them into 

reality by effectively directing and managing employees towards achieving 

organisational goals. Adair's action-centred leadership model (Adair, 1973) and Hersey-

Blenchard model of leadership (Hersey et al., 1988) are examples of models developed 

in this perspective. Job competency models, on the other hand, seek to capture a set of 

skills that are specific to a job role or work unit within an organisation. Examples of these 

include task-contextual model (Motowildo et al., 1997), Boyatzis' model of effective job 

performance (Boyatzis, 1982) and Iceberg Model (Spencer and Spencer, 1993), which 

seek to develop foundation for recruiting suitable employees and developing training for 

achieving effective performance. 

 

The overall occupational role of a designer is not to design out waste; it is rather a 

functional role or work unit. As such, job or functional competency models such as task-

contextual, Iceberg and Boyatzis' model are suitable for identifying and developing skill 

sets and competencies required for designing out waste. Built on McClelland's Mcber job 

competency framework, Boyatzis (1982) argue that competency is a mix of different 

measures such as personal traits, motivation, knowledge and skill, all of which could be 

evident in job action, job performance, behaviour and relationship with others. While 

skills and knowledge are the generic competencies that a person brings to a job role, 

social roles and behaviour could be categorised as competence if they directly influence 

job performance. 

 

Just like an Iceberg, which has about one-ninth of its volume above water, Iceberg theory 

posits that competency is partly determined by visible features, while hidden features 

have a great impact on job competency. Spencer and Spencer (1993) argue that 

knowledge and skill are at the tip of competency iceberg, while self-concept, trait and 

motives are deeper down in the hidden part of the iceberg. Although the features at the 

bottom are difficult to measure, the model posits that they contribute about 80% of job 

competency, while skill and knowledge contribute the rest. Skill and knowledge refer to 

observable abilities required for a job position; while self-concept, trait and motives are 

more personal, attitudinal and could be likened to what Motowildo et al. (1997) refer to 
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as contextual competencies. Drawing on the strengths and weaknesses of these sets of 

job competency theories, task-contextual theory is adopted for this study.  

 

Originally proposed by Motowildo et al. (1997), task-contextual competency model posit 

that job performance and effectiveness are determined by individual differences in task 

and contextual abilities, each of which is made of knowledge, skills and work habits. 

Whereas task competencies are individual's proficiency in activities contributing to the 

technical core of an organisation or job role, contextual competencies do not constitute 

the functional core but support organisational, psychological and social environment 

within which its goals are pursued (Motowildo et al., 1997). Task performance is the 

technical core, which is done by executing technical requirements of the job. Contextual 

competencies are personality, behaviour and motivation related, and is more 

discretionary or supportive in nature. It also involves ability to cooperate, work with, or 

assist others towards achieving collective organisational goals. The notion of teamwork, 

interpersonal facilitation and adherence to organisational goal are all contextual (Ahadzie 

et al., 2014). 

 

Task-contextual theory suggests that a good approach to determining competencies 

required for a job role is to understand task and contextual requirements of the job. This 

would result into six categories of performance, which are task skill, task knowledge, task 

habit, contextual skill, contextual knowledge and contextual habits. Also, the theory is 

divided into cognitive ability, which has more to do with task performance, and 

personality variable, which is more related to contextual performance. The theory, 

however, predicts that personality variables might have effects on task performance, 

while cognitive ability could also be related to contextual performance. In particular, 

personality traits tend to affect task habit, as cognitive ability could have an impact on 

contextual knowledge. Thus, the task-contextual competency model provides a 

theoretical framework for exploring and analysing competencies required for effective 

waste performance throughout the whole process of project delivery. 

 

 Dynamic System Theory 

Over the last few decades, scientists have embraced new dimensions in studying the 

patterns by which systems are interrelated and ordered. This focussed attention of 
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scientists on dynamic system, which is an approach where both causes and effects are 

transformed into one another, rather than studying them as independent entity (Seligman, 

2005). The dynamic system is rooted in such fields as mathematics, physics, chemistry, 

biology, philosophy, etc. (Hohenberger, 2002), and it is associated with such tenets as 

chaos theory, non-linear system, self-organisation, and dissipative system (Marin and 

Peltzer-Karpt, 2009). The term dynamism describes a phenomenon producing time 

chasing pattern in such a way that characteristics of the pattern products at different times 

interrelated with one another (Luenberger, 1976). The dynamic system incorporates 

powerful tools that support modelling and conceptualization of both real and 

developmental time (Hohenberger, 2002). 

 

The Dynamic System Theory (DST) is underpinned by an assumption that "every action 

at every moment is the emergent product of context and history, and no component has 

causal priority" (Thelen, 2005:271). It seeks to encompass all possible input for a system 

to handle both the predictable aspect of every process and those that could be surprising 

(Thelen, 2005). Generally, DST attempt to describe and depict the nature of relationship 

existing among various components of a whole phenomenon in such a way that they can 

inform solutions and predictability of complex system. 

 

Dynamic system theory has successfully transformed several scientific paradigms 

(Spencer-Wood, 2013; Lerner, 2006; Lowie, 2012) so much that application of its 

concepts to construction waste has been widely advocated (Yuan et al., 2012; Hao et al., 

2008; Love et al., 2000; Ye et al., 2012). Detail recognition and critical understanding of 

the way waste is generated remains a seemingly insurmountable task. This is because 

many solutions often focus only on regular, recurring and static pattern (Yuan et al., 

2012), thereby disregarding irregular and dynamic patterns, which are capable of 

proffering holistic waste management solutions. Sterman (1992) argues that 

multidimensional activities, such as construction operations, usually involve complex 

processes that stress beyond shallow and fallible capacity of both mental and static 

models. It requires the use of dynamic based models, which are underpinned by dynamic 

system theory, in order to compile the logical sequence, and incorporate various 

interrelated activities usually involved in construction operations. 
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Love et al. (2000) similarly noted that a mistake made in design could result in errors in 

procurement and construction, thereby leading to rework and subsequent waste 

generation. It is, therefore, important that construction project lifecycle is evaluated from 

system perspective in order to develop causal loops and feedback system of such 

interdependent processes. This could help in understanding impacts of one activity on the 

others, as well as on the overall project outcome. Thus, application of system approach, 

as underpinned by the system theory, would enhance adequate understanding of dynamic 

impacts of various activities on waste efficiency of construction projects. 

 

 

3.3 Implication of the Theories for the Study 

Critical review and analysis of pertinent theories have raised both theoretical and 

methodical issues that are central to this study. The theories have provided useful insights 

that shape both the scope and assumptions of the study. While the dynamic system theory 

has pinpointed the need to consider the design, procurement and construction stages as a 

single system for waste mitigation, others have raised issues about measures to be 

considered. For instance, the theory of waste behaviour does not only propose an 

adequate consideration of behavioural and human factors in waste management; it 

suggests the need to involve all stakeholders in developing measures for waste mitigation. 

The Lean theory, on the other hand, provides a complete school of thought on how 

construction waste could be adequately tackled at both materials and process levels. The 

theory does not only identify different categories of waste that must be addressed in waste 

management strategies, but it also offers principles that are proved useful for identifying 

and eliminating activities that induce waste. As such, the theory advocates process 

efficiency as a means of engendering waste effectiveness of construction projects. 

 

The competency-based framework provides a framework for exploring and analysing the 

various forms of skills and competencies required for driving waste at various stages of 

project delivery process. It offers an approach for identifying the various dimensions and 

underlying skills towards tailoring training and personal development for waste-effective 

projects. Thus, to proffer effective solutions to multidimensional and dynamic-natured 

problems associated with design, procurement and construction stages, the relevance of 

dynamic system theory could not be over emphasised. As such, while other theories offer 
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useful insights that would shape the scope and methodological approach of the study, the 

dynamic system theory underpins the dynamic approach to the study. This informs the 

use of dynamic system modelling and its subsequent stages of application in proposing 

holistic construction waste management solutions. Figure 3.2 depicts the theoretical 

background to the study.  

 

 
Figure 3.2: Theoretical Background to the Study 

 

 

3.4 Chapter Summary 

This chapter provided theoretical lenses to the study of construction waste minimisation 

strategies. It reviewed theories that provided various perspectives and methodological 

insight to the study. While the theory of waste behaviour, Lean construction theory and 

competency theory offered different dimensions from which the study could be 

approached, the dynamic system theory provided a holistic methodological approach for 

investigating construction processes. The relevance of each of the theoretical lenses is 

evaluated in the chapter. 
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CHAPTER 4: SYSTEMATIC REVIEW OF STRATEGIES 

FOR CONSTRUCTION WASTE MINIMISATION  

 

4.1 Chapter Overview 

Notwithstanding the interrelationship and interdependency of every stage of building 

delivery process, most waste management studies have addressed waste from unitary 

perspective. This usually results in stage-based solutions that lack consideration of the 

interrelationship and dynamic impacts of one stage on the other. It instigates the need to 

produce a coherent, comprehensive and holistic framework of factors affecting waste that 

aggregate existing studies and integrate all stages of construction projects. Meanwhile, 

the robustness of waste management strategy in achieving waste-efficient projects 

depends on the level of awareness of waste preventive approaches while developing such 

solution. In a bid to produce a holistic strategy for driving waste-efficient construction 

projects, this chapter delves into existing waste management literature towards compiling 

and analysing factors impacting waste. The next section describes the approach used in 

identifying all the factors, while section 4.3, 4.4 and 4.5 itemised and analysed design, 

procurement and construction factors affecting waste in construction projects. Section 

4.6 summarises and culminates the chapter. 
 

 

4.2 Identification of Strategies for Waste Minimisation 

The aim of this chapter is to identify and categorise waste-efficient measures that should 

be well thought out and adequately considered, throughout all stages of project delivery 

process. As such, the presentation in this chapter requires identification, scrutiny and 

analysis of extant literature that are relevant to the scope of the study. To achieve a 

comprehensive understanding of the existing waste-efficient practices, literature retrieval 

process was carried out on two major citation indexing platforms (Wu et al., 2014), which 

are Engineering Village and Web of Knowledge. The databases included in the search 

were Compendex, GEOBASE, Web of Science, BIOSIS, MEDLINE and SciELO 

without any restriction for the year of publication. 

 

Also, SC Imago was used to identify top “waste management and disposal” journal in 

order to carry out a search on their database. “Waste management” and "Resources, 
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Conservation and Recycling" were selected after a quick evaluation of scopes of the first 

ten journals on the list. Based on the recommendation in a study by Lu and Yuan (2011), 

the database of a third journal with wide publications on Construction and Demolition 

Waste Management, "Waste Management and Research” was also searched. To 

corroborate the identified papers, relevant publications by the UK government-funded 

Waste and Resource Action Programme (WRAP) were included. Keywords used for 

searching the databases and journal repositories include waste-efficient, waste 

management strategies, reuse, recycling, waste minimisation, waste prevention, design 

and waste, procurement and waste, construction waste and causes of waste, among 

others.  

 

Studies based on domestic waste, radioactive waste and other types of waste than 

construction waste were excluded in the search result. In addition, papers that discuss 

non-physical/non-materials waste were not included in the study. To ensure robustness 

of the review process, reference lists of the identified papers were manually scanned to 

check for relevant papers that may not have been found in the initial search. The papers 

were read through to identify the design, procurement and construction strategies for 

mitigating waste.  
 

 

4.3 Design Factors Impacting Waste in Construction Projects 

Osmani et al. (2012) and Faniran and Caban (1998) suggest that most waste management 

studies tend to concentrate on construction stage while evidence shows that construction 

waste could be significantly reduced by taking care of several design factors that tend to 

impact waste (Ekanayake and Ofori, 2004). The earlier a change is implemented in a 

project lifecycle, the more its positive impact, and the less the cost of such change. This 

concept is similarly applicable to dedicated effort towards waste management. The earlier 

such effort, the more likely it would prevent waste occurring at a later stage. As such, the 

importance of design in minimising waste could not be over emphasised. 

 

Ekanayake and Ofori (2004) and Osmani et al. (2008) argue that the best approach for 

tackling waste is through dedicated efforts at the design stage of building delivery 

process. Innes (2004) also claimed that dedicated measures to reduce waste through 
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design process could reduce total waste by up to a third. Based on these, and in order to 

understand the procedural approach to designing out waste through dedicated design 

effort, this section presents findings of the literature review that seek to aggregate the 

design factors capable of influencing waste in construction projects. The section provides 

a comprehensive list of factors and strategies relevant for effective prevention and 

management of waste at the design stage of project delivery process. Based on strong and 

repetitive emergence of certain terminologies from the literature, the factors were 

grouped into five categories, which are: 

• Design team attributes and competencies 

• Design documents quality 

• Efficacy of the design process 

• Buildability/constructability criteria in design 

• Responsive design and deconstructability thinking  

 

 Design Team Attributes and Competencies 

Attributes, competencies and dedication of designers and design management team are 

important in achieving low waste construction projects. Apart from design stage being a 

crucial stage for waste preventive effort, adverse environmental impacts of construction 

activities have been widely blamed on designers (Sassi and Thompson, 2008; 

Mansikkasalo et al., 2014). For instance, Oyedele at al. (2014) claim that there is still low 

acceptance and use of recycled products within the construction industry due to a low 

commitment from designers who drive materials selection and sustainability practices 

within the industry.  Table – 4.1 presents list of design team attributes and competencies 

that, if well thought out, would enhance waste effectiveness of projects. 
 

Table 4.1: Design Team Attributes and competency factors influencing waste 

Factors/Strategies References in Literatures 

  
Technical Competencies 

1 Design for standard materials supplies Ekanayake and ofori (2004); Al-Hajj and Iskandarani 
(2004) 

2 Ability to produce error-free documents Dainty and Brooke (2004) 

3 Careful dimensioning of design to avoid cutting to 
fit Faniran and Caban (1998) 

4 Careful attention to detail at planning/design Faniran and Caban (1998) 
5 Knowledge of construction method/sequence Alshboul and Ghazaleh (2014) 

6 Awareness and use of standard detail and 
specifications Andi and Minato (2003) 
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Factors/Strategies References in Literatures 

7 Ability to produce proper site layout planning Tam (2008); Yuan (2013b) 
8 Clear and comprehensive information Baldwin et al. (2007) 

  
Awareness of Materials Attributes 

9 Knowledge/specification of secondary materials Osmani et al. (2008); Wang et al. (2014) 

10 Identify all reusable elements and integrate them 
into design Begum et al. (2009); WRAP (2009) 

11 Specify durable materials to avoid early 
refurbishment Esin and Cosgun (2007); Yuan (2013b) 

12 Specify available, suitable and compatible materials Andi and Minato (2003) 
13 Knowledge of alternative materials option Alshboul and Ghazaleh (2014)  

  
Commitment to Low Waste Projects  

14 Feasibility studies of waste estimation techniques  Osmani et al. (2008) 

15 Adequate training to gain required competencies 
and experience  

Mckechnie and Brown, (2007); Nagapan et al. (2013); 
Lu and Yuan (2010) 

16 Drawings and other documentations are timely 
supplied when required 

Andi and Minato (2003) 

17 Environmental impact assessments of the scheme 
during the design phase 

Yeheyis et al. (2013); Dainty and Brooke (2004); Tam 
(2008) 

18 R&D into best WM approaches Lu and Yuan (2010) 

19 Consideration of different design options based on 
their likely waste output  

del Río Merino et al. (2010) 

 

 

 Design Documents Quality/Attributes 

The quality of design documents has great impacts on overall effectiveness of the build 

process (Andi and Minato, 2003; Gann et al., 2003). The extent to which attention is 

given to detail, as well as completeness of the whole documents, would affect waste 

output of a project. This is because; design documents do not only affect buildability of 

the project, its comprehensiveness and accuracy would go a long way in preventing errors 

that could lead to reworks (Formoso et al., 2002). In this regards, quality and attributes 

of design documentation, with respect to waste minimisation, have been established in 

two categories. These include accuracy of the design documents and 

adequacy/comprehensiveness of the documents. Table 4.2 presents a list of design 

documents attributes capable of influencing waste in construction projects. 
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Table 4.2: Design Document Attributes Impacting Waste 

Factors/Strategies References in Literatures 

 
 
Accuracy of design information 

1 
Drawing documents are free of errors that could 
otherwise lead to reworks  

Osmani et al. (2008), Andi and Minato (2003) 

2 
Detailed specification devoid of under/over ordering  Begum et al. (2007); Oyedele et al. (2003); Domingo 

et al. (2009) 

3 
Designs from all trades are adequately 
coordinated/integrated 

Al-Hajj and Hamani (2011); Andi and Minato (2003) 

4 Drawings and other documents are legible  Ekanayake and Ofori (2004); Baldwin et al. (2007) 
5 Consistency in detailing language/format  Osmani (2013) 

 
 

Comprehensiveness of the documents 

6 
Waste management plan to be prepared along with 
design 

Garas et al. (2010); Oyedele et al. (2013) 

7 
Deconstruction plans as a major element in the design 
documents 

Oyedele et al. (2013)  

8 
Completeness: Adequate design information for 
subsequent businesses  

Negapan et al. (2013); Alshboul and Ghazaleh (2014); 
Khanh and Kim (2009) 

9 
Bar bending list is carefully prepared as part of 
documentations 

Al-Hajj and Hamani (2011) 

 

 

 Efficacy of Design process 

The way the design process, contract and the design team are coordinated have effects on 

waste generated at the construction stage of project delivery. The efficacy of design 

process determines the extent to which various specialities are coordinated, level of 

communication between parties as well as stakeholders' meetings, all of which are found 

to be important to waste prevention (Ikau et al., 2013; Al-Hajj and Hamani, 2011). Design 

process factors that are capable of impacting waste efficiency of construction projects are 

presented in Table 4.3. 
 

Table 4.3: Design Process Factors Affecting Waste in Construction 

Factors/Strategies References in Literatures 

  
Coordination of Design Contracts  

1 Careful Coordination of contract documents to prevent error  Osmani et al. (2008) 
2 Early completion of contract documents before construction  Osmani et al. (2008)  
3 Ensure design freeze at the end of design process  Oyedele et al. (2013); Negapan et al. (2013) 
4 Involvement of contractors at early stage  Oyedele et al. (2013) 
5 Clearly specified project goal to avoid flawed planning/design  Faniran and Caban (1998) 
6 Pre-design meetings of key stakeholders  Oyedele et al. (2003) 
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Factors/Strategies References in Literatures 

7 Early collaborative agreement before design activities Osmani (2013) 
8 Economic incentives and enablers Wang et al. (2013); Osmani (2013) 
9 Include waste management into assessment of stakeholders  Yuan (2013b) 

  
Coordination of Design Documents/Teams 

10 Adequate Coordination of various specialities involved in the 
design process Ikau et al. (2013) 

11 Timeliness: Early distribution of design documents  Negapan et al. (2013) 
12 effective coordination of parties during the design stage Negapan et al. (2013)  
13 Design management to prevent over specification of materials  Alshboul and Ghazaleh, (2014) 

14 Adequate communication between trades  Al-Hajj and Hamani (2011); Domingo et al. 
(2009); Oyedele et al. (2003); Osmani (2013) 

15 Adequate implementation of sustainable building assessment 
procedure  

Tam (2008); Yeheyis et al. (2013); Andi and 
Minato (2003) 

16 Drawings and other details are adequately coordinated between 
design discipline  Al-Hajj and Hamani (2011); Yuan (2013b) 

 

 

 Buildability/Constructability Criteria  

Improved buildability of design is not only required for early project completion and 

resource efficiency among others (Lovell, 2012), it is a proven way through which 

construction waste could be reduced (Yeheyis et al., 2013; Yuan, 2013b). By adopting 

modern method of construction and other low-waste technologies, complexities that 

result in waste could be reduced. Factors that directly affect buildability of design, which 

could subsequently reduce waste outputs, are presented in Table 4.4. Based on evidence 

from extant literature, the measures are categorised under two headings, which are 

Modern Methods of Construction (MMC) and Standardization and Dimensional 

Coordination. 

 
 

Table 4.4: Buildability/Constructability Criteria Impacting Waste 

Factors/Strategies References in Literatures 

 
Design for Modern Methods of Construction 
1 Specification of prefabricated materials Yuan (2013) 

2 Modular coordination of building elements Formoso et al. (2002); Oyedele et al. (2003) 
3 Design for preassembled components  Kozlovska & Splsacova, (2013); Formoso et al. (2002) 

4 Specify the use of efficient framing techniques  Osmani et al. (2008) 

5 Employ Modular design principles  Wang et al. (2014); Baldwin et al. (2007); Esin and 
Cosgun (2007) 
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Factors/Strategies References in Literatures 

6 Design with buildability/constructability of the 
project in mind  

Yeheyis et al. (2013); Yuan (2013b); Oyedele et al. 
(2003) 

 
Standardisation and Dimensional Coordination 
7 Careful integration of building sub-system  Formoso et al. (2002) 

8 Ensure simplicity and clarity of detailing  Ekanayake and Ofori (2004); Domingo et al. (2009) 

9 Design for standard dimensions and units  Osmani et al. (2008) 
10 Standardise building forms and layout WRAP, (2009); McKechnie and Brown (2007);  

11 Ensure drawings consider and integrate site 
topography and existing utilities 

Yuan (2013b); Andy and Minato (2003); WRAP 
(2009) 

12 Dimensional coordination and standardisation of 
building elements 

Dainty and Brooke (2004); Baldwin et al. (2007); 
WRAP (2009) Ekanayake and Ofori (2004); Alshboul 
and Ghazaleh, 2014);  

13 Optimize tile layout in conformity with design 
shape  WRAP (2009) 

14 Use full height door or door with fanlight to avoid 
cutting plasterboard  WRAP (2009) 

15 Standardise doors, windows and glazing areas WRAP (2009) 

16 Avoidance of overly complex design Domingo et al. (2009); Yuan (2013b) 

17 Ensure adequate detailing of complex design  Negapan et al. (2013); Ekanayake and Ofori (2004); 
Baldwin et al. (2007); Yuan (2013b) 

18 Coordinate structural grid and planning grid  WRAP (2009) 
 

 

 Responsive Design and Deconstructability Thinking  

The extent to which design and construction technique is responsive to change, and how 

well deconstructability has been incorporated into the design, determine waste impacts 

of the design. Factors that could enhance responsivity and deconstructability of design 

are in three categories, which are design for ease of deconstruction, specification of 

durable materials and design for flexibility and change. Some factors capable of 

influencing responsivity and deconstructability of buildings are presented in Table 4.5. 
 

Table 4.5: Criteria for Responsive design and Deconstructability Thinking  

Factors/Strategies References in Literatures 

 Responsive Design and Deconstructability Criteria   

1 Use of modular system Formoso et al. (2002); Wang et al. (2014); 
Esin and Cosgun (2007) 

2 Designers to produce disassembly and deconstruction plans Oyedele et al. (2013) 
3 Design for changes and flexibility  Yuan (2013b); Mckechnie and Brown (2007) 
4 Specify durable materials to avoid need for early replacement  Esin and Cosgun (2007); Yuan (2013b) 
5 Specify materials and joint system that support disassembly WRAP (2009) 
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4.4 Materials Procurement Strategies for Low Waste Projects 

Percentages of waste generated in construction activities have been traced to ineffective 

coordination of materials procurement activities (Greenwood, 2003; Lu et al., 2011; 

Wang et al., 2008). As the value of construction materials could contribute up to 50% of 

project cost (Kong et al., 2001). It is, therefore, imperative that adequate measures are 

taken to prevent waste that could be due to ineffective materials purchase, delivery, 

handling and storage. However, unlike design and construction related activities that are 

widely investigated for waste efficiency; little efforts have been made to examine how 

procurement activities could be optimised to improve waste efficiency of construction 

projects. Materials procurement factors that are capable of influencing construction waste 

are only available across scattered studies, which usually concentrate on construction and 

design stage of building delivery process. 

 

 Based on the thorough review of relevant literature, some factors were identified and 

grouped into five categories. These sets of measures are:  

• Suppliers/vendors’ attributes 

• Handling and storage measures, 

• Purchase management 

• Delivery management 

• Contractual clauses  

The identified sets of procurement measures are as presented in Table 4.6. 

 

Table 4.6: Materials Procurement Measures for Reducing Construction Waste 

Factors/Strategies References in Literatures 

 Suppliers/Vendors’ Attribute 

1 Procurement route that minimises packaging 
Oyedele et al. (2013); Yeheyis et al. (2013); 
Marinelli et al. (2014); Saez et al. (2013)  

2 Vendors that supply good quality and recycled materials Khan and Kim, (2014); Nagapan et al. (2013) 
3 Flexibility in providing small quantities of materials Dainty and Brooke (2004) 
4 Modification to products in conformity with design Bernold et al. (1991) 
5 Collecting package materials back by suppliers  Cha et al. (2009)  
6 Collecting back recyclable materials  Jingkuang and Yousong (2011) 
7 Enhance management of packaging materials Yuan (2013b) 

8 
Provision for unused materials to be taken away from 
site (take back scheme) 

Negapan et al. 2013; Cha et al. (2009) Al-Hajj 
and Hamani (2011); Bernold et al. (1991). 

 Contractual Factors 
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Factors/Strategies References in Literatures 

9 Waste minimisation clauses in contract documents Osmani (2013) 
10 Consistency in contract documents Domingo et al. (2009) 
11 Resolve contract document before procurement Ekanayake and ofori (2004) 
12 Contract completion before procurement activities Negapan et al. (2013) 
13 Freeze design before procurement processes Osmani et al. (2008) 

14 
Discuss methods of waste minimisation with 
suppliers/sub-contractors 

WRAP (2009) 

 Effective materials management 

15 Procurement and use of preassembled components  Formoso et al. (2001) 
16 Purchase pre-cut materials  McKechnie and Brown (2007) 

17 
Optimisation of Materials Purchase to avoid over/under 
ordering and excess waste allowance 

Hassan et al. (2012); Faniran and Caban (1998); 
Dainty and Brooke (2004); Marinelli et al. (2014) 

18 Purchase repairable, reusable and durable materials  Khanh and Kim (2014); Begum et al. (2007) 
19 Buying materials with reused packaging  WRAP (2009); Faniran and Caban (1998) 
20 Purchase secondary materials and reuse materials  Begum et al. (2007) 
21 Effective materials take-off Nagapan et al. (2013) 
22 Good quality materials to be purchased Nagapan et al. (2013)  

23 
Purchase materials in conformity/adherence to carefully 
prepared specification 

Bernold et al. (1991); Muhwezi et al. (2012) 

24 Avoid frequent variation order Nagapan et al. (2013) 
25 Order material with high content of recycled product  Teo and Loosemore (2001); Cha et al. (2009) 
26 Recycled aggregate to be procured WRAP (2009); Wang et al. (2010) 
27 Use of correct materials, thus preventing replacement  Muhwezi et al. (2012) 

 Effective materials delivery 

28 
Sufficient protection of materials during 
loading/unloading 

Faniran and Caban (1998); Hassan et al. (2012); 
Al-Hajj and Iskandarani (2011) 

29 Good site access for delivery vehicle  Osmani et al. (2008) 
30 Avoidance of loosely supplied materials  Nagapan et al. (2013); Hassan et al. (2012) 
31 Adequate and efficient delivery schedule Marinelli et al. (2014); Khanh and Kim (2014) 
32 Planning for good delivery system onsite Formoso et al. (2001) 

 Waste effective handling and storage 

33 Waste-efficient procurement such as JIT 
Dainty and Brooke (2004); Al-Hajj and Hamani 
(2011); Marinelli et al. (2014) 

34 Vocational training on sorting and handling of materials Yuan (2013) 

35 Improvement of materials handling system  
Oyedele et al. (2013); Adams et al. (2011); 
Faniran and Caban (1998); Hassan et al. (2012); 

36 Suitable and safe storage of materials  
Dainty and Brooke (2004); Al-Hajj and Hamani 
(2011); Ekanayake and Ofori (2004) 

37 Mechanical movement of materials  WRAP (2007) 
38 Logistic management to prevent double handling  Al-Hajj and Hamani (2011); Cha et al. (2009) 
39 Reduce excess of ordered material to avoid breakage Del Río Merino et al. (2010) 
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4.5 Construction Strategies for Waste Minimisation 

Although several pre-construction activities and measures have been traced to waste 

generated in construction industry, the undisputable fact remains that the actual waste is 

not generated until during the construction stage of project delivery. Owing to this, 

various onsite waste causatives and preventives activities have been identified. These set 

of measures spread across both activities that could be carried out to reduce waste output 

of projects as well as the management measures that could be taken towards diverting 

waste from landfill sites. Through a dedicated review of extant literature, some factors, 

activities and measures that could influence waste at the construction stage of building 

delivery process were identified.  The factors are grouped into seven categories of related 

factors. These include: 

 

• Contractors/sub-contractors’ attributes and competencies 

• Contractual arrangement 

• Construction techniques 

• Construction site management practices 

• Industry cultural changes 

• Legislative and fiscal framework 

• Human resources management 

 They are further expatiated and referred in the next subsections. 

 

 Contractors/Sub-contractors’ Attributes and Competencies 

Competencies and readiness of contractors and sub-contractors are very important in 

achieving low waste construction projects. It is important that construction professionals 

are aware of waste preventive and causative activities, while they are also dedicated to 

ensuring low waste in projects. Some competencies and activities that indicate 

competencies and readiness of contractors for low waste projects are as summarised in 

Table 4.7. 
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Table 4.7: Indicators of contractors’ readiness and competencies for low waste projects 

Factors/Strategies References in Literatures 

1 
Improved technical knowledge of construction 
professionals  

Zhang et al. (2012); Oyedele et al. (2003) 

2 
Improved major project stakeholders’ awareness about 
resource saving and environmental protection  

Yuan (2013b) 

3 
Detect the construction activities that can admit reusable 
materials from the construction 

Del Río Merino et al. (2009) 

4 
Carefully planned work sequence to prevent damages to 
previously completed work 

Muhwezi et al. (2012) 

5 
Understanding and adoption of right work sequence and 
technology 

Zhang et al. (2012) 

6 Commitment of contractors’ representatives onsite  Cha et al. (2009) 

7 
Adequate knowledge of construction methods and 
sequence 

Muhwezi et al. (2012) 

8 Cooperation of subcontractors  Cha et al. (2009) 
 

 

 Contractual Arrangement 

Various means through which contractual arrangement could be used to influence waste 

management at the construction stage have been suggested across the literature. While it 

is hard to estimate the actual proportion of waste that could be diverted from those 

measures, evidence shows that contractual clauses could help in significantly reducing 

waste generated by construction activities (Dainty and Brooke, 2004). Table – 4.8 shows 

a list of contractual provisions that could assist in waste mitigation efforts.  
 

Table 4.8: Contractual provisions for waste-efficient projects 

Factors/Strategies References in Literatures 

1 Contractual clauses to penalise poor waste performance  Dainty and Brooke (2004) 
2 Making sub-contractors responsible for waste disposal  Domingo et al. (2009) 

3 
Incentives and penalties for waste management and 
casualties respectively  

Adams et al. (2011); Li et al. (2003); Al-Hajj and 
Hamani (2011)  

4 Waste target set for sub-trades Marinelli et al. (2014) 

5 
Incentive in bidding for a contractor having a plan about 
decreasing waste and increasing recycle  

Jinkuang and Yousong (2011); Cha et al. (2009) 

6 Clearly communicated waste management strategies Teo and Loosemore (2001) 
7 Additional tender premiums for waste management Dainty and Brooke (2004) 
8 Recycling target to be set for every project  Oyedele et al. (2013) 
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 Waste Effective Construction Techniques 

Construction methods and coordination are important measures in addressing waste 

effectiveness of a construction project. Jaillon et al. (2009) argue that use of precast 

materials could reduce waste output by up to 84%. Other low-waste technologies or 

modern methods of construction are also proven to reduce construction waste 

significantly (Poon et al., 2003). Table – 4.9 itemises a list of construction techniques and 

factors that support waste-efficient project. 
 

Table 4.9: Construction techniques for low waste projects 

Factors/Strategies References in Literatures 

1 Use of reclaimed materials  Domingo et al. (2009) 
2 Use of appropriate and quality equipment  Khanh and Kim (2014); Zhang et al. (2005) 
3 Use of hanging cradle  Poon et al. (2003) 
4 Reduced use of wet trades Baldwin et al. (2007) 
5 Use pallet for landscape top mulch WRAP (2009) 
6 Ensure conformity with design dimension  Formoso et al. (2002) 
7 Construction with standard materials Cha et al. (2009) 
8 On-site materials compactors  Dainty and Brooke (2004) 
9 Precast bathroom Poon et al. (2003) 
10 Innovative/reusable formwork and falsework Yuan (2013); Al Hajj and Hamani (2011) 
11 Use of metal formwork Jaillon et al. (2009); Tam (2008);   
12 Easy replacement of building element  WRAP (2009) 
13 Steel Scaffolds Wang et al. (2014) 
14 Metal/ non-timber hoarding Baldwin et al. (2007); Tam (2008) 
15 Avoid gluing   WRAP (2009)  
16 Reuse of off-cuts materials (such as wood)  Al-Hajj and Hamani (2011) 
17 Large panel formwork Poon et al. (2003) 
18 Use lime mortar to ensure easy dismantling  WRAP (2009) 
19 Drywall partition and infill Poon et al. (2003) 
20 Demountable building techniques   Yeheyis et al.  (2013)  
21 Aluminium and plastic formwork  Poon et al. (2003) 
22 Avoid cut corners  Yuan  (2013) 
23 Efficient framing  Yeheyis et al.  (2013) 
24 Machinery sprayed plaster Poon et al. (2003) 
25 Adopting modular    Yuan  (2013); Esin and Cosgun (2007) 
26 Easily disassembled building elements WRAP (2009) 

27 
Adoption of low waste tech and Modern Methods of 
Construction 

Poon et al. (2003); Begum et al. (2009); Lu and 
Yuan (2010); Osmani (2013) 

28 
Use of demolition and excavation materials for 
landscape  

WRAP (2009) 

29 Employ offsite construction  
Oyedele et al. (2013); Dainty and Brooke 
(2004); Kozlovska and Splsacova (2013)  

30 Precast Cladding, units and modules Poon et al. (2003) 
31 Use of mechanical fixtures  WRAP (2009) 
32 Prefabricated construction method  Lachimpadi et al. (2012); Chen et al. (2002) 



68 
 

 Construction Site Management Practices 

Effective coordination of site activities is crucial to waste effectiveness of construction 

projects. This is especially as decisive actions capable of reducing waste or incorporating 

secondary materials could be taken by the site management teams. The site management 

decision is not limited to construction activities; it also includes adequate coordination of 

both human and material resources towards achieving project goals, among which cost 

effectiveness and sustainability might be included.  Table 4.10 presents a list of site 

management practices that are capable of reducing waste and diverting substantial waste 

from landfill. 

 

Table 4.10: Construction Management Strategies for Low Waste Projects 

Factors/Strategies References in Literatures 

1 Establish a task group for onsite CWM  Yuan (2013b) 

2 Prefabrication space in the work site for the correct 
management of the C&D waste  Lu and Yuan (2013) 

3 Logistic management to prevent double handling Al-Hajj and Hamani (2011) 

4 Follow the project drawings designs to prevent carrying 
out unexpected mistakes Lu and Yuan (2010); Saez et al.  (2013) 

5 Develop and implement waste management plans  Garas et al. (2010); Hassan et al. (2012) 
6 Effective coordination of project participants Khanh and Kim (2014) 

7 Installing an information board to notify categories for 
separating waste Cha et al. (2009) 

8 Periodic checks on the use of C&D waste containers  Saez et al. (2013) 
9 Preventing waste mixture with soil  Jingkuang and Yousong (2011) 
10 Providing bins for collecting wastes  Cha et al. (2009) 
11 Dedicated space for sorting of waste  Wang et al. (2010); Lu and Yuan (2010) 
12 Ensure fewer design changes during construction  Al-Hajj and Iskandarani (2011);  
13 Sorting wastes at an easily accessible area  Cha et al. (2009) 
14 Setting up temporary bins at each building zone  Jingkuang and Yousong (2011) 
15 Timely and effective communication of design changes Faniran and Caban (1998) 

16 A thorough review of the project specifications by the 
contractor at the construction stage  Faniran and Caban (1998)  

17 Adequate site access for materials delivery/movement  Negapan, et al.  (2013) 
18 Waste auditing to monitor environmental performance Dainty and Brooke (2004) 
19 Educate clients about measures to reduce waste levels Dainty and Brooke (2004) 
20 Central areas for cutting and storage  Tam (2008) 
21 Provision of waste skips for specific materials  Del Río Merino et al. (2010) 
22 Reuse material scraps from cutting stock-length  Faniran and Caban (1998) 
23 Ensure effective communication of site activities Osmani et al. (2008); Yuan (2013b) 
24 Adequate on-site materials control system Osmani et al. (2008) 
25 Effective coordination between all specialities onsite Garas et al. (2010) 
26 Soil remains to be used on the same site Begum et al. (2009) 
27 Maximisation of onsite reuse of materials Marinelli et al.  (2014) Yuan (2013b) 

28 Discussion with sub-contractors/ other consultants on the 
reuse of materials/components WRAP (2013) 

29 Well planned site layout prepared and discussed  WRAP (2013) 
30 Prepare site layout before construction activities Khanh and Kim (2014); Yuan (2013b) 
31 Sorting and reuse/recycling of waste  Hassan et al. (2012); Yeheyis et al. (2013) 
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 Industry Cultural Change 

While proposing theory of waste behaviour, Teo and Loosemore (2001) illuminated the 

prevailing culture of waste inevitability that characterised the construction industry. The 

same opinion was echoed by Ikau et al. (2013) and Osmani et al. (2008) who reiterated 

that a major reason for insurmountable waste intensiveness of the construction industry 

is that workers believe in waste inevitability, thereby giving less attention to waste 

management. In order to drive the necessary cultural change in the industry, there is a 

need for a more dedicated workforce, clearly defined and communicated waste 

management approach, and top management commitment to waste management (Teo and 

Loosemore, 2001). 

 

On the other hand, the construction industry is highly fragmented, and it involves various 

trades carrying out their supposedly collaborative activities independent of one another. 

This thus results in information loss and ineffective communication among the 

stakeholders. Just as there is a need for promoting effective communication (Yuan 

2013b), supply chain alliance with materials suppliers and recycling companies is 

required (Dainty and Brooke, 2004; Oyedele et al., 2014). This would not only result in 

adequate materials information, but it would also ensure that excess materials are 

removed and reprocessed for further construction activities. This would as such help in 

diverting substantial waste from landfill. Table 4.11 presents some cultural changes that 

are capable of reducing waste generated by construction activities. 

 

Table 4.11: Cultural Changes required for driving construction waste minimisation 

Factors/Strategies References in Literatures 

1 Use of collaborative procurement route such as IPD Isikdag and Underwood (2010);  
2 Supply chain alliance with materials suppliers Dainty and Brooke (2004) 
3 Early involvement of contractors at design stage Oyedele et al. (2013); Arain et al. (2004) 
4 Blame and gain sharing philosophy among parties Osmani et al. (2008); Fewing, 2013 
5 Completion of design document before construction Koskela, (2004) 
6 Design freeze before construction activities Oyedele et al. (2013) 
7 Use of collaborative platform for information sharing Ilozor and Kelly, 2011 
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 Legislative Framework 

Governments' legislative and fiscal measures have been developed to instil waste 

management habits in the construction industry. Among others, these measures include 

landfill tax, aggregate levy, compulsory SWMP, and sustainable design assessment 

frameworks such as BREEAM. Although these measures have significantly reduced 

waste landfilling (Skumatz, 2008; Browna and Johnstone, 2014; Dahlén and Lagerkvist 

2010; Al-Hajj and Hamani, 2008), other measures through which legislative frameworks 

could be ameliorated to promote waste management have been proposed in recent studies. 

Table – 4.12 presents a list of fiscal and legislative measures capable of promoting waste 

management practices within the construction industry. 

 

Table 4.12: Legislative measures for improving waste effectiveness of construction  

Factors/Strategies References in Literatures 

1 Developing market structure for recycled materials Oyedele et al. (2009); Cha et al. (2009) 
2 Raising fees for mixed wastes Cha et al. (2009) 
3 Reducing fees for separated wastes Cha et al. (2009) 
4 Tax break for waste treatment equipment  Jinkuang and Yousong (2011) 
5 Improved database management for construction wastes Cha et al. (2009) 
6 Improved Waste management regulations Lu and Yuan (2010) 
7 Integrate CWM into the assessment of contractor Yuan (2013b) 
8 Increase the landfill disposal fee Lu and Yuan (2010) 
 

 

 Human Resources Management 

Effective management of human resources is central to productivity, cash flow, and 

market value of a firm (Huselid, 1995). The more an organisation adequately channelled 

its human resources to its desired goals, the more likely for such organisation to achieve 

its goals (Becker, 1996). Owing to this, it is important that construction industry 

adequately prepares and coordinates their workforce for effective outcome of the project, 

among which waste minimisation is important for both financial and environmental 

concerns. Based on literature review, some suggested human resources management 

practices for reducing construction waste are presented in Table – 4.13.  
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Table 4.13: Human resources coordination for waste-efficient project 

Factors/Strategies References in Literatures 

1 
Supervising waste management by a residential 
officer  

Cha et al. (2009) 

2 Appointment of labour solely for waste management  Jinkuang and Yousong (2011)  
3 Little or no overtime for construction workers  Nagapan et al. (2013) 

4 
Employing workers responsible for on-site waste 
collection  

Yuan (2013) 

5 
Waste management and materials handling vocational 
training for operatives 

Wang et al.  (2014); Esin and Cosgun (2007); 
Tam (2008); Ikau et al. (2013) 

6 
Dedicated site team or specialist sub-contract package 
for on-site waste management  

Dainty and Brooke (2004) 

 

 

4.6 Summary of the Chapter 

Tendencies of waste management strategies to reduce construction waste depends on the 

extent to which it considers factors capable of impacting waste generated by construction 

activities. In order to develop a holistic strategy for a waste-efficient project, a 

comprehensive review of factors capable of influencing waste was carried out using a 

systematic review search methodology. The identified factors were grouped based on 

their respective stages of implementation, which could be design, procurement or 

construction stage of project lifecycle. 

 

As efforts made at design stage could reduce overall waste, some design measures for 

reducing waste landfilled by construction activities were identified and grouped into five 

categories. These are design teams' attributes and competencies, design document 

quality, efficacy of the design process, longevity and deconstructability thinking in design 

and buildability/constructability of the design. 

 

Meanwhile, certain percentage of waste generated in construction activities is attributed 

to ineffective coordination of materials procurement. In order to ensure waste-efficient 

procurement, which is capable of reducing construction waste and diverting generated 

waste from landfill, several factors need to be considered. These set of factors were 

established and grouped into five categories. These categories include suppliers/vendors' 

attribute, contractual clauses, materials handling and storage measures, materials 

purchase management, and materials delivery management. Similarly, construction 
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strategies for diverting waste from landfill were identified and grouped into seven 

important categories. These include contractors/sub-contractors' attributes and 

competencies, contractual arrangement, waste effective construction technique, 

construction management practices, industry cultural change, legislative framework and 

human resources management. The factors established under each category were 

presented in Tables 4.1 to 4.12. 
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CHAPTER 5: RESEARCH METHODOLOGY 

 

5.1 Overview of the Chapter 

The purpose of this study is to develop a holistic design, procurement and construction 

protocols for waste-efficient construction projects. In this chapter, epistemological 

assumptions underpinning the whole study as well as the methodological approaches 

adopted in undertaking the study are presented. The chapter explicates various 

interrelated elements of the study in a manner that portrays their sequence. Possible 

strategies and methods to the study were identified and evaluated, and justifications for 

preferring one approach to others were made. The chapter addresses three major elements 

which are theoretical assumptions underpinning the study, strategy of enquiry and the 

research design. 

 

The methodological and epistemological assumptions, which cover the research 

philosophy and research strategies, are addressed in the first two sections. The strengths 

and weaknesses of each philosophical school of thoughts were evaluated, with respect to 

the focus of the study to theorise the study within suitable worldview and epistemological 

perspectives. This was then followed by a critical evaluation of research strategies, 

otherwise known as research methodologies, to determine which and which congruent 

with the focus of the study. Suitability of the research strategies for this study was 

analysed, and justification in favour and against each of them preceded selection and 

explanation of appropriate methodological viewpoint. 

 

Further in the chapter, different research design approaches, in terms of qualitative, 

quantitative and mixed method designs, were swotted in a bid to develop an appropriate 

design for the study. After a critical analysis, a combination of both qualitative and 

quantitative methods of data collection and analysis is deemed suitable for the study. On 

adopting and justifying the need for exploratory sequential mixed method design, a brief 

summary culminates the chapter.  

 

5.2 Research Paradigms 

Research paradigms or theoretical perspective is an important phenomenon that shapes 

the way research is formulated and implemented (Mackenzie and Knipe, 2006). Kuhn 
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(1962) defines paradigm as the assumptions and intellectual structure that underlie 

research and development in a field of enquiry. Just like structural elements to buildings, 

paradigm determines the integrity of a research activity (Fellows and Liu, 2008). 

Although scholars separated research methods from paradigms, it still holds that modes 

of data collection, data analysis, the relationship between researchers and the researched, 

among others, are largely influenced by the research paradigms (Crotty, 1998; Creswell, 

2014). As such, it is important that matters of paradigms are resolved at the inception of 

a research project. By doing this, the expected relationship would be established between 

the researchers and the participants, with an appropriate mode selected for data sampling, 

data collection and data analysis. According to Guba (1990), research paradigm 

encompasses matter of ontology, epistemology and methodology. This section evaluates 

various aspects of research paradigms in a bid to view the study with right lenses. It 

addresses matters of ontology, epistemology, research philosophy as well as the logic of 

reasoning.  

 
 Ontological Assumption of the Study  

Ontology is the study of being (Crotty, 1998). Blaikie (2000, p.8) provides a more 

encompassing explanation, suggesting that ontological claims are ‘claims and 

assumptions that are made about the nature of social reality, claims about what exists, 

what it looks like, what units make it up and how these units interact with each other'. He 

further stressed that ‘ontological assumptions are concerned with what we believe 

constitutes social reality'. It is a science of being, that reflects how an individual interprets 

what constitute a fact, and it essentially addresses whether an entity is perceived as being 

real or relative. The concept of realism holds that there are social phenomenon and 

realities that exist independent of the social actor. Contrarily, relativism posits that there 

is no any pre-existing reality than those constructed and being continually accomplished 

by the social actors (Blumer, 1984). 

 

Meanwhile, different approaches are being used in design, procurement and construction 

processes towards mitigating waste generation. However, the use of these approaches has 

achieved less in reducing construction waste. It is however believed that there is that 

procedural approach that could reduce waste intensiveness of the construction industry. 

This means that to tackle waste at a holistic level; there is a need to unravel those 
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procedural approaches and protocol for achieving low waste projects. This tends to an 

assumption that whether we have known it or not, there is an existing approach capable 

of achieving waste-effective projects. Relating the above analogy from ontological 

perspectives, it could be argued that reality in this perspective could not be multiple, 

notwithstanding the possibility of perceiving the optimum approach in a different way. 

Based on these, relative ontology, which assumes that there is no absolute validity 

(Blumer, 1984), could not underpin a study that seeks to unravel what is believed to be 

an optimum approach to waste management. Conversely, a suitable ontological belief 

underpinning the study is that of realists, which claim that there is only single mind-

independent reality (Guba and Lincoln, 2005). According to this ontological perspective, 

the aim of a research is to unravel that reality which, in the case of this study, is an 

optimum approach capable of minimising construction waste at design, procurement and 

construction stages of building delivery processes. Thus, to develop evidence-based 

waste efficiency protocol; there is a need for value free ontology rather than value-laden 

assumption, which is otherwise based on conjecture instead of factual evidence. 

 

 
 Epistemological Requirements of the Study 

While seeking to understand, predict, explain or control a phenomenon, there are two 

basic ways of knowing; these are objective and subjective approaches (Dancy et al., 

2010). The objective approach holds that the researcher should be independent and able 

to study the research entity without being influenced or influencing the entity (Guba and 

Lincoln, 2005). As such, Objectivists use pre-defined research instrument, such as 

questionnaires and structured interview among others, for data collection. Contrarily, 

subjective research involves understanding and construction of meaning through 

interaction between the researcher and subjects of study (Collis and Hussey, 2009). 

Subjective research is devoid of pre-defined research instruments, as reality and meaning 

are believed to be inter-subjectively constructed (Burrell and Morgan, 1979). 

 

Considering the focus of the study, the two ways of knowing are capable of enriching the 

outcome of the study. Subjective approach becomes more valuable at the inception of the 

study, to gain an in-depth understanding of various waste causative and preventive 

measures through inter-subjective interaction with the industry professional. The overall 
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purpose of the subjective approach at this stage is to ensure that research instrument at 

the later stage is as exhaustive as possible. This approach would be used at the early stage 

of the study, when there is little knowledge of the concept under investigation, as the 

approach is deemed more suitable in a situation where an important phenomenon has 

been poorly or wrongly conceptualised (Van Manen, 1990; Jasper, 1994). This would, 

therefore, help in unravelling comprehensive list of measures and factors, which could 

be further tested through a more objective approach. 

 

While seeking to ensure a generalizable result, there is a need for research sample to be 

representative of the research population (Creswell, 2014). Ability to arrive at a 

generalizable result would enhance the value of the study. However, in order to reach out 

to a representative population, which requires a large number of participants, a cost and 

time-effective measure is to make use of pre-designed research instrument (Gay et al., 

2008). While using this, a researcher becomes an objective participant in the study. 

Owing to this necessity, the study requires subjective and objective epistemologies at its 

intensive and extensive stages respectively. As the subjective approach would assist in 

obtaining a comprehensive list of waste mitigating measures, a more objective approach 

would assist in testing the practicability of those measures, towards proposing practically 

confirmed protocols for waste-efficient projects. 

 

 
 Philosophical Approach to the Study 

A review of extant literature (Pym, 1993; Guba and Lincoln, 1994, 2005; Blumer, 1984; 

Bhaskar, 1998) shows that paradigms have been explained and exemplified from one 

another through three basic measures, which are the purpose of enquiry, ontological 

belief and epistemological perspectives. Based on these distinctive features, each of the 

research paradigms has its area of suitability, which is determined by what researchers 

seek to unravel. Irrespective of one's position, justification of researchers' choice of 

underpinning paradigms gives credibility to their studies (Crotty, 1998). As such, 

research paradigms are to be considered at the inception of research projects in order to 

provide a basis for subsequent choice of research methods and research design. 
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Research paradigms describe pattern of beliefs and assumptions regulating inquiry in a 

discipline, by providing the framework within which investigation is accomplished 

(Weaver and Olson, 2006). It provides lenses for viewing and interpreting issues and 

holds principles and vocabularies governing research approaches. Hinshaw (1996) claims 

that paradigms are developed by communities of scholar having shared beliefs and 

presuppositions about what constitutes reality as well as pattern and mode of knowledge 

acquisition and construction. Adherence to a paradigm connotes that knowledge 

acquisition, direction of theory development and suitability of research approach and 

knowledge acquisition procedure are delimited by the paradigm. Thus, each paradigm 

defines how knowledge is acquired, processed and developed within its tenet. 

 

Different models have been used to categorise existing paradigms in social and natural 

science. While Burell and Morgan (1979) categorised research paradigms into radical 

humanism, radical structuralism, interpretivism and functionalism, Guba and Lincoln 

(1994) categorised paradigms into positivism, post-positivism, critical theory and 

constructivism. Using similar model as Guba and Lincoln, Crotty (1998) described 

constructivism as "interpretivism" and included postmodernism and feminism while 

categorising what was termed as theoretical perspectives. Based on works of Habermas, 

critical theory is another popularly known philosophical approach to research (Alvesson 

and Willmott, 2012). According to Krauss (2005) post-positivism as described by Guba 

and Lincoln (1994), Neopost-positivism described by Manicas and Secord (1982) and 

what Healy and Perry (2000) described as realism is what is also referred to as critical 

realism by Hunt (1994). Summing up on these different classifications, positivism, 

interpretivism, critical theory, postmodernism, and critical realism are evaluated for their 

relevance to this study. 

 

5.2.3.1 Positivism 

Positivism paradigm posits that reality exists independent of the researcher (Guba and 

Lincoln, 1994). As such, it is epistemologically objective, by holding that the researcher 

should be independent and able to study the research entity without being influenced or 

affecting the entity. The primary purpose of positivists' enquiry is to explain, predict and 

control (Krauss, 2005) by identifying and measuring relevant factors to establish causes 

and effects of certain relationship. Adherents of positivism philosophy argue that only 
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information derived from logical and mathematical approach could be referred to as the 

real knowledge (Guba and Lincoln, 1994), with knowledge being based on universal laws 

that are believed to be unchanging. As positivism involves the use of scientific and 

mathematical approach, as well as operationalization of words into numbers that could 

be measured, it also leans more towards a deductive approach to enquiry (Tribe, 2001). 

 

A study underpinned by pure positivist philosophy is characterised by its mind-

independent reality (realism ontology), objective epistemology, theory/hypothesis testing 

rather than generation, extensive use of quantitative approaches to data collection and 

analysis, systematic approach to data validity, and operationalization of words, among 

other features (Guba and Lincoln, 1994; Gage, 1989). 

 

Notwithstanding the capacity of positivism in ensuring generalizable results through its 

objective approach to research, the need for inter-subjective relationship between the 

research and practitioners could not be over-emphasised in a poorly understood and less 

explored research area. This need, as required by the study, is, however, antithetical to 

positivist research which is based on objectivism. Also, while the purpose of positivist 

research is to explain, predict and control, the study seek to unravel and explain 

factors/practices capable of reducing waste generated by construction activities. 

Although the explanatory power of positivism could enhance the study, its prediction and 

control aspect is not required, just as the paradigm lacks potential for in-depth 

understanding that is needed at the inception of the study. Thus, positivism paradigm has 

capacity for addressing the research problem at the later stage of the study and, therefore, 

it could not provide holistic solution to the research problems. 

 

5.2.3.2 Interpretivism 

Interpretivism paradigm is widely known as an antithesis of positivism in that, rather than 

believing in single mind-independent reality as claimed by positivists, interpretivists 

argue that there are multiple realities that it is constructed inter-subjectively while 

meaning is developed through social interaction (Blumer, 1984). As such, to understand 

meaning of the world, the researcher becomes part of research process (Collis and 

Hussey, 2009). An interpretive research usually aims at understanding a phenomenon by 

focussing on social construction and reproduction of meanings, symbols and languages 
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through an inductive reasoning (Myer, 2008; Burell and Morgan, 1979; Berger and 

Luckmann, 1967). A research underpinned by interpretive philosophy could be identified 

by its ontological relativism, inter-subjective epistemology, focus on pattern and text, 

primary use of qualitative approach, value judgement based on individual and group 

consensus as well as common emphasis on understanding (Burell and Morgan, 1979; 

Blumer, 1969; Neuman, 2000).   

 

Although there is need to adopt a subjective epistemology towards understanding and 

achieving comprehensive list of testable factors at the inception of the study, the research 

is not underpinned by the relative ontology. Again, there is need to generate practically 

tested measures devoid of individual biases and conjectures that are valued by 

interpretivists. This suggests that interpretivism philosophy is only capable of addressing 

the research problems at the early stage of the study, and it lacks objectivism required at 

the later stage of the study. As such, holistic solution could not be achieved for the 

research problem through a sole adoption of interpretivism as a philosophical approach. 

 

5.2.3.3 Critical Theory 

Critical theory is a philosophical commitment and school of thought that is concerned 

with criticism of social status quo with a view to change and redistribution of power. 

Unlike positivism and interpretivism, the purpose of critical theory is not to understand, 

mirror or predict, but to change it. As such, a critical theory research is expected to be 

explanatory, practical and normative. This means that it must explain what is wrong with 

the existing practices, identify change agent and provide strategies required for the 

desired social transformation (Cohen et al., 2007). Ontologically, critical theory adopts 

historical and critical realism beliefs, while its epistemology is transactional and 

contextual (Guba and Lincoln, 1994). It accumulates knowledge through revision/history 

of existing entities towards transforming, regulating or changing it while allowing the use 

of both qualitative and quantitative approaches as means of achieving desired results. 

 

Construction management researchers rarely adopt this philosophical approach in their 

studies, as most research in the field seems to be interested in causal relationship. 

Construction management studies are also usually interested in improving, generalising 

and predicting measures capable of advancing professional practices, which might not be 
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fully captured by interpretivist approach and critical theory. The infrequency of this 

approach in construction management could also be due to great resistance to change that 

characterised the profession. An example of this resistance is exemplified in the need to 

repeal the compulsory site waste management plan in the UK, as well as protest of the 

same regulation by construction professionals in Hong Kong (Shiers et al., 2014; Tam, 

2008). Thus, construction research is dominated by studies seeking to improve the 

situation, rather than changing or regulating the industry. Nonetheless, as this study is not 

seeking to propose change or legislate the current practices within the industry, critical 

theory, as a paradigm, is deemed inappropriate for the study. 

 

5.2.3.4 Postmodernism 

Postmodernism is a movement in philosophical assumptions, as well as arts and 

architecture, which shifts from generalisation tendencies of the modern era to 

particularisation, relativism and discontinuity (Crotty, 1998). Unlike other philosophical 

assumptions, postmodernism posits there is no absolute truth that could explain all things. 

Rather, truth is believed to be approximate and constantly evolving (Crook, 1991). 

Postmodernists believe that truth could not be represented by what it is perceived to be. 

As such, truth is constructed at individual level, and it could not be valid for all groups, 

races and cultures among others (Burell, 1988). Thus, postmodernism assumes that truth 

is relative, as what constitutes truth for a group might not be true for others (Feyeraband, 

1990). Studies underpinned with postmodern perspective usually make explicit reference 

to relativism, reflexivity and deconstruction, and are more likely to employ 

unconventional textual forms with possible citation of its theorists. This approach is not 

relevant to this study as the study is aimed at constructing what seems to be evidence, 

rather than deconstructing existing claim as preferred in postmodern philosophy.  

 

5.2.3.5 Critical Realism as the Paradigmatic Approach to the Study 

Also referred to as an ontological assumption of post-positivism philosophy (Guba and 

Lincoln, 1994), critical realism has received significant attention as a research paradigm 

(Krauss, 2005; Yeung, 1997). The purpose of critical realism is neither to uncover general 

law nor to understand irregularities; it seeks to uncover, understand and explain 

mechanisms that underlie an event (Bygstad and Munkvold, 2011). While positivism and 
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interpretivism believe in single and multiple realities respectively, critical realism is 

concerned with multiple perspectives to a single reality, which is mind-independent 

(Krauss, 2005; Sayer, 1992). Thus, the philosophical stance possesses realist ontology in 

similitude to positivism and subjective epistemology like interpretivism. However, 

ontological entity takes preference over epistemologies in critical realism perspectives 

(Yeung, 1997). 

 

While seeking to research underlying mechanism that drives an effect and action within 

the realm of critical realism, both qualitative and quantitative approaches could be used 

(Healy and Perry, 2000). As such, a critical realist research could feature both 

unstructured and structured data as well as statistical analysis and modelling (Krauss, 

2005). The essential features of a study underpinned by critical realism philosophy 

include its interest in cause and effects, investigation of mechanism underlying an event 

or action, causal explanation, use of qualitative and quantitative approach – each at 

intensive and extensive scales respectively – as well as multiple perspectives to single 

reality (Sayer, 2000; Krauss, 2005). 

 

As in the case of this study, critical realism has an overwhelming relevance to a study 

seeking to understand a mechanism producing an event (Sayer, 2000). It has realist 

ontology and posits that there could be multiple understanding of a single mind-

independent reality (Yeung, 1997). Although it is usually described as having subjective 

epistemology (Krauss, 2005), it supports the use of both qualitative and quantitative 

approaches to data collection and analysis (Sayer, 2000; Hunt, 1991; Healy and Perry, 

2000). As such, it supports both the subjective and objective approaches required by the 

study at earlier and later stages respectively. Just as the purpose of critical realism is to 

uncover a mechanism underlying an event, the purpose of the study is to unravel factors 

capable of producing a waste-efficient project. 

 

According to Sayer (2000), a wide scope critical realist study would start with an 

intensive approach and end with a broad approach. The purpose of intensive study is to 

start with subjective and qualitative research of individuals, groups or cases under 

investigation using interactive interview, ethnography and qualitative analytical 

procedures (Sayer, 1992). While the intensive approach is to explore what makes things 

happen in specific cases, extensive research investigates vastness of an occurrence within 
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a large population (Sayer, 2000). A large-scale survey, structured interview, 

questionnaire, statistical analysis and other quantitative tools could be used at extensive 

stage of critical realist study (Hunt, 1991). 

 

Value-cognizant nature of critical realism would assist in uncovering mechanism capable 

of driving low waste projects by considering multiple understanding of appropriate 

strategies for driving waste-efficient project.  This would be achieved by using qualitative 

approach to data collection and data analysis, such as unstructured interview, focus group 

discussion and archival analysis. At later stage of the study, which is aimed at exploring 

extensiveness of the identified factors within the construction industry, objective status 

would be taken, and quantitative approach to data collection and analysis is more 

appropriate (Sayer, 2000). While elements of interpretivism and positivism would be 

employed at early and later stages of the study respectively, powerful explorative, 

explanatory and analytical tools offer by intensive and extensive nature of critical realism 

aid its suitability for the study. Therefore, the study is underpinned with the philosophy 

of critical realism. 

 
 Research Approach and Reasoning Technique 

 Interpretivism involves an inductive reasoning (Berger and Luckmann, 1967), while 

positivism involves a deductive reasoning (Tribe, 2001). Based on its philosophical 

underpinning, the reasoning technique of the study would follow retroductive pattern, 

which allows researcher to refine and redevelop social theory in a continuously evolving 

and dynamic process (Sæther, 1998; Ayim, 1974). It would also assist in identifying 

circumstances that are critical to existence of an event (Lawson, 1997). At the early stage, 

the study would follow the process of induction, which would assist in generating certain 

theories and propositions that could be improved through further deductive research. At 

the later stage, the theory and propositions would be further refined and redeveloped, as 

circumstances required for its validity would be established through an extensive study. 

As such, the study would not only identify measures capable of improving waste 

efficiency of projects; it would refine and redefine the measures, thereby identifying 

circumstances that are required for achieving the desired output. 
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5.3 Research Strategy 

Otherwise catalogued as research methodology, research strategy is an essential element 

of research that determines overall direction through which the study is conducted. The 

choice of a research strategy is determined by research question, extent of available 

knowledge of the research area, philosophical assumption of the researcher as well as the 

length of time available for the study (Saunders et al., 2009). Similarly, Yin (2003) 

suggests that the choice of a research strategy is informed by the extent of researcher's 

control over behavioural event, nature of the research question as well as whether the 

study focuses on contemporary or historical events. Although there are various 

interrelationships among the research strategies (Yin, 2003), common research strategies 

with distinctive characteristics are case study, experimental, action research, 

ethnography, grounded theory, phenomenology, narrative and survey research (Saunders 

et al., 2009; Collis and Hussey, 2009). Nevertheless, it is important that a researcher 

evaluates the focus of the study in a bid to adopt the right strategy for the enquiry 

(Walliman and Baiche, 2005).  

 

 
 Case Study Research 

Case study strategy involves an in-depth investigation of a person, event or a 

phenomenon in a bid to gain detail understanding of the concept under investigation. It 

is a systematic enquiry into an event, or series of related event, that is usually aimed at 

describing and explaining certain phenomenon (Yin, 2003). While carrying out a case 

study research, a variety of data collection approaches could be used over a time bounded 

period (Creswell, 2014). According to Yin (2003), a case study research could be 

exploratory, explanatory or descriptive in nature. Research might adopt single or multiple 

case studies as an approach to enquiry. Although the study required information from 

experts within the construction industry, it is not specific to any case study. Rather, 

experts' knowledge is explored across different cases to determine best practices that are 

independent of building types, materials, procurement routes and construction 

techniques, among others. 

 

 

 



84 
 

 Experimental Research  

Experimental research is another strategy to enquiry that involves manipulation of a 

variable to determine its impacts on another (Taylor et al., 2006). The purpose of 

experimental research is to determine effects of change and control in one variable on the 

outcome of the other variable. However, because the goal of this study is neither to test 

impact of change in any variable on another, nor to test any theory or hypothesis, this 

strategy is not applicable in the study.  

 

 
 Action Research 

Also known as problem-solving research, action research is a research strategy that is 

usually employed when a researcher seeks to effect a change or solve an immediate 

problem (Taylor et al., 2006). The main assumption behind this strategy is that a mere 

research, and explanation by uninvolved researcher, is inadequate to implement the 

desired change. Rather, those usually refer to as research subjects should actively 

participate in studies (Stringer, 2014). It starts by identifying a real life problem, and then 

research into the mode of solving the problem, with the researcher being part of the 

practices or collaborating with actively involved practitioners. The purpose of an action 

research is to effect a change in practice. Although this strategy is effective as a change-

driven approach, the purpose of the study is not to implement any change but to determine 

the measures that could improve waste efficiency of design, procurement and 

construction processes. As such, this strategy is not suitable for the study.  

 

 Ethnography 

Ethnography research is a study of social interaction and perception that occur among 

group of people in their natural settings over a prolonged length of time (Reeves et al., 

2008; Creswell, 2014). It is a branch of anthropology whereby researchers immerse 

themselves into the setting under investigation to gain an emic perspective and first-hand 

information about a phenomenon or people under investigation, with participant 

observation being the main mode of data collection (Hammersley and Atkinson, 1995). 

As the focus of this study is neither to understand social interaction or perception of any 

group, nor to gain an emic view of the concept under investigation, but rather to gain an 

etic view of the experts, ethnography research is not suitable for the study. 
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 Grounded Theory 

Grounded theory is an inductive research strategy of inquiry that involves systematic 

generation of theory from data. It involves iterative and multiple stages of data collection 

and refinement with the sole purpose of generating abstract theory that is grounded in the 

views of research participants (Creswell, 2014). According to Goulding (1999), the main 

impetus behind the grounded theory is to ensure that theory is grounded in data rather 

than empirically uninformed theory. Nonetheless, because the sole purpose of the study 

is not to ground theory in data through an iterative approach, grounded theory strategy is 

not applicable in the study. 

 
 Phenomenological Research  

Phenomenological research is a strategy of enquiry whereby the researcher describes the 

experience of the research participant with respect to a phenomenon under investigation 

(Creswell, 2014). According to Crotty (1998), the concept of phenomenology is based on 

tenet that a particular situation could not be truly understood until all presuppositions and 

preconditions are suspended by a researcher (Holloway and Wheeler, 1996) in a bid to 

devise new meanings. It recognises the researchers as interpreters of the participants' 

experience and actions, and it is concerned with the individual's perception and account 

of the events under investigation (Edie, 1987), devoid of objective meanings imposed by 

the researcher (Smith and Osborn, 2007). The phenomenological approach, therefore, 

avails the researchers an opportunity to understand the existing waste management 

practices and waste causative factors from practitioners' point of view, devoid of every 

presupposition. This is deemed relevant to the study, as the approach is suitable in a 

situation where a significant phenomenon has been poorly or wrongly conceptualised 

(Jasper, 1994; Van Manen, 1990). Thus, the phenomenological approach would assist in 

understanding waste impacting factors from practitioners' point of view. 

 
 Narrative Study 

As the name implies, narrative research is a strategy of enquiry that is relevant when the 

life of an individual is studied in a bid to retell the story in a narrative chronology 

(Creswell, 2014). This strategy is not applicable in the study, as the study is not aimed at 

unearthing lived experience of any individual. 
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 Survey Research 

Survey research is another research methodology that involves collection of quantifiable 

data through a standardised instrument (Sapsford, 2007). It is a standardised mode of 

collecting information from a population by selecting a sample of respondents from the 

population and administering questionnaire to them (De Vaus, 2002). The research 

strategy is very useful in reaching out to a large population by distributing the same 

questionnaire towards establishing wider view of the population. At the later stage of this 

study, survey research strategy would be employed to elicit broader opinion of large 

population on findings of earlier qualitative studies. By doing this, there is tendency for 

generalizability of the findings of the study. 

 

 Summary of Pertinent Strategies for the Study 

Having evaluated a wider range of research strategies, two strategies that were chosen for 

this study are phenomenology and survey research. For each of the research strategies, 

different modes of data collection and analytical procedures would be used. The 

phenomenological research was carried out at the early stage of the study, and its findings 

were integrated into survey research that culminated the study. 

 

 

5.4 Research Design 

When designing research, a researcher is faced with options of selecting either qualitative 

or quantitative approach to data collection and analysis. In recent time, studies that 

involve integration of the two methods have become commonplace (Bryman, 2006). 

Creswell (2014) argued that qualitative or quantitative are not necessarily rigid and 

distinct dichotomy, a study could be either more of qualitative or more of quantitative 

approach. While irreducible boundary exists between people who claim that knowledge 

is uniquely constructed by individuals (relativists) and those who argue that reality is 

external and only awaits human discovery (realists), less significant division exist 

between users of different methods as they belong to all researchers irrespective of 

epistemological differences (Bernard, 2000). Neither of the two methods is better than 

the other (Tashakkori and Teddlie, 2010), the choice of methods heavily relies on what 

the researcher intends to unravel as well as the wider theoretical and methodological 
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lenses within which the study is viewed (Creswell, 2010; Crotty, 1998; Grix, 2004). 

Nonetheless, the two methods are evaluated for their relevance to this study. 

 
 Qualitative Method of Enquiry 

Qualitative research is a method of enquiry that is focussed on exploring and 

understanding certain phenomenon by developing a holistic picture of the meaning 

ascribed to human or social problems by research subjects (Denzin and Lincoln, 2011; 

Creswell, 2003). This method relies heavily on text and image data collected in the natural 

settings where the participants experience the problems under study. Thus no research 

instrument is pre-defined (Creswell, 2014). The qualitative method of enquiry is rooted 

in constructivist perspective (Guba and Lincoln, 1994), which tends to claim that 

knowledge is socially constructed (Crotty, 1998). Owing to this, no theory is usually 

placed at the beginning of the study, but as the meaning evolved from interpretation of 

the participants' viewpoints, it honours an inductive style of inquiry (Psathas, 1973; 

Bloomberg and Volpe, 2012). Thus, qualitative method offers exploratory approach to 

knowledge acquisition. 

 

While adopting qualitative methods of enquiry, the researcher becomes a key research 

instrument who posits to examine documents as well as the behaviour and reaction of the 

participants (Creswell, 2014). Sources of qualitative data may include audio-visual 

information, observations, interview and other forms of document, which are recorded, 

organised and reviewed in a bid to understand the data based on interpretation of the 

participants (Bernard, 2000; Berg and Lune, 2004). Data could then be analysed using 

different methods of analysis, which could involve content analysis, discourse analysis, 

domain analysis and thematic analysis, among others (Adams et al., 2007; Bryman, 2006; 

Attride-Stirling, 2001). Irrespective of these approaches, analytical process usually 

involves data familiarisation, coding, search for themes, review of themes and definition 

of themes (Braun and Clarke, 2006). The ultimate goal of qualitative study is to gain a 

comprehensive understanding of the phenomenon (Denzin, 2009; Schutt, 2006). 

 
 Quantitative Method of Enquiry 

Quantitative research seeks to examine relationship between variables to explain a 

phenomenon (Cohen et al., 2007; Charles and Metler, 2002). Rather than the use of words 
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as could be important in qualitative approach, quantitative researchers are convenient 

with the use of numbers and operationalization of words (Crotty, 1998). Qualitative 

method is underpinned by positivist claim that tends to believe in "out-there-ness" of 

reality and knowledge (Kidder and Jud, 1986). As such, the approach is to explain cause 

and effects using set of tactics such as theory testing, hypothesis and question, 

measurement and observation. It relies on numerical instruments that are designed 

independently of the research subjects (Creswell, 2014). 

 

Unlike in qualitative studies, a quantitative researcher is external to the research and is 

objective in relationship and judgement of research phenomenon (Pym, 1993). 

Quantitative data are collected with structured research instruments that could include 

close-ended questionnaire, structured interview, among others (Cohen et al., 2007). It 

usually involves larger sample that is representative of research population. Data is then 

analysed using various techniques of statistical analysis because of its preference for 

numerical data and operationalization (Schutt, 2006). In short, the overall purpose of 

quantitative research could be descriptive, which is to explain phenomenon, or 

experimental, which is to establish causality and predictions, using various sets of 

numerical data. 

 
 Mixed Method as the Pertinent Approach to the Study 

A mixed method research involves the use of both qualitative and quantitative method at 

any point or throughout the course of research (Saunders et al., 2009; Tashakkori and 

Teddlie, 2010). A study adopts mixed method if it involves both qualitative and 

quantitative data collection and analysis (Creswell, 2014), or it analyses qualitative data 

quantitatively or vice versa (Saunders et al., 2009). Other terminologies that have also 

been used to describe this form of research design include “multi-method” (Saunders et 

al., 2009), “integrating” and “synthesis” (Creswell, 2014), with mixed method becoming 

its standard terminology (Tashakkori and Teddlie, 2010). Methods could be combined 

for different purpose, which may be triangulation (corroboration), complementary 

(elaboration), development, initiation and expansion (Bryman, 2006; Greene at al., 1989). 

 

Considering the relevance of each method to this study, there is clear indication that both 

qualitative and quantitative methods would help in unravelling different aspects of the 
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study. Because of complex focus of this study, neither qualitative nor quantitative 

approach is robust enough to capture the need for understanding, development, prediction 

and explanation that is required in complex management of construction waste. 

Understanding the factors influencing waste requires exploration of existing studies and 

expertise knowledge at the inception. This would help to acquire knowledge that could 

metamorphose into a further research tool that is capable of explaining and predicting 

holistic patterns of project coordination. Again, while there is serious need to understand 

the phenomenon, prediction and explanation of what constitutes effective design, 

procurement and construction process for a waste-efficient project is required of the 

study. Also, applied research requires combination of both qualitative and quantitative 

methods (Creswell, 2014). Thus, the study adopts a mixed method for data collection and 

analytical process, and as such, it involved both formative and summative evaluation 

procedure. The value of a mixed method design is that a method does not only corroborate 

flaws in one another, it is also suitable in revealing high quality and complex inference 

(Ivankova and Kawamura, 2010) 

 

While designing a mixed method research, a researcher needs to address three core issues, 

which are priority, implementation and integration of the methods (Creswell et al., 2003; 

Creswell et al., 2004). Priority is concerned with which of the methods is given heavier 

weight and utmost attention, implementation addressed the issue of which comes first in 

the sequence or whether they are concurrent, while integration refers to the stage at which 

integration of the methods takes place (Ivankova et al., 2006; Green et al. 1989). Based 

on these yardsticks, a mixed method could be convergent parallel mixed method design, 

when a researcher collects both qualitative and quantitative data, analyse them separately 

and then compares the results for the purpose of triangulation (Creswell, 2014). If a 

research involves two—phase process where quantitative data collection and analysis is 

followed up with a qualitative study for further explanation, such design is an explanatory 

sequential mixed methods design (Ivankova et al., 2006). This design appeals more to 

adherents of quantitative design with interests in mixed approach (Creswell, 2014). 

 

The last approach to mixed method design that is adopted in this study is exploratory 

sequential mixed methods design. It involves initial exploration of research phenomenon, 

using qualitative data and analysis, with use of the qualitative findings in the second phase 

of the study where quantitative data collection and analysis is employed (Creswell, 2014). 
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The aim of this type of research design is to develop a robust research instrument from 

the initial qualitative study and further test if the initial finding is generalizable to a larger 

population. In such case, the first stage could involve focus group and interview data (or 

other qualitative data). It is then analysed, and its findings are used to develop a 

quantitative research instrument (such as questionnaire) that would be administered to 

larger population (Creswell, 2014). As depicted in Figure 5.1, this sequential exploratory 

study involved two phases, involving exploratory study at the qualitative level and the 

use of questionnaire for quantitative data collection. The data was then analysed through 

various means of quantitative data analysis and modelling.
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Figure 5.1: Phases of the exploratory sequential mixed method research
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 Role of the Researcher  

Both subjective and objective roles were taken at the early and later stages of the study 

respectively. At the level of qualitative data collection, the researcher took a participatory 

role by interacting with the research participants towards exploring new concepts 

(Creswell, 2003). However, care was taken to prevent biases that could be due to this 

nature of interaction by ensuring that researcher only served as moderator without 

influencing free expression of participants' opinion. Coding and analysis of data evolved 

from specific terminologies used by the research subjects. At the quantitative phase of 

data collection, objective approach was taken. Data was collected with a pre-tested 

research instrument, capable of self-explanation, thereby devoid of subjective 

interpretation and interaction with the participant. The data was collected, analysed and 

validated through rigorous statistical analysis and established value for statistical 

significance. This, therefore, prevented likely bias that could rather mar the outcome of 

the study. 

 

 

5.5 Chapter Summary  

In order to employ the right method of enquiry for the study, various research concepts 

including paradigms, approaches, methods and strategies have been evaluated for 

relevance to this study. Based on the critical evaluation, justification has been made for 

the use of critical realism, as a philosophical lens for the study. As the tenet of critical 

realism supports the use of qualitative and quantitative approach, the two methods of data 

collection and analysis were found to be relevant at intensive and extensive stages of the 

study respectively. Based on this, an exploratory sequential mixed method design is the 

most suitable research design for fulfilling the aim of the study. At the early stage of the 

study, phenomenological approach, in support with systematic review of the extant 

literature, provides avenue for collecting rich information required for the study. Survey 

research is justified to be the most suitable strategy for extensive investigation at the later 

stage of the study. Thus, the exploratory sequential mixed method research is 

underpinned by critical realism as paradigmatic perspective to the study. Table 5.1 

summarises the available choice of epistemological and methodological approaches for 

studies; choices made for the study and justification of the various choices. 
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Table 5.1: Research epistemological and methodological choices for the study 

Areas of Choices Available Choices Choices Made Justifications for the Choices Made 
Research 
Strategies 

Narrative; Phenomenology; Grounded 
Theory; Case Study; Ethnography; 
Experimental; Quasi-Experiment; Action 
Research; Survey Research 

• Phenomenology 
• Survey Research  

At the inception of the study, phenomenological research (and its variances) avails an opportunity to 
understand the existing waste management practices and waste causative factors from practitioners' 
point of view, devoid of every presupposition (Moustakas, 1994). At the later stage of the study, 
survey research provides a means of testing the generalizability of measures identified through 
literature review and phenomenology (Creswell, 2014). 

Research 
Approach/Logic 

Induction; Deduction; Abduction; 
Retroduction  

• Retroduction  The study seeks to work from qualitative data to develop a conceptual framework. This would then 
be followed by further quantitative studies to generate findings. This need involved the use of both 
inductive and deductive reasoning at early and later stages of the study. As such, the study requires 
retroductive reasoning, which includes the two reasoning logics (Ayim, 1974). 

Methods of 
Inquiry 

Qualitative; Quantitative; Mixed Method • Mixed Method The study adopts both qualitative and quantitative approaches for collecting and analysing data. 
While qualitative method results in subjective data, quantitative method is highly objective. By 
combining the methods, error inherent in one would be prevented by the other (Collins, 2007). 

Types of Mixed 
Method Design 

Exploratory Sequential  
Explanatory Sequential 
Parallel Sequential  

• Exploratory 
Sequential  

 

As the study starts from qualitative approach and ends up in quantitative approach to data collection 
and analysis, this mixed method technique is referred to as exploratory sequential mixed method 
research (Creswell, 2014).  

Sources of 
Data/Evidence 

Documentation; Interview; Focus Group; 
Observation; Questionnaires; Artefacts; 
Archival Records 

• Focus Group 
• Questionnaires 
 

In addition to the literature review, focus group discussion served as a means of collecting qualitative 
data at the intensive stage of the study. At the later stage (extensive), findings from the qualitative 
data were put into a questionnaire survey, which served as a means of collecting quantifiable data. 

Means of Data 
Analysis 

Statistical Analysis; Structural Equation 
Modelling (SEM); Cognitive Mapping; 
Thematic Analysis (TA); System 
Dynamic Modelling (SDM); Content 
Analysis; Case Description 

• Statistical 
Analysis;  

• SEM 
• TA 
• SDM 

The thematic analysis offers an approach for bringing out emerging themes from qualitative data 
collected through focus group discussions (Braun and Clarke, 2006). The quantitative data analysis 
involved the use of statistical packages for data screening, preliminary analysis and descriptive 
statistics. Apart from providing input into SDM of the interplay between stages of project delivery, 
SEM was valuable for Confirmatory Factor Analysis. 

Research 
Philosophy 

Positivism; Interpretivism; Critical 
Realism; Critical Theory; Pragmatism;  
Postmodernism 
 

• Critical Realism The thinking of this study would be shaped by critical realism. Unlike interpretivism which allows a 
sole use of subjective epistemology, and positivism which allows only the use of objective approach, 
critical realism allows the use of both qualitative and quantitative methods at intensive and extensive 
levels (Sayer, 2000). At earlier stage (intensive), it allows the use of a subjective medium, while also 
allowing the use of objective medium at a later (extensive) stage. 
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CHAPTER 6: QUALITATIVE STUDY AND 

FRAMEWORK DEVELOPMENT 

 

6.1 Chapter Overview 

As an exploratory sequential mixed method research, this study commenced with 

qualitative study and ended with quantitative data collection and analysis. The procedural 

approach used for the first stage of the study is presented in this chapter. This involved 

justification and detailed description of the research processes, which covers research 

population and sampling techniques, types, medium and process of data collection, 

modes of data analysis as well as matters of trustworthiness and ethical considerations. 

Findings from previous systematic literature review are also integrated with the findings 

from the qualitative study to develop conceptual framework for further studies. A brief 

and concise concluding summary culminates this chapter.  

 

 

6.2 Sample and Sampling Techniques 

The overall goal of this study is to develop a holistic protocol capable of reducing waste 

generated by construction activities. Owing to this, the target population for the study are 

the stakeholders in the construction industry. A person is deemed fit for the study if 

his/her job description fall within, or working for, any of architects, civil/structural 

engineer, contractor, sub-contractor, construction project manager, and site waste 

manager. Whether the job is office or site based, such person must have been working 

within the construction industry for a couple of years before deemed information rich for 

the study. In this regards, a delimiting factor of 5 years was selected to ensure that all 

participants have adequate experience in the construction industry. 

 

Sampling for the qualitative phase of the study was done through a technique referred to 

as purposive (Merriam, 1998) or judgement sampling (Gay et al., 2006). This sampling 

technique is suitable for a qualitative research (Patton, 1990), as it allows researchers to 

freely select information-rich participants to gain an in-depth understanding of the 

phenomenon under investigation.  However, the group of participants were selected based 

on critical sampling, which ensures that professions involved from project planning to 

completion are involved. This sampling technique was used based on Creswell’s (1998) 
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assertion that it ensures logical applicability of the finding to other cases. As such, 

architects, civil/structural engineers, construction project managers and site waste 

managers were involved in the focus group discussions.  

 

Two major sources that assisted in reaching out to the research participants are databases 

of certified construction professionals and network of contacts enjoyed. Other studies that 

have employed this sampling technique within the design and construction management 

include Akintoye et al. (1998), Oyedele (2013), Ajayi et al. (2015), and Hodgson et al. 

(2011), among others. The databases include Royal Institute of British Architects 

(RIBA), Institution of Civil Engineers (ICE), Chartered Institute of Building (CIOB), 

Royal Institute of Chartered Surveyors (RICS), Association of Consulting Engineers 

(ACE), Association of Project Mangers (APM), Institution of Structural Engineers 

(IStructE) and Chartered Institute of Wastes Management (CIWM). 

 

 

6.3 Data Collection Method 

While carrying out an exploratory data collection in qualitative research, in-depth 

interview with individual participant or focus group discussions could be employed 

(Creswell, 2013). These approaches are particularly relevant for exploratory research as 

they allow emergence of new concepts (Wimpenny and Gass, 2000), which is against 

limiting the researchers to ranking of pre-defined factors that might not be 

comprehensive. In this study, focus group discussions were used as it allows exploration 

of inter-subjective opinion among the research participant to arrive at their common 

understanding. Also, focus group discussion was preferred to individual interviews as it 

allows the participants to build on one another's opinion throughout the course of 

discussions (Kvale, 1996). 

 

Before the focus group discussions, the participants were invited through a written 

invitation that explained the purpose of the study. They were also intimated about the 

nature and scope of the focus group discussions before the scheduled meeting. In all, 36 

participants were involved in four cross-disciplinary focus group discussions. The cross-

disciplinary nature of the discussions avails the opportunity of establishing common 

understanding of those involved from design to completion of construction projects. 
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Designers, contractors, project managers, and other expertise professions were purposely 

included in each discussion as evidence shows that they usually shift the blame to the 

designers (Osmani et al., 2008; Oyedele et al., 2014). Having them together in a focus 

group discussion assisted in critical examination of intersubjective opinions, thereby 

arriving at consensual opinion. The participants were selected from across UK design and 

construction firms ranging from small to large organisation, and they have years of 

experience ranging from seven to 27 years. All the participants have been involved in 

various projects within the last five years, and they are committed to waste minimisation 

in construction projects. Table 6.1 shows the distribution of 30 participants involved in 

all the discussions.  Each of the discussions spanned between 102 and 120 minutes, and 

they were recorded for facilitation of data analysis. 

 

Table 6.1: Overview of the focus group discussions and the participants 

FG Categories of the Participants Total No 
of experts 

Years of 
experience 

Duration  
(in minutes) 

1 

• 2 architects and design managers 
• 2 structural/civil engineers 
• 1 site waste manager 
• 2 project managers 
• 1 Others** 

8 7 – 26 111 

2 

• 2 architects and design managers 
• 1 structural/civil engineer 
• 1 site waste manager 
• 2 project managers 
• 1 Others** 

7 11 – 23 102 

3 

• 2 architects and design managers 
• 1 structural/civil engineer 
• 2 site waste managers 
• 2 project managers 
• 1 Others** 

8 10 – 27 119 

4 

• 2 architects and design managers 
• 1 structural/civil engineer 
• 1 site waste manager 
• 2 project managers 
• 1 Others** 

7 9 – 25 120 

 

** “Others” refers to sustainability experts, supply chain managers and lean practitioners in 

construction. 

 

 

6.4 Data Analysis 

While carrying out a qualitative data analysis, the first step is reading and exploration of 

the data to ensure adequate familiarisation (Braun and Clarke, 2006). This is then 
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followed by coding of the data, which is done by segmenting and labelling the text data. 

Similar codes are then aggregated to develop themes, which are to be thoroughly 

reviewed before connecting interrelated themes with one another (Creswell, 2002). In 

line with this process, the recorded interview was converted into written scripts, which 

was then analysed to establish both strategies and competencies for facilitating low waste 

projects. This was achieved through qualitative analysis of the focus group transcripts 

with the aid of Atlas-ti version-7. Owing to the need to go beyond word counting, content 

driven thematic analysis was used for data analysis, as it considers both explicit and 

implicit ideas within the data (Braun and Clarke, 2006). 

 

 Coding Scheme and Categorization 

The coding scheme and final categorization of identified factors were based on dominant 

themes that emanated from individual and combined analysis of data from all focus group 

discussions. The coding scheme was used to identify the strategies for engendering low 

waste projects as well as the broad categories of strategies and competencies. Generation 

of initial codes was facilitated through "word cruncher" facility provided by Atlas-ti 

qualitative data analysis tool. Apart from a thorough reading of the transcribed data, the 

word cruncher enhances a general overview of commonly used words that existed in the 

data. As such, the study employed a data-driven coding technique, which ensures a 

holistic processing of all themes evolving from the data (Braun and Clarke, 2006). 

 

In line with Gu and London (2010), and as further recommended by Silverman (2006) 

and Burnard et al. (2008), coding system and theme identification were engendered 

through the use of labelling. In this case, the labels used for the analytical processes were 

code, the number of occurrences, specific quotation, summed up statement (theme) and 

the number of summation. "Code" marks the words that resulted in the identification of 

waste-efficient measures at design, procurement and construction stages. "Number of 

occurrences" defines the number of time that the code existed in the data. "Specific 

Quotation" refers to a typical respondent's statement that is associated with the code, 

while summed up statement is a phrase used to denote what is intended by the 

respondents’ statement. “Number of summations” on the other hand refers to the number 

of quotations that could be summed into each of the identified unique statement (theme). 
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In order to demonstrate how the themes emerged from the interview data, Table 6.2 shows 

examples of coded segments.  

 

Based on the previously reviewed literature, similar themes were mapped together to 

form broader themes. The themes explain more holistic measures that are generated by 

combining very similar factors emanating from the data. For instance, knowledge of real 

life site layout and knowledge of construction processes are an integral part of a larger 

theme referred to as "construction related knowledge". 

 

Table 6.2: Examples of coded data segment 

Code or 

supercode 

Number of 

occurrences 

Examples of specific quotation (from the 

focus group discussion transcript) 

Summed up 

statement  

Number of 

summations 

 

 

Take-back 

scheme 

 

 

79 

"…. most of the waste we generate onsite are 

due to materials left unused after the projects. 

You will not only reduce waste if you have 

take-back agreement with your suppliers, but 

you will also save some money…." 

Commitment 

to take back 

scheme 

 

 

29 

 

 

Just-in-Time  

 

 

65 

"Most of us do not use Just-in-Time delivery 

because it is cheaper to transport your 

materials in bulk. But if you estimate the cost 

of waste it prevented, you will realise that it is 

a better option." 

Use of Just-

in-Time 

delivery 

system 

 

 

28 

Flexible 

49 

“...for us to reduce demolition and renovation 

wastes, it is important that designers are good 

at flexible and adaptable designs….” 

Design for 

flexibility and 

adaptability  

16 

Reuse 

116 

If a designer lacks knowledge of what and 

what are reusable onsite, they will fail to 

integrate them into their designs….” 

Integrate 

reusable 

elements into 

design 

14 

 

 

6.5 Issue of Trustworthiness 

In order to enhance methodological credibility of the qualitative study, the research 

design is not only evidence-informed, but data from focus group discussions were also 

combined with findings from systematic review of literature. A combination of these 

approaches ensures adequate exploration of required phenomenon. Interpretive validity 
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was ensured by using codes that are representative of original terminologies used by the 

research participants, as this enhance overall dependability of the analytical process 

(Guest et al., 2011). A search for discrepant evidence and peer review was made as 

recommended by Lincoln and Guba (1985). Also, other measures for enhancing 

credibility were adopted. These include recruitment of people to check for accuracy of 

themes, external audit system where a person external to the study carried out its 

evaluative review (Creswell, 2003). 

 

 

6.6 Ethical Consideration 

Ethical issues relating to protection of research participants are important consideration 

in every research (Merriam, 1998). Although such groups as under-aged, disabled and 

other vulnerable groups were not involved in this study, effort was made to inform and 

protect the respondents in an ethical manner. The study followed basic ethical guidelines 

in gaining consents and permission, briefing of the participants as well as in ensuring 

anonymity of the participants. The research sought written consent from participants 

before participating in the study and their right not to answer certain question or to 

withdraw from the study was made known. 

 

Since the goal of this study is not to link findings to individual participants or companies, 

no traceable link has been made to any of the participants; and as such, anonymity of the 

research participants and participating firms and organisations is assured. Research 

related data was also stored and managed in a way that is solely available to the 

researcher.  

 

 

6.7 Qualitative Research Findings and Conceptual 
Frameworks 

The qualitative research findings are combined with earlier literature review findings 

presented in chapter 4. As the study covers the design, procurement and construction 

stages of project delivery process, the combined findings are presented under the three 

sections.  
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 Design Measures and Competencies  

Based on the focus group discussions and literature review, 78 factors were established 

and group into four main categories, with each having further sub-groupings. Table 6.3 

presents the list of the design factors and competencies.  

 

Based on underlying latent factors influencing design efficiency for low waste projects, 

a conceptual framework for designing out waste is presented in Figure 6.1. The Figure 

provides a list of phenomenon influencing waste, and it is further tested through 

quantitative approach. 
 

 

Figure 6.1: Framework of strategies for designing out waste 
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Table 6.3: Design factors and competencies for low waste construction projects 

Underlying 
Features Design Measures and competencies for reducing construction waste  

References from extant literature Focus Groups 
1 2 3 4 

Design Team Competencies     

 
Technical 

Competencies 

Design for standard materials supplies Ekanayake and Ofori (2004)      
Ability to produce error-free documents Dainty and Brooke (2004)     
Careful dimensioning of design to avoid cutting to fit Faniran and Caban (1998)     
Careful attention to detail at planning/design Faniran and Caban (1998)     
Proficiency in materials specification to avoid over ordering      
Awareness and use of standard detail and specifications Andi and Minato (2003)     
Ability to correctly integrate design with site topography      
Clear and comprehensive information Baldwin et al. (2007)     
Ability to ensure constructability of design       

Awareness of 
Materials 
Attributes 

Knowledge/specification of secondary materials Wang et al. (2014)      
Identify all reusable elements and integrate them into design Begum et al. (2009)     
Specify durable materials to avoid early refurbishment Esin Cosgun (2007); Yuan (2013)      
Specify available, suitable and compatible materials Andi and Minato (2003)      
Knowledge of alternative materials option Alshboul and Ghazaleh (2014)      

Construction 
related 

Knowledge  
 

Knowledge of real life sites layout Tam (2008); Yuan (2013b)     
Knowledge of construction processes and sequence Alshboul and Ghazaleh (2014)      
Knowledge of standard materials size and its correct specification      
Ability to specify suitable and compatible materials Andi and Minato (2003)      
Awareness of materials quality and durability Dainty and Brooke (2004)     
Knowledge of construction methods      

Interprofessional 
collaborative 
competencies 

Ability to coordinate design from all trades Al-Hajj and Hamani (2011)     
Inter-professional conflict resolution      
Knowledge of roles and responsibility of all team members       
Effective communication of design information within/across trades Osmani (2013); Domingo et al. (2009)     
Ability to detect and prevent clash in design      
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Underlying 
Features Design Measures and competencies for reducing construction waste  

References from extant literature Focus Groups 
1 2 3 4 

Ability to successfully collaborate with the project team      
Design Document Quality for Low Waste Projects      

Accuracy of 
design 

information 

Drawing documents are free of errors to prevent reworks Andi and Minato (2003)     
Detailed specification devoid of under/over ordering  Begum et al. (2007); Oyedele et al. (2003); Domingo et al. (2009)     
Designs from all trades are adequately coordinated/integrated Al-Hajj and Hamani (2011)     
Drawings and other documents are legible  Baldwin et al. (2007)      
Consistency in detailing language/format  Osmani (2013)      

Comprehensiven
ess of the 

documents 

Waste management plan to be prepared along with design Garas et al. (2010)     
Deconstruction plan as part of design documents Oyedele et al. (2013)      
Waste scenario planning       
Completeness: Adequate design information for subsequent businesses  Negapan et al. (2013); Khanh & Kim (2009)     
Bar bending list as part of documentations Al-Hajj and Hamani (2011)     

Efficacy of Design Process      

Coordination of 
Design Contracts 

Careful Coordination of contract documents to prevent error  Osmani et al. (2008)     
Early completion of contract documents before construction Osmani et al. (2008)      
Ensure design freeze at the end of design process  Oyedele et al. (2013); Negapan et al. (2013); Lu and Yuan (2010)     
Involvement of contractors at early stage  Oyedele et al. (2013)     
Clearly specified project goal to avoid flawed planning/design  Faniran and Caban (1998)     
Pre-design meetings of key stakeholders  Oyedele et al. (2003)     
Early collaborative agreement before design activities Osmani (2013)     
Economic incentives and enablers Wang et al. (2013); Osmani (2013)     

Coordination of 
Design Teams 

Adequate coordination of various specialities involved in the design process Ikau et al. (2013)     
Timeliness: Early distribution of design documents  Negapan et al. (2013)     
Design management to prevent over specification of materials  Dainty and Brooke (2004)     
Adequate communication between trades  Domingo et al. (2009); Al-Hajj & Hamani (2011); Osmani (2013)     
Adequate implementation of sustainable building assessment procedure  Tam (2008); Yeheyis et al. (2013)     
Drawings and other details are adequately coordinated between design discipline  Al-Hajj and Hamani (2011); Yuan (2013b)       

Buildability/Constructability and Responsivity Criteria      
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Underlying 
Features Design Measures and competencies for reducing construction waste  

References from extant literature Focus Groups 
1 2 3 4 

Design for 
Modern Methods 
of Construction 

Specification of prefabricated materials Yuan (2013)     
Modular coordination of building elements Formoso et al. (2002); Oyedele et al. (2003)     
Design for preassembled components  Kozlovska and Splsacova, (2013); Formoso et al. (2002)     
Specify the use of efficient framing techniques  Osmani et al. (2008)     

Employ Modular design principles  Wang et al. (2014); Baldwin et al. (2007); Esin and Cosgun 
(2007) 

    

Specify the use of drywall partitioning and joint system      
Design with buildability/constructability of the project in mind  Yeheyis et al. (2013); Yuan (2013b); Oyedele et al. (2003)     

Standardisation 
and Dimensional 

Coordination 

Careful integration of building sub-system  Formoso et al. (2002)     
Ensure simplicity and clarity of detailing  Ekanayake and Ofori (2004); Domingo et al. (2009)     
Design for standard dimensions and units  Osmani et al. (2008)     
Standardise building forms and layout WRAP, (2009); McKechnie and Brown (2007);      
Ensure drawings consider and integrate site topography and existing utilities Yuan (2013b); Andy and Minato (2003); WRAP (2009)     

Dimensional coordination and standardisation of building elements Dainty and Brooke (2004); Baldwin et al. (2007); Ekanayake & 
Ofori (2004)  

    

Optimize tile layout in conformity with design shape  WRAP (2009)     
Use full height door or door with fanlight to avoid cutting plasterboard  WRAP (2009)     
Standardise doors, windows and glazing areas WRAP (2009)     
Avoidance of overly complex design, where possible  Yuan (2013b)     
Ensure adequate detailing of complex design  Ekanayake & Ofori (2004); Yuan (2013b); Baldwin et al. (2007)     
Coordinate structural grid and planning grid to avoid offcuts/conflict  WRAP (2009)     

Responsive 
Design and 
Deconstruct-
ability Criteria 

Use of modular system Formoso et al. (2002); Wang et al. (2014); Esin and Cosgun (2007)     
Designers to produce disassembly and deconstruction plan of the building Oyedele et al. (2003)     
Design for standard dimensions and units Osmani et al., 2008     

Design for changes and flexibility  Yuan (2013b); Mckechnie and Brown (2007)     
Specification of collapsible elements for flexibility      
Specify durable materials to avoid need for early replacement  Esin and Cosgun (2007); Yuan (2013b)     
Specify materials and joint system that support disassembly WRAP (2009)     
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 Procurement Measures 

A combination of the findings from focus group discussions and systematic literature 

review resulted in 39 procurement measures for enhancing construction waste 

minimisation, under five categories. These set of measures are as presented in Table 6.4. 

 

Based on the underlying features identified in Table 6.4 above, a conceptual framework 

of requisite procurement measures for low waste project is presented in Figure 6.2. The 

framework suggests that five key measures underlie waste-efficient procurement. These 

measures include contractual factors, suppliers’/vendors’ attributes, effective materials 

management, effective materials delivery, and waste-efficient handling and storage. 

Generalizability of these set of measures is further tested through quantitative studies as 

presented in subsequent chapters.   
 

 
Figure 6.2: Framework of Procurement Measures for Low Waste Projects 
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Table 6.4: Procurement measures for engendering low waste construction projects 

Underlying 
Features Procurement Measures for reducing construction waste  

References from extant literature Focus Groups 
1 2 3 4 

 
Suppliers/ 
Vendors’ 
Attribute 

Procurement route that minimises packaging 
Oyedele et al. (2013); Yeheyis et al. (2013); Marinelli et al. 
(2014); Saez et al. (2013)  

     

Vendors that supply good quality and recycled materials Khan and Kim, (2014); Nagapan et al. (2013)     
Supplier flexibility in providing small quantities of materials Dainty and Brooke (2004)      
Modification to products in conformity with design Bernold et al. (1991)     
Collecting package materials back by suppliers  Cha et al. (2009)       
Collecting back recyclable materials  Jingkuang and Yousong (2011)     
Enhance management of packaging materials Yuan (2013b)     
Provision for unused materials to be taken away from site (take back 
scheme) 

Osmani et al. (2008); Negapan et al. 2013; Cha et al. (2009) 
Al-Hajj and Hamani (2011); Bernold et al. (1991). 

     

Contractual 
Factors 

Waste minimisation clauses in contract documents Osmani (2013)      
Consistency in contract documents Domingo et al. (2009)     
Resolve contract document before procurement Ekanayake and ofori (2004)     
Contract completion before procurement activities Negapan et al. (2013)     
Freeze design before procurement processes Osmani et al. (2008)      
Discuss methods of waste minimisation with suppliers/sub-contractors WRAP (2009)      

Effective 
materials 

management 
 

Procurement and use of preassembled components  Formoso et al. (2001)      
Purchase pre-cut materials  McKechnie and Brown (2007)     
Optimisation of Materials Purchase to avoid over/under ordering and 
excess waste allowance 

Hassan et al. (2012); Faniran and Caban (1998); Marinelli 
et al. (2014); Saez et al. (2013) 

     

Purchase repairable, reusable and durable materials  Khanh and Kim (2014); Begum et al. (2007)     
Buying materials with reused packaging  WRAP (2009); Faniran and Caban (1998)     
Purchase secondary materials and reuse materials  Begum et al. (2007)      
Effective materials take-off Nagapan et al. (2013)      
Good quality materials to be purchased Nagapan et al. (2013)      
Purchase materials in conformity/adherence to carefully prepared 
specification 

Bernold et al. (1991); Muhwezi et al. (2012) 
     
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Underlying 
Features Procurement Measures for reducing construction waste  

References from extant literature Focus Groups 
1 2 3 4 

Avoid frequent variation order Nagapan et al. (2013)      
Order material with high content of recycled product  Teo and Loosemore (2001); Cha et al. (2009)     
Recycled aggregate to be procured WRAP (2009); Wang et al. (2010)      
Use of correct materials to prevent replacement  Muhwezi et al. (2012)     

Effective 
materials 
delivery  

Sufficient protection of materials during loading and unloading 
Garas et al. (2010); Hassan et al. (2012); Al-Hajj and 
Iskandarani (2011); Muhwezi et al. (2012) 

     

Good site access for delivery vehicle  Osmani et al. (2008)      
Avoidance of loosely supplied materials which usually lead to breakage  Nagapan et al. (2013); Hassan et al. (2012)     
Adequate and efficient delivery schedule Marinelli et al. (2014); Khanh and Kim (2014)     
Planning for good delivery system onsite Formoso et al. (2001)     

Waste 
effective 

handling and 
storage 

Waste-efficient procurement such as JIT Dainty and Brooke (2004); Marinelli et al. (2014)      
Vocational training on sorting and handling of materials  Yuan (2013)     

Improvement of materials handling system  
Oyedele et al. (2013); Adams et al. (2011); Hassan et al. 
(2012) 

    

Suitable and safe storage of materials  Al-Hajj and Hamani (2011); Ekanayake and Ofori (2004)      
Mechanical movement of materials  WRAP (2007)     
Logistic management to prevent double handling  Al-Hajj and Hamani (2011); Cha et al. (2009)     
Reduce excess of ordered material to avoid fracture of the material at the 
work site 

Del Río Merino et al. (2010) 
     
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 Construction Measures 

After combining measures identified through literature review and focus group 

discussions, 93 construction measures for low waste projects were established. These 

were grouped into five key categories of measures for engendering waste-efficient 

projects, with each having sub-underlying measures. They are as presented in Table 6.5.  

 

Based on the underlying features identified in Table 6.5 above, a conceptual framework 

of requisite construction measures for low waste project is presented in Figure 6.3. Apart 

from four key categories of measures, the framework suggests that 12 key measures 

underlie waste-efficient construction. Generalizability of these set of measures is further 

tested through quantitative studies as presented in the subsequent chapters.  
 

 
 

Figure 6.3: Framework of Construction Measures for waste minimisation 
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Table 6.5: Construction Measures for Engendering Low Waste Construction Projects.  

Key Features Construction Measures and competencies for reducing construction 
waste  

References from extant literature Focus Groups 
1 2 3 4 

Contractual Provisions and Contractors’ Dedication     

 
 

Contractors’ 
readiness for 

low waste 
projects 

Improved technical knowledge of construction professionals  Zhang et al. (2012); Oyedele et al. (2003)     
Improved major project stakeholders’ awareness about resource saving and 
environmental protection  

Yuan (2013b) 
    

Detect the construction activities that can admit reusable materials from the 
construction 

Del Río Merino et al. (2009) 
     

Carefully planned work sequence to prevent damages to works Muhwezi et al. (2012)     
Understanding and adoption of right work sequence and technology Zhang et al. (2012)     
Commitment of contractors’ representatives onsite  Cha et al. (2009)     
Adequate knowledge of construction methods and sequence Muhwezi et al. (2012)      
Cooperation of subcontractors  Cha et al. (2009)     

Contractual 
provisions for 
waste-efficient 

projects 

Contractual clauses to penalise poor waste performance  Dainty and Brooke (2004)      
Making sub-contractors responsible for waste disposal  Domingo et al. (2009)     

Incentives and penalties for waste management and casualties respectively  
Adams et al. (2011); Li et al. (2003); Al-Hajj and Hamani (2011); 
Chen et al. (2002); Cooper (1996); Cha et al. (2009)  

     

Waste target set for sub-trades Marinelli et al. (2014)     
Incentive in bidding for a contractor having a plan about decreasing waste 
and increasing recycle  

Jinkuang and Yousong (2011); Cha et al. (2009)  
     

Clearly defined/communicated waste management strategies Teo and Loosemore (2001)     
Additional tender premiums where waste initiatives are to be implemented Dainty and Brooke (2004)     
Recycling target to be set for every project  Oyedele et al. (2013)      

Construction Techniques and Strategies for Low Waste Projects     

Deconstruct- 
ability and 
reusability 
enhanced 
technique 

Use of hanging cradle  Poon et al. (2003)     
Reduced use of wet trades Baldwin et al. (2007)     
Construction with standard materials Cha et al. (2009)      
Ensure easy replacement of building element  WRAP (2009)      
Avoid gluing   WRAP (2009)      
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Key Features Construction Measures and competencies for reducing construction 
waste  

References from extant literature Focus Groups 
1 2 3 4 

Demountable building techniques   Yeheyis et al. (2013)       
Easily disassembled building elements WRAP (2009)      
Use lime mortar to ensure easy dismantling  WRAP (2009)     
Efficient framing  Yeheyis et al. (2013)     

Waste-efficient 
Formworks 

and falseworks  

Innovative/reusable formwork and falseworks Yuan (2013); Al Hajj and Hamani (2011)      
Use of metal formwork Jaillon et al. (2009); Tam (2008);        
Steel scaffolds   Wang et al. (2014)      
Metal/ non-timber hoarding Baldwin et al. (2007); Tam (2008)     
Large panel formwork Poon et al. (2003)      
Aluminium and plastic formwork  Poon et al. (2003)      

Prefabrication 
and offsite 
techniques 

Adopting modular construction techniques Yuan  (2013); Esin and Cosgun (2007)      
Precast bathroom Poon et al. (2003)      

Adoption of Modern Methods of Construction 
Poon et al. (2003); Begum et al. (2009); Lu and Yuan (2010); 
Osmani (2013) 

    

Employ offsite construction  Kozlovska & Splsacova (2013); Dainty & Brooke (2004)       
Precast Cladding, units and modules Poon et al. (2003)      
Use of mechanical fixtures  WRAP (2009)     
Prefabricated construction method  Chen et al. (2002); Jaillon et al. (2009); Baldwin et al. (2006)     

Construction Site Management Practices      

Site Planning 
for Low Waste 

Projects 

Establish a task group for onsite CWM  Yuan (2013b)     
Follow the project drawings designs to prevent carrying out unexpected 
mistakes Lu &Yuan (2010); Saez et al. (2013)     

Develop and implement waste management plans for every project Yuan (2013); Osmani et al. (2008); Garas et al. (2010); Hassan et 
al. (2012) 

     

Ensure fewer design changes during construction  Al-Hajj and Iskandarani (2011);       
Timely and effective communication of design changes to all parties 
concerned Faniran and Caban (1998)      

A thorough review of the project specifications by the contractor at the 
construction stage  Faniran and Caban (1998)      

Ensure effective communication and coordination of construction activities Osmani et al. (2008); Yuan (2013b)     
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Key Features Construction Measures and competencies for reducing construction 
waste  

References from extant literature Focus Groups 
1 2 3 4 

Prepare carefully planned site layout before construction activities Khanh and Kim (2014); Yuan (2013b); Formoso et al. 
 (2002) 

     

Effective coordination between all specialities onsite Garas et al. (2010)     

Waste 
segregation 

Provision of waste skips for specific materials (waste segregation) Al Hajj and Hamani (2011); Marinelli et al. (2014); Del Río 
Merino et al. (2010) 

     

Prefabrication space in the work site for the correct management of the C&D 
waste  Lu and Yuan (2013)     

Setting up temporary bins at each building zone  Jingkuang and Yousong (2011)     
Providing bins for collecting wastes for each subcontractor  Cha et al. (2009)     
Dedicated space for sorting of waste  Wang et al. (2010); Lu and Yuan (2010)      
Sorting wastes at an easily accessible area  Cha et al. (2009)      
Installing an information board to notice categories for separating waste Cha et al. (2009)     
Preventing waste mixture with soil  Jingkuang and Yousong (2011)     

Logistic 
Management 

Adequate site access for materials delivery and movement  Negapan, et al.  (2013)      
Logistic management to prevent double handling Al-Hajj and Hamani (2011)     
Central areas for cutting and storage  Tam (2008)      
Waste auditing to monitor and record environmental performance on-site  Dainty and Brooke (2004)     
Adequate on-site materials control system Osmani et al. (2008)     

Materials 
reuse 

Well planned site layout prepared and discussed with site workers WRAP (2013)     
Discussion with sub-contractors/ other consultants on the reuse of 
materials/components WRAP (2013)      

Reuse material scraps from cutting stock-length material into shorter pieces Faniran and Caban (1998)     
Maximisation of onsite reuse of materials Marinelli et al. (2014); Yuan (2013b)      
Periodic checks on the use of C&D waste containers  Saez et al. (2013)     
Soil remains to be used on the same site Begum et al. (2009)      
Educate clients about measures to reduce waste levels Dainty and Brooke (2004)     

 
Cultural Change, Legislation and Human Resources Management  

    

Cultural 
changes for 

Use of collaborative procurement route such as IPD Isikdag and Underwood (2010);       
Supply chain alliance with materials suppliers Dainty and Brooke (2004)      
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Key Features Construction Measures and competencies for reducing construction 
waste  

References from extant literature Focus Groups 
1 2 3 4 

driving low 
waste projects 

Early involvement of contractors at design stage Oyedele et al. (2013); Arain et al. (2004)      
Blame and gain sharing philosophy among parties Osmani et al. (2008); Fewing, 2013     
Completion of design document before construction Koskela, (2004)      
Design freeze before construction activities Oyedele et al. (2013)      
Use of common collaborative platform for information sharing Ilozor and Kelly, 2011      

Legislative 
and policy 

drivers of low 
waste projects 

Developing market structure for recycled materials Oyedele et al. (2009); Cha et al. (2009)     
Raising fees for mixed wastes Cha et al. (2009)     
Reducing fees for separated wastes Cha et al. (2009)     
Tax break for waste treatment equipment and secondary materials 
manufacturers/suppliers 

Oyedele et al. (2014); Jinkuang and Yousong (2011) 
     

Improved database management for construction wastes Cha et al. (2009)     
Award of points to waste management practices in sustainable design 
appraisal tools such as BREEAM 

 
     

Deconstruction plans as a legal requirement       
Require the use of proportion of recycled products in project       
Increased stringency of waste management regulations Lu and Yuan (2010)     
Integrate CWM into the assessment of construction contractor Yuan (2013b)      
Increase the landfill disposal fee Lu and Yuan (2010)     

Human 
resources 

coordination 
for waste-
efficient 
project 

Supervising waste management by a residential officer  Cha et al. (2009)     
Appointment of labour solely for waste management  Jinkuang and Yousong (2011)      
Little or no overtime for construction workers  Nagapan et al. (2013)     
Employing workers responsible for on-site waste collection  Yuan (2013)     
Waste management and materials handling vocational training for 
operatives 

Wang et al.  (2014); Esin and Cosgun (2007); Tam (2008); Ikau et 
al. (2013); Begum et al. (2009) 

    

Dedicated site team or specialist sub-contract package for on-site waste 
management  

Dainty and Brooke (2004) 
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6.8 Chapter Summary 

The qualitative research data collection processes, analytical approaches and findings 

were justified and presented in this chapter. Data was collected from 30 conveniently 

sampled participants, representing professionals involved from inception to completion 

of building construction projects, in four focus group discussions. To develop robust 

conceptual frameworks for the study, findings from the qualitative research were 

integrated with earlier findings from systematic review of the extant literature. A 

conceptual framework of waste-efficient process was drawn for each of design, 

procurement and construction stages of project delivery process. A combined framework 

of the design, procurement and construction measures and competencies for engendering 

low waste projects is as presented in Figure 6.4.  
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Figure 6.4: Holistic framework of design, procurement and construction requisites for low waste projects
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CHAPTER 7: QUANTITATIVE STUDY 

 

7.1 Chapter Overview 

This research involved both qualitative and quantitative studies at intensive and extensive 

level respectively. While the research processes and findings of the qualitative study have 

been presented in the previous chapter, overall processes involved in quantitative data 

collection and analysis are presented in this chapter. The research population and 

sampling techniques were justified and explained in the next section, which is followed 

by the processes involved in designing the quantitative research instrument. The approach 

to data collection and analysis are then justified and discussed before the findings of the 

statistical analysis are presented. A brief summary culminates the chapter.  

 

7.2 Population and Sampling Techniques 

Because of yearning for generalizability of the findings of this study, sampling of job 

professions was based on critical sampling technique (Creswell, 1998), requiring that 

every stakeholder involved in building delivery process and its waste management be 

represented. At this stage of data collection, two sampling techniques were used for 

reaching out to the research participants. To prevent potential bias in the study, random 

sampling technique was used as the main mode of recruiting participants for the study 

(Gravetter and Wallnau, 2013). Using directories of eight UK professional bodies and list 

of the top 100 construction companies as a sampling frame, 475 questionnaires were sent 

to randomly selected respondents through email and postal services. The eight 

professional bodies include Association of Project Managers (APM), Chartered Institute 

of Buildings (CIOB), Chartered Institute of Waste Managers (CIWM), Royal Institute of 

British Architects (RIBA), Chartered Institute of Architectural Technologists (CIAT), 

Institution of Civil Engineers (ICE), Institution of Structural Engineers (IStructE) and 

Royal Institute of Chartered Surveyors (RICS). 

 

In order to reach out to more respondents, snowballing sampling technique was also used 

to facilitate quantitative data collection. This sampling approach was facilitated by the 

network of contacts enjoyed. Other studies that have employed this sampling technique 

within the design and construction management include Akintoye et al. (1998), Oyedele 

(2013) and Hodgson et al. (2011), among others. The chain referral sampling process is 
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a simple and efficient technique that provides an avenue to reach out to a population that 

are difficult to sample when using other techniques (Biernacki and Waldorf, 1981). The 

technique was quite possible in the study due to the ease of social mobility of experts 

within the construction industry. With this sampling technique, additional 147 contacts 

were contacted for data collection, resulting into 622 invitations for the quantitative data 

collection. 

 

 

7.3 Questionnaire Design and Formulation  

In a bid to test wider applicability and acceptability of the findings of this study, it is 

important that generalizability of the measures to the experts within the industry be 

established. As such, a further quantitative research was carried out. At this stage of the 

study, the major consideration for selecting a mode of data collection is the ability to 

reach out to large participants within a short period, using a standardised research 

instrument. As such, a questionnaire was chosen as a medium of data collection because 

of its objective approach to collecting data from a large number of participants within a 

short period (Walliman and Baiche, 2005). 

  

The aim of using questionnaire survey is to determine the wider applicability of 

previously identified factors (descriptive) and to explain the reason why it takes certain 

form –analytical/explanatory (Buckingham and Saunders, 2004). Numbers of waste 

impacting factors identified through literature review and focus group discussions were 

integrated into a self-developed questionnaire, consisting of four major parts. 

 

 Sections of the Questionnaire  

The first part of the questionnaire contains general information about the respondents. 

This consists of their job titles, which could be architects, civil/structural engineer, project 

manager and site waste manager, among others.  This section also consists of the 

respondent’s years of experience within the construction industry. 

 

The second part (Part B) consists of 78 questions, eliciting experts’ knowledge of design 

practices, strategies and competencies for construction waste minimisation. The focus of 

this section is to establish the key and underlying design strategies and competencies for 
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engendering low waste. It is further divided into two sections; the first section addresses 

the strategies and processes for designing out waste, while the second section addresses 

the competencies required for driving the processes.  

 

Part C consists of 39 questions addressing materials procurement measures for 

minimising waste generated by construction activities. The goal of the section is to elicit 

experts' opinion on the key and underlying measures for engendering construction waste 

minimisation through materials procurement processes.   

 

Part D consists of 93 questions that address requisite construction measures for 

minimising waste generated by building projects. It consists of three major sections, with 

the first and second sections seeking to establish site management practices and 

construction strategies/techniques for reducing waste in construction projects. The third 

section seeks to elicit broader experts' knowledge of contractual provisions, 

legislative/policy measures and human resources management for waste-efficient 

projects. Part E and F asked general questions and requested additional comments from 

the participants.   

  

 Scale of Measurement  

Likert scale has been used as the scale of measurement for the study. Named after its 

inventor, Rensis Likert, the Likert scale is developed to measure attitude, opinion and 

belief by requiring people to respond based on the extent to which they agree with a 

statement or topic (Bowling, 1997). The Likert scale is based on the principle that the 

strength of experience and belief is on a continuum from "strongly agree" to "strongly 

disagree". Nunnally and Bernstein (2007) opined that Likert scales are very helpful in 

research, as they could be used in summing average response for each participant or 

question. While using Likert scales, respondents could be offered a bipolar scale with a 

choice of three, five, seven or even nine pre-coded responses, having a neutral point 

between the scales (Bowling, 1997; Buckingham and Saunders, 2004). In this study, a 

Likert scale of 1 to 5 was used to represent the degree of importance of the identified set 

of measures, where 1 = Not important, 2 = Less important, 3 = moderately important, 4 

= Important, 5 = Most important.  This provides an avenue for summing up the 
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participants’ response for each of the measures, thereby establishing the overall 

significant of each measure.  

 
 Pilot Study and its Evaluation Techniques 

As pre-coding ensures easy recording of questionnaire information and saves time on 

filling and analysis (Buckingham and Saunders, 2004), the questionnaire was pre-coded. 

Similarly, the research instrument was pilot tested to evaluate its content validity, 

predictive or concurrent validity and construct validity (Creswell, 2014; Buckingham and 

Saunders, 2004), which are all important for adequacy of information obtained through 

the research instrument (Tashakkori and Teddlie, 2010). Different numbers of 

participants have been recommended as required samples for pilot studies. For instance, 

Van Belle (2002) suggested 10 samples; Mooney and Duval (1993) recommended up to 

30 participants in preliminary instrument development, while Isaac and Michael (1995) 

argue that sample size of between 10 and 30 could be adequate. In this study, adequacy 

of the questionnaire was pilot tested by 18 professionals that are deemed information-

rich for the study. The purpose of the pilot study was to test the clarity of language, layout, 

the degree of depth, logic of the questions, and to perform a preliminary check of the 

proposed statistical analysis. 

 

At this stage, basic descriptive statistics such as frequency test and crosstabs analysis 

were used to evaluate the construct validity of the research instrument. By doing this, the 

pattern by which closely related questions were answered was used to evaluate the 

efficacy of internal constructs (Creswell, 2014). Feedback from the pilot study further 

helped in improving the questionnaire design, as it resulted in inclusion, removal and 

rephrasing of some of the questions that were earlier included on the questionnaire. After 

the pilot studies, the total questions on the questionnaire were 69, 30 and 89 for design, 

procurement and construction measures respectively.  

 

 

7.4 Data Collection 

After improving the research instruments through comments obtained from the pilot 

study, the questionnaire was administered through both face-to-face, postage and online 

medium to reach wider participants. The face-to-face approach is particularly preferred 
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as evidence shows that it is the most accurate and representative of research population 

(Szolnoki and Hoffmann, 2013). Using the interviewer administrated technique (face-to-

face), copies of the questionnaires were given to the respondents who filled and returned 

them immediately or at a later period. In addition to this, copies of the questionnaire were 

also sent to the sampled participants through returned paid envelopes. 

 

The face-to-face and postal medium of data collection were corroborated with an online 

system due to the ease of reaching out to wider participants and cheaper cost of 

implementation that characterised the online administration platform (Collins, 2010; 

Duffy et al., 2005). The online questionnaire was designed through Google forms, which 

is a free online platform for designing, distributing and analysing questionnaire. Link to 

the questionnaire was sent to the participants through their email addresses. Alternatively, 

Microsoft Word format of the questionnaire was emailed to some of the respondents, who 

filled the questionnaire by checking the options provided on the research instrument. In 

all, a total of 622 participants were invited for the quantitative data collection. 

 

 

7.5 Statistical Analysis Techniques 

The purpose of statistical analysis in this study is to establish patterns of response and 

ensure suitability of the collected data for further structural equation and system 

dynamics modelling analysis. At this stage of the study, different analyses were carried 

out for the purpose of data cleaning, validation and description. Reliability of the research 

instrument and various factors on the questionnaire was evaluated through Cronbach's 

alpha test. Approaches used for data screening include missing value analysis, detection 

of multicollinearity, skewness and kurtosis, and detection of multivariate outliers. 

 

After data cleaning and replacement of missing data, other analyses were also carried out 

to establish patterns in the responses. Descriptive statistics was performed to determine 

the distribution of the respondents and the ranking of various factors and measures 

available on the questionnaire. A non-parametric test was also performed to evaluate 

whether there is variance in the response patterns based on job roles of the respondents. 

The test measured the extent to which a group’s average differs from the overall average 

of all respondents.  
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7.6 Response rate 

After series of email reminders, 302 responses were received, representing a response 

rate of 48.6%. Out of these, 17 questionnaires failed preliminary analysis through 

incomplete information and unengaged responses, and they were removed from further 

analysis. Based on this, 285 questionnaires were used for statistical analysis and the 

structural equation modelling. A preliminary analysis was carried out on the respondents' 

information – section A of the questionnaire – to determine the distribution of the 

respondents, all of whom are from construction companies. Table 7.1 shows the 

distribution of the 285 respondents whose responses were used for data analysis. 

 

As shown in Table 7.1, 25.3% of the respondents are architects or design managers, 

19.6% are civil or structural engineers, 33.7% are project managers, 5.6% are site waste 

managers, while 15.8% belonged to others, which includes Lean practitioners, demolition 

specialists and sustainability experts, among others. The years of experience of the 

respondents also vary from a range of 1-5 to above 25years of industry experience, with 

36.5% of respondents having between 11 and 15years of experience.  

 

Table 7.1: Overview of the research respondents 

Item/Variables Groups/Labels Frequency Percentage (%) 

Job roles/titles 

 

Architects/design managers 72 25.3 
Civil/Structural Engineers 56 19.6 
Project managers 96 33.7 
Site waste managers 16 5.6 
Others 45 15.8 

Years of experience 

(years) 

1-5 31 10.9 
6-10 54 18.9  
11-15 104 36.5 
16-20 64 22.5 
21-25 16 5.6 
Above 25 16 5.6 

 

 

7.7 Preliminary Data Analysis and Screening 

In order to prepare the data for further statistical analysis, some preliminary data 

screening and cleaning were carried out. This involved missing value analysis, detection 

of unengaged respondents, detection of outliers, and determination of multicollinearity. 

A quick overview of the dataset and calculation of standard deviation for each of the 
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respondents shows that six of the respondents were unengaged, as their standard deviation 

return a value close to zero. Hence, they were removed from further data analysis. As 

recommended by Kline (2010), Mahalanobis distance (D) statistic of the structural 

equation modelling was used to test for any influential outlier in the data. With no output 

having a P1 less than 0.05, the finding suggests that there is no any significant outlier in 

the dataset. Further data screening shows that neither multicollinearity nor outlier exists 

in the dataset.  

 

 Missing Value Analysis 

Missing value analysis is a statistical process that helps in addressing concerns that are 

raised by incomplete data, which can affect the precision of statistical computation (Hill, 

1997). In order to prevent complexities in assumptions and theories behind statistical 

analysis, missing value analysis provides a procedural approach for treating incomplete 

data. It performs three key functions, which are identification and description of the 

patterns of missing values, estimation of means and other descriptive statistics, and 

replacement of missing values with estimated values (Kang, 2013). 

 

The missing value could be missing completely at random (MCAR), missing at random 

(MAR) or not missing at random (NMAR). Value is termed to be MCAR if the 

probability of having a missing value for a particular variable is related neither to the 

missing variable nor other observed variables in the data set. The statistical advantage of 

MCAR is that the analysis remained unbiased with the replacement of the missing value 

with an overall average for the variable (Kang, 2013). Missing value at random (MAR) 

describe a systematic nature of missing, where missing value could be explained by other 

variables in the dataset. In such case, the missing value could be determined by 

identifying the variable that could predict the value of the missing data. NMAR, on the 

other hand, occurs when the missing value is not at random, and it could not be predicted 

by another observed variable in the data set (Hill, 1997). The cases of NMAR are 

problematic, and the best approach to tackling such cases is either to delete the data set 

with the missing value or by modelling (Kang, 2013; Hill, 1997). 

 

While handling missing value, some researchers may choose to perform ad hoc procedure 

of substituting the missing value or discard the survey with missing items using listwise, 
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pairwise or case deletion technique (Kang, 2013). In this study, the listwise deletion has 

been used to remove survey responses with significant missing value. Through this 

process, 17 responses were completely removed from the data set, leaving 285 

questionnaire responses for further analysis. Nonetheless, nine of the useful 285 

responses have missing values ranging between 1 and 4 cases. SPSS missing value 

analysis with Expectation Maximization was carried out to test whether the data is 

considered MCAR. With the chi-square being statistically insignificant, the missing 

values are considered MCAR, and as such, they could be replaced by mean or median. 

Based on theoretical background that a mean is a reasonable estimate of an observation 

that is randomly selected from a normal distribution; mean substitution technique was 

used for the missing value. This is particularly suitable when less than 10% of data for a 

particular respondent are missing (Konanahalli et al., 2014). As such, the mean value of 

a variable is used to replace missing data for that variable. The approach ensures that the 

incomplete dataset is usable, without affecting the overall mean of each variable on the 

dataset. This according to Kang (2013) ensures that the data analysis remained unbiased 

with the replacement of the missing value. 

 
 Reliability analysis  

Internal consistency of criteria contained in the questionnaire, as well as the suitability of 

the data for analysis, was evaluated using Cronbach's Alpha. It is one of the common tests 

of reliability that determines average correlation or internal consistency of objects in a 

research instrument (Santos, 1999). This is in line with the recommendation that it is 

important that Cronbach's alpha coefficient be determined, especially when using Likert 

scale on a questionnaire (Field, 2009; Nunnally and Bernstein, 2007). With Cronbach's 

alpha ranging from 0 to 1, a value of 0.7 represents an acceptable consistency, 0.8 

indicates a good internal consistency, while a value of 0.9 demonstrates an excellent 

consistency of the scale of measurement (Nunnally and Bernstein, 2007; Tavakol and 

Dennick, 2011). In addition to the overall Cronbach's alpha for different categories of 

variables for design, procurement and construction, Cronbach's alpha if item deleted were 

also estimated for each category of the variable. In this case, any item with Cronbach's 

alpha above the overall value means that such item is not a good construct and should be 

deleted from the list of variables (Field, 2009). Results of the Cronbach's alpha for each 

category of variables are presented in Table 7.2 to 7.5. In addition to those shown in the 
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Tables 7.2 to 75, the overall Cronbach's alpha for design, procurement and construction 

measures were 0.831, 0.701 and 0.947 respectively. 

 

The Cronbach’s alpha if item deleted suggested that some of the factors were not 

contributing to the overall reliability of the dataset; and as such, they were deleted from 

the list. For the design factors, three factors have their Cronbach’s alpha coefficients 

above the overall value. The factors were DF27, DF40 and DF42 with Cronbach’s alpha 

if item deleted of 0.833, 0.838 and 0.835 respectively. After the three factors had been 

removed, standardised Cronbach's alpha coefficient for the design factor was 0.844, 

which indicates a good internal consistency of the scale. The overall Cronbach's alpha 

coefficient for design competencies was 0.881, with only one factor, DC25, having its 

Cronbach’s alpha if item deleted above the value. After removing the DC25 with the 

value of 0.894, the Cronbach's alpha for the design competencies increased to 0.894. The 

Cronbach’s alpha if item deleted shows that five variables were not contributing to the 

overall reliability of procurement factor as they have values of 0.709, 0.717, 0.745, 0.733 

and 0.751, all of which are above the overall value of 0.701. The factors were PF19, 

PF20, PF22, PF25 and PF26 respectively. After the factors had been removed from the 

dataset, the overall Cronbach's alpha of the procurement factors increased to 0.803, which 

indicates a good internal consistency according to Nunnally and Bernstein (2007). 

Similarly, the overall reliability of the construction factors increased from 0.947 to 0.949 

after six factors were deleted. The factors were CF2, CF8, CF46, CF48, CF67 and CF69, 

which have their Cronbach’s alpha if item deleted as 0.948 each.  

 

Apart from the overall reliability for each of design, procurement and construction 

measures, the reliability analysis was performed for the group of factors contributing to 

each of design, procurement and construction measures. The analysis shows a good total 

correlation for most of the items, while all the groups have their Cronbach's alpha above 

0.7. However, the analysis suggested that some of the items were not adequately 

contributing to the grouping, as they have their Cronbach’s alpha if item deleted above 

the group Cronbach’s alpha. The items that are meant to be deleted from further analysis 

are indicated in Tables 7.2 to 7.5.  
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7.8 Descriptive Statistics 

Descriptive statistics is an approach to summarising data collected in graphical and 

numerical formats. The numerical analysis computes such statistical analyses as means, 

frequency distribution, standard deviation and range, among others, while the graphical 

analysis creates stem and leaf display. Descriptive statistics provides opportunity for 

comparing and ranking between and within groups. In this study, descriptive statistics 

was carried out to generate the means and standard deviation for various factors 

underlying each of design, procurement and construction measures for minimising 

construction waste. Mean was used to determine the top ranked factors, as parametric test 

is considered to be suitable with larger sample size and normally distributed data (Hozo 

et al., 2005; Norman, 2010). 

 

According to Field (2009), mean testing is a measure of central tendency, usually 

employed by statisticians when there is need to determine the means and relative 

significance of a set of statistical variables. In order to establish the critical design, 

procurement and construction factors for engendering waste minimisation, the 

established measures were ranked based on their mean. Table 7.2 to 7.5 present the mean, 

standard deviation, overall ranking and ranking within group for the design, procurement 

and construction measures for engendering waste minimisation in construction projects. 

 

 
 Descriptive statistics for Design Measures 

Descriptive statistics was carried out to determine the key design measures for 

engendering waste minimisation in construction projects. IBM SPSS version 23 was used 

to compute the mean and standard deviation for each category of variables underlying 

waste-efficient design. The factors were ranked across the overall design factors and 

within the six dimensions for designing out waste. Based on the mean ranking, the top-

ranked design measures for engendering waste minimisation are: 

 

1. Designs are free of error  

2. Involvement of contractors at early design stage  

3. Design for standard dimensions and units  

4. Drawings and other details are coordinated between design disciplines 
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5. Design freeze at the end of design process.  

 

Table 7.2 shows the six underlying dimensions for designing out waste. The mean, 

standard deviation, Cronbach's alpha and ranking of the factors contained under each 

dimension are presented in the tables. The six dimensions are waste-efficient 

documentation, Waste-efficient design process, design for standardisation and 

dimensional coordination, design for Modern Methods of construction, design for 

flexibility and organic design. All the six dimensions show a good to an excellent internal 

consistency ranging from Cronbach's alpha coefficient of 0.797 to 0.937. The 

significance of the measures contributing to each dimension is indicated by in-group 

rankings on the table. 

 

 Descriptive statistics for Design Competencies 

In order to identify the key competencies that are essential for engendering low-waste 

design, descriptive statistics was carried out on previously identified designers' 

competencies. Mean and Standard Deviation were computed to determine the 

significance of all the competencies, which are further divided into four underlying 

competencies, which are design task proficiency, construction and materials related 

competency, waste behavioural competency and inter-professional competency. Based 

on the descriptive mean testing, the key competencies for designing out waste in order of 

their importance are as follows: 

 

1. Ability to coordinate dimension of building elements and components  

2. Ability to produce designs that are devoid of error  

3. Ability to coordinate design from all trades  

4. Ability to detect and prevent clash in design  

5. Ability to produce coherent and comprehensive design information 

 

Table 7.3 shows the four underlying competencies for designing out waste as well as the 

individual variables contributing to the underlying competencies. Apart from the overall 

ranking of the competencies, ranking of the variables within each group is presented in 

the table.  
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 Descriptive statistics for Procurement Measures 

Descriptive statistics was performed to determine the key procurement measures for 

reducing waste generated by construction activities. Based on the mean ranking, the top 

procurement measures for engendering construction waste minimisation are: 

1. Effective materials take-off 

2. Provision for unused materials to be taken away from site (take back scheme) 

3. Optimisation of materials purchases to avoid over/under ordering 

4. Materials purchase in adherence to materials specification 

5. Modification to products size and shapes in conformity with design 

Results of the descriptive statistics are presented in Table 7.4. In addition to the overall 

ranking of the measures, ranking of the factors within four identified dimensions of 

procurement measures are also presented in the table.  

 
 Descriptive statistics for Construction Measures 

As a means of establishing the key construction measures for minimising waste in 

construction projects, descriptive statistics was carried out on the established measures. 

Findings of the descriptive statistics show that the top construction strategies for 

minimising waste are as follows: 

 

1. Prefabricated construction method 

2. Supply chain alliance with materials suppliers 

3. Use of collaborative procurement routes such as IPD 

4. Adequate knowledge of construction methods and sequence 

5. Ensure fewer design changes during construction 

 

Detailed results of the descriptive statistics, involving mean, group ranking, overall 

ranking and standard deviation are presented in Table 7.5. 

 

 

7.9 Kruskal-Wallis Test for Significant Difference  

Kruskal-Wallis test is a non-parametric test that is used to determine whether there is a 

significant statistical difference between more than two independent groups of 

respondents regarding a variable (Field, 2009). In this study, the non-parametric test was 
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used to determine whether job positions of the respondents affect the pattern by which 

they ranked the variables at 95% confidence level. This means that the perception is 

deemed to be different if the Kruskal-Wallis coefficient is less than 0.05. The analysis 

was performed for the design, procurement and construction measures identified in the 

study.  

 

 Test for Significant Difference on Design Measures 

The Kruskal-Wallis test for significant difference was carried out on design factors to 

determine whether job positions affect the perception of the design measures for waste 

minimisation. As such, respondents' job positions were used as grouping variables, while 

the design factors were used as testing variables. As presented in Table 7.2, the Kruskal-

Wallis coefficient suggests that only one of the remaining 39 design factors was perceived 

differently by the respondents (P<0.05), representing 97.4% of agreement on the factors. 

Other factors have their P-Value greater than 0.05. This means that combining the 

responses for all the respondents will not affect overall reliability of the findings. 

Meanwhile, the only factor with differing perception is “involvement of contractors at 

early design stage” (DF4), which has a P-Value of 0.009. A further probe into the 

different groups' mean suggested that the factor was ranked high by project managers, 

site waste managers and civil/structural engineers, while architect/design managers posit 

that the factor is of less importance. 

 

 Test for Significant Difference on Design Competencies 

Kruskal-Wallis test was carried out to check for significant difference in perception of 

design competencies based on job role. The result suggests that at 95% confidence level, 

there is no difference in the perception of the respondents based on their job positions, as 

P > 0.05 for all factors. Kruskal-Wallis coefficients are displayed in the last column of 

Table 7.3. 

 
 Test for Significant Difference on Procurement Measures 

Kruskal-Wallis test for significant difference on procurement measures shows that there 

is no difference of perception among the research participants based on job roles, as P > 

0.05 for all factors. This shows that the data could be combined and analysed to establish 

the key procurement measures for engendering low waste construction process. Kruskal-



127 
 

Wallis coefficients for the procurement measures are displayed in the last column of 

Table 7.4. 

 
 Test for Significant Difference on Construction Measures 

The Kruskal-Wallis test for significant difference was carried out on construction factors 

to evaluate whether job positions affect the perception of the construction strategies for 

waste minimisation. The null hypothesis was that the distribution of all the factors is the 

same across job titles of respondents. The result suggests that none of the factors was 

perceived differently at 95% confidence level, as P > 0.05 for all factors. This confirms 

the null hypothesis for all the factors.  As an output of non-parametric test, Kruskal-

Wallis coefficients for the construction factors are shown in the last column of Table 7.5.  
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Table 7.2: Descriptive and non-parametric analysis of design measures 
 

Label Design factors for driving waste-efficient projects Mean SD 
Rank 
within 
group 

Overall 
Rank 

Cronb. 
Alpha 

Kruskal- 
Wallis 
coeff. 

A Waste-efficient design documentation 
DF1 Design are free of error 4.4412 .56091 1 1 

0.797 

.574 

*DF8 Include waste management into assessment of stakeholders 3.6176 1.01548 5 21 .463 

DF29 Produce disassembly and deconstruction plan 3.0000 .95346 9 35 .427 

DF33 Specifications are detailed & devoid of under/over ordering 3.9412 .88561 3 10 .579 

DF34 Waste management plan is prepared along with design 3.5882 .95719 6 22 .891 

DF35 Drawings and other details are devoid of clash 4.1471 .78363 2 6 .573 

*DF36 Bar bending list is prepared as part of documentations 3.000 1.12815 9 36 .262 

DF37 Drawing and specifications are written in conventional lang. understood by all 3.7353 1.05339 4 16 .186 

DF38 Drawing documents are legible 3.2941 .90552 8 31 .552 

*DF39 Waste scenario planning 3.3824 .98518 7 29 .704 

B  Waste-efficient design Process 
DF2 Completion of contract documents before construction process 3.9118 .93315 5 12 

0.932 

.605 

DF3 Design freeze at the end of design process 4.2059 .76986 3 5 .764 

DF4 Involvement of contractors at early design stage 4.2647 .79043 1 2 .009*** 
*DF5 Pre-design meetings of key stakeholders 3.5294 1.02204 8 25 .169 

DF6 Early collaborative agreement before design activities 3.7941 1.00843 6 14 .279 

*DF7 Give economic incentives and enablers to designers 3.0882 1.13798 10 34 .254 

DF9 Adequate coordination of various specialities involved 3.7353 .93124 7 17 .496 

DF11 Improved communication between various specialities 4.0588 .64860 4 8 .198 

DF12 Implementation of sustainable building assessment procedure (such as BREEAM) 3.3235 1.24853 9 30 .761 

DF13 Drawings and other details are coordinated between design disciplines 4.2647 .93124 2 4 .282 

C Design for standardization and dimensional coordination 

 DF14 Detailing of the building elements is simple and clear 3.8824 .91336 4 13 

0.859 

.301 

*DF15 Complex designs are adequately detailed 3.5294 1.10742 7 26 .780 

DF16 Building forms and layout are standardised 3.9412 .85071 3 11 .583 

DF18 Coordinate dimensions of building elements  4.0882 .96508 2 7 .645 

DF19 Tiles layout is optimised in conformity with design shape 3.4118 .95719 9 28 .480 
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Label Design factors for driving waste-efficient projects Mean SD 
Rank 
within 
group 

Overall 
Rank 

Cronb. 
Alpha 

Kruskal- 
Wallis 
coeff. 

DF20 Specify the use of full height door or doors with fanlight 2.8529 1.10460 11 37 .141 

DF21 Standardise doors, windows and glazing areas 3.6765 .87803 5 18 .176 

DF22 Avoid overly complex design 3.2059 1.47257 10 32 .958 

*DF31 Carefully integrate building sub-system 3.4706 .92884 8 27 .280 

*DF32 Coordination of structural grid and planning grid 3.5882 1.07640 6 23 .412 

DF41 Design for standard dimensions and units 4.2647 .66555 1 3 .365 

D Design for Modern Methods of Construction 
DF23 Specification of prefabricated structural materials 3.5588 1.02073 3 24 

0.801 

.803 

DF24 Design for preassembled components e.g. bathroom pods 3.7647 .78079 2 15 .942 

DF25 Employ volumetric modular design principles 4.0000 .77850 1 9 .343 

DF26 Specify the use of drywall partitions (e.g. timber walling) 2.7647 .92307 4 39 .411 

E Design for flexibility  
DF28 Design for collapsible and easily demountable components 3.1176 1.06642 1 33 0.937 .703 

DF30 Specify the use of joint system without glueing and nailing 2.8824 1.09447 2 37 .212 

F Organic Design 
DF10 

DF17 

Drawings consider and integrate existing site utilities 3.6765 .91189 1 19 0.716 .393 

Drawings consider and integrate site topography 3.6471 1.06976 2 20 .784 

 

 

Table 7.3: Descriptive and non-parametric analysis of design competencies 

Label Design competencies for designing out waste Mean SD 
Rank 
within 
group 

Overall 
Rank 

Cronb. 
Alpha 

Kruskal- 
Wallis 
coeff. 

A Design task competencies 

DC1 Ability to produce designs that are devoid of error 4.4412 0.56090 2 2 

0.888 

0.3038 

DC2 Knowledge and ability to design for standard materials  4.3529 0.73370 5 6 0.0511 

DC5 Ability to produce drawings in response to site shape and topography 3.9118 1.05507 7 14 0.0522 
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Label Design competencies for designing out waste Mean SD 
Rank 
within 
group 

Overall 
Rank 

Cronb. 
Alpha 

Kruskal- 
Wallis 
coeff. 

DC6 Ability to produce comprehensive design information 4.3824 0.69695 4 5 0.4722 

DC9 Proficiency in detailing of design elements 3.6471 1.01152 10 22 0.0607 

*DC12 Proficiency in design tools and vocabularies 3.3529 0.94971 11 25 0.8689 

*DC13 Proficiency in design flexibility and adaptability 3.8235 0.86936 9 16 0.6859 

DC14 Ability to coordinate dimension of building elements and components 4.4412 0.70458 1 1 0.4751 

DC15 Ability to effectively design for preassembled components 3.8529 0.85749 8 15 0.7218 

DC22 Ability to detect and prevent clash in design 4.3824 0.73915 3 4 0.9980 

DC24 Awareness and use of standard detail and specification 4.1765 0.83377 6 11 0.7219 

B  Construction and materials related competencies 

DC3 Knowledge of construction methods 4.264 0.9632 2 9 

0.825 

0.1036 

DC4 Knowledge of construction sequence 4.029 0.8343 3 13 0.9487 

DC7 Knowledge of materials durability that prevents early replacement of materials 3.764 0.9553 6 20 0.2350 

DC10 Proficiency in materials specification 4.294 0.5788 1 7 0.2021 

DC11 Ability to identify and integrate reusable elements into design 3.764 1.0461 5 19 0.6544 

DC16 Knowledge and specification of secondary materials 3.529 0.8956 7 24 0.7788 

*DC26 Awareness of materials quality and durability 3.794 0.6866 4 18 0.4945 

C Waste behavioural competencies  

DC8 Ability to consider different design options based on their likely waste output 3.705 1.0307 3 21 

0.719 

0.7708 

DC17 Awareness and belief in design causes of waste 4.264 0.8637 1 8 0.1143 

DC27 Proficiency in waste scenario planning  4.205 0.5918 2 10 0.3818 

D Inter-professional competency 

DC18 Ability to coordinate design from all trades 4.441 0.6125 1 2 
0.754 

0.5949 

DC19 Inter-professional conflict resolution 3.617 1.1013 4 23 0.3365 
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Label Design competencies for designing out waste Mean SD 
Rank 
within 
group 

Overall 
Rank 

Cronb. 
Alpha 

Kruskal- 
Wallis 
coeff. 

DC20 Knowledge of roles and responsibility of team members 3.823 1.1138 3 17 0.9659 

DC21 Effective communication of design information  4.147 0.8574 2 12 0.0565 

*DC23 Ability to collaborate with the project team 3.117 0.9133 5 27 0.5404 

 

Table 7.4: Descriptive and non-parametric analysis of procurement measures 

Label Procurement measures for waste-efficient projects Mean SD 
Rank 
within 
group 

Overall 
Rank 

Cronb. 
Alpha 

Kruskal- 
Wallis 
coeff. 

A Delivery planning and scheduling 
PF16 Protection of materials during loading and unloading 4.029412 0.7971

 

1 8 

0.756 

0.8644 
PF17 Good site access for delivery vehicle 3.705882 1.1422

 

2 14 0.5337 
PF18 Avoid loosely supplied materials 3.294118 1.1422

 

4 24 0.2928 
*PF27 Planning for good delivery schedule onsite 3.294118 1.0307

 

4 23 0.5163 
PF30  Improved materials handling system 3.382353 0.8881

 

3 22 0.2810 
B  Suppliers’ alliance and commitments 

PF1 Procurement route that minimises packaging 3.764706 1.1297

 

4 13 

 

0.802 

 

0.8907 
PF2 Supplier flexibility in providing small quantities of materials 3.676471 0.7675

 

5 15 0.7783 
PF3 Modification to products size and shapes in conformity with design 4.147059 0.8574

 

2 4 0.2802 
PF4 Collecting package materials back by suppliers 3.941176 0.9829

 

3 10 0.5427 
*PF5 Collecting back recyclable materials 3.647059 1.2030

 

6 18 0.2439 
PF6 Provision for unused materials to be taken away from site (take back scheme) 4.176471 0.7576

 

1 2 0.4952 
C Low waste materials purchase management  
PF7 Procurement and use of preassembled components 4.117647 0.9133

 

1 5 

 

0.746 

 

0.4014 
PF8 Purchase of pre-cut materials 3.970588 0.7581

 

3 9 0.3190 
PF10 Purchase durable materials 3.558824 1.1062

 

7 19 0.7935 
PF11 Buying materials with reusable packaging 3.823529 0.9991

 

4 12 0.9548 
PF14 Order material with high content of recycled product 3.676471 1.1473

 

5 15 0.7682 
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Label Procurement measures for waste-efficient projects Mean SD 
Rank 
within 
group 

Overall 
Rank 

Cronb. 
Alpha 

Kruskal- 
Wallis 
coeff. 

PF15 Procure recycled aggregate instead of virgin aggregates 3.676471 1.0932

 

5 15 0.5170 
PF23 Purchase of secondary materials 3.5 1.2370

 

8 20 0.1454 
PF28 Use of Just-In-Time (JIT) procurement system 4.058824 0.7361

 

2 7 0.9011 
*PF29 Reduced excess order to avoid breakage 3.235294 0.8548

 

9 25 0.2855 
D Waste-efficient bill of quantity 
PF9 Optimisation of materials purchases to avoid over/under ordering 4.176471 0.7576

 

2 3  

0.784 

 

0.6233 
PF12 Effective materials take-off 4.205882 0.9464

 

1 1 0.3089 
PF13 Avoid frequent variation order 3.470588 1.0220

 

4 21 0.8803 
PF21 Design freeze before materials procurement 3.882353 1.0376

 

3 10 0.9478 
 

Note for Tables 7.2, 7.3, 7.4 and 7.5: *denotes factors that have “Cronbach’s Alpha if item deleted” above their individual groups' Cronbach's Alpha, 

suggesting that the factors should be deleted to enhance and standardise the groups' reliability.  

 

***denotes factors having significant Kruskal-Wallis coefficient at 95% confidence level. This means that respondents differ in their perception of the 

factor based on their job position. This affected only DF4 on Table 7.2.   

 

Table 7.4: Descriptive and non-parametric analysis of construction measures 

Label Construction strategies for waste minimisation Mean SD 
Rank 
within 
group 

Overall 
Rank 

Cronb. 
Alpha 

Kruskal- 
Wallis 
coeff. 

A Site planning 

CF12 Follow the project drawings/designs 4.2353 .923 3 8 

 

0.872 

.458 
CF17 Ensure fewer design changes during construction 4.2941 .871 1 5 .618 
CF29 Establishing task group for onsite CWM 3.0000 .953 9 74 .823 
CF30 Development and implementation of waste management plan 4.1471 .857 6 13 .130 
CF31 Effective communication of design change 4.1765 .673 4 10 .281 
CF32 Thorough review of project specifications by contractors 3.8824 1.038 8 29 .261 
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Label Construction strategies for waste minimisation Mean SD 
Rank 
within 
group 

Overall 
Rank 

Cronb. 
Alpha 

Kruskal- 
Wallis 
coeff. 

*CF33 Effective communication and coordination of construction activities 4.0000 .853 7 20 .889 
CF34 Preparation of site layout planning before construction 4.1471 1.019 5 12 .160 
CF39 Ensure conformity with design dimension 4.2647 .751 2 7 .130 
B Waste segregation 

CF11  Prefabrication space in the work site for correct management of C&D waste 3.4118 .957 7 61 

0.901 

.313 
CF14  Preventing waste mixture with soil 3.9706 .870 3 25 .354 
CF15  Providing bins for collecting wastes for each sub-contractor 3.3529 1.203 8 63 .966 
CF16  Dedicated space for sorting of waste 3.7647 .923 4 42 .401 
CF18  Setting up temporary bins at each building zone 3.6176 .739 6 50 .909 
CF22  Provision of waste skips for specific materials (waste segregation) 4.2647 .618 1 6 .389 
CF25  Sorting and reuse/recycling of waste 4.1471 .657 2 11 .766 
CF35 Installation of information board to notice categories for waste separation 3.6765 .806 5 47 .895 
C Logistic management 

 CF3  Use of safe materials storage facilities 3.8235 .968 2 32 

 

0.888 

.501 
CF4  Onsite movement of materials through mechanical means 3.7059 1.001 5 46 .561 
CF5  Prevention of double handling of materials 4.0294 .937 1 17 .441 
CF19  Adequate site access for materials delivery and movement 3.7941 1.008 3 41 .393 
CF20  Waste auditing to monitor and record environmental performance on-site 3.7059 1.001 4 45 .178 
CF21  Central areas for cutting and storage 3.5294 .896 6 57 .585 
*CF27 Mechanical movement of materials 2.8235 1.029 9 80 .383 
*CF28 Logistic management to prevent double handling 3.1471 1.234 8 71 .096 
*CF37 Adequate on-site materials control system 3.2647 .864 7 66 .994 
D Materials reuse 

CF6  Use of reclaimed materials 3.8235 .936 3 33 

 

0.849 

 

.666 
CF9  Reuse of off-cuts materials (such as wood) 3.6176 .922 6 50 .788 
CF10  Use of demolition materials and excavation for landscape 3.7941 1.200 5 39 .598 
CF13  Periodic checks on the use of C&D waste containers 3.4412 1.021 8 60 .889 
CF23  Reuse material scraps from cutting stock-length material into shorter pieces 3.5882 .957 7 54 .947 
CF24  Soil remains to be used on the same site 3.9706 1.114 2 23 .789 
CF26  Maximisation of onsite reuse of materials  4.0588 .952 1 16 .377 
CF36 Discussion with sub-contractors on the reuse of materials 3.8235 .999 4 38 .760 
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Label Construction strategies for waste minimisation Mean SD 
Rank 
within 
group 

Overall 
Rank 

Cronb. 
Alpha 

Kruskal- 
Wallis 
coeff. 

CF83  Educate clients about measures to reduce waste levels 3.2353 1.182 9 68 .759 
E Deconstruct- ability and reusability enhanced technique 

CF7  Construction with standard materials 3.8529 .958 2 31 

0.749 

.571 
CF38  Reduced use of wet trades (such as cast in-situ) 3.2647 1.024 4 65 .961 
CF44  Use of mechanical fixtures instead of glueing and nailing  2.8529 .892 7 78 .273 
CF45  Use of lime mortar 2.3824 .888 8 83 .849 
CF47  Use of demountable building techniques (such as collapsible partitions) 2.9118 1.138 6 77 .122 
CF53 Construction with standard materials size 4.2059 .538 1 9 .880 
*CF54 Consider replace-ability of building materials/components 3.1765 .936 5 70 .298 
CF55 Efficient framing techniques 3.6765 .768 3 47 .413 
F Waste-efficient Formworks and falseworks 

CF41  Use of reusable formwork and false work 3.8235 .904 1 36 
0.800 

.310 
CF42  Use of Steel Scaffolds  2.9412 1.153 2 76 .674 
CF43  Metal (non-timber) hoarding 2.6176 .954 3 81 .283 
G Prefabrication and offsite technology 

CF40  Use of Precast components such as bathroom and kitchen pods 3.8529 .989 5 30 

0.874 

.885 
CF49  Adoption of modular construction technique 3.9706 .870 4 26 .483 
CF50  Employment of offsite construction technology 4.1176 .880 2 14 .551 
CF51  Use of precast cladding, units and modules 4.0294 .870 3 18 .292 
*CF56 Prefabricated construction method 4.4706 .615 1 1 .436 
H Contractual provisions 

CF57  Contractual clauses to penalise poor waste performance  4.0000 .921 1 20  

  

0.993 

 

.095 
*CF58  Incentives for effective waste management practices 3.9118 .712 3 28 .336 
CF59  Incentive in bidding for a contractor having a plan about decreasing waste/increasing recycle 2.9706 1.029 7 75 .286 
CF61  Making sub-contractors responsible for waste disposal 3.5882 1.209 6 55 .878 
*CF64 Additional tender premium for implementing waste initiatives 2.8235 .968 8 79 .670 
CF65  Waste target set for sub-trades 3.8235 1.086 4 33 .695 
CF70  Complete and resolve contract document before procurement 3.6176 .888 5 52 .553 
CF77  Clear definition and communication of waste management strategies 4.0000 .816 2 20 .156 
I Contractors' dedication and competencies 
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Label Construction strategies for waste minimisation Mean SD 
Rank 
within 
group 

Overall 
Rank 

Cronb. 
Alpha 

Kruskal- 
Wallis 
coeff. 

CF1  Detect the construction activities that can admit reusable materials from the construction 3.7647 .855 4 42 

0.757 

.989 
CF52 Adoption of right work sequence 4.0294 .758 2 18 .853 
CF60  Improved project stakeholders’ awareness of resource saving techniques 3.7647 .987 4 42 .105 
CF62 Adequate knowledge of construction methods and sequence 4.2941 .760 1 4 .268 
CF63 Cooperation of subcontractors 3.5294 .788 7 57 .486 
*CF66 Improved technical knowledge of construction professionals 3.2059 1.149 8 69 .917 
CF68 Carefully planned sequence of work to prevent damages to previously completed work 3.9118 .933 3 27 .740 
*CF71  Discuss methods of waste minimisation with suppliers/sub-contractors 3.5882 .701 6 53 .754 
J Cultural factors 

*CF73 Early completion of design documentation before constructn 3.8235 .758 3 33 
 

0.776 

.334 
CF74 Use of collaborative procurement routes such as IPD 4.3235 .535 2 3 .433 
CF75 Use of common collaborative platform for information sharing 3.7941 .845 4 40 .307 
CF76 Supply chain alliance with materials suppliers 4.3529 .646 1 2 .505 
K Legislative and Policy Provisions       

*CF84  Government to develop market structure for recycled materials 3.6471 1.070 4 49 

 

0.729 

.672 
CF85  Reducing landfill tax for separated wastes and raising fees for mixed wastes 3.8235 .936 3 36 .451 
CF86  Tax break for waste treatment equipment and secondary materials manufacturers/suppliers 3.5000 1.080 5 59 .441 
CF87  Increased stringency of waste management regulations 3.9706 .870 2 24 .196 
CF88  Integrate CWM into the assessment of construction contractor 3.2941 1.060 6 64 .454 
CF89 Award of more points to waste management in sustainable design appraisal 4.0882 .712 1 15 .138 
L Human Resources Management Measures 

CF72  Improved stakeholders’ awareness of environmental protection 3.0882 .866 5 73 

 

0.741 

.263 
CF78  Supervising waste management by a residential officer 3.2647 .931 3 66 .182 
*CF79  Little or no overtime for construction workers 2.4118 1.258 6 82 .815 
CF80  Employing workers/task group responsible for on-site waste management 3.4118 .957 2 62 .726 
CF81  Waste management and materials handling vocational training for operatives  3.5882 .821 1 55 .869 
CF82  Dedicated site team or specialist sub-contract package for on-site waste management 3.1176 1.008 4 72 .569 
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7.10 Validity and Reliability 

The process of validating and ensuring credibility and reliability differ for both 

qualitative and quantitative data (Guba and Lincoln, 1994). In qualitative studies, 

trustworthiness features are usually used to address what quantitative research would 

address as credibility issues (Bloomberg and Volpe, 2012). Irrespective of terminologies, 

which might include credibility, confirmability, dependability, reliability and validity 

among others, a researcher must seek to prevent potential biases that could mar the 

design, implementation and analysis of data. The credibility of a study is an important 

phenomenon that determines how well the study is accurate from the standpoint of the 

researcher, participants and the readers (Merriam, 1998; Bloomberg and Volpe, 2012). 

According to Mason (1996), credibility of a study is concerned with methodological and 

interpretive validity. Methodological validity describes how well the adopted research 

procedural approach is suitable for the problem under evaluation as well as the nature of 

explanation the researcher seeks to pass across. A potential way of addressing this is to 

critically evaluate various components of research design and the adopted method 

(Bloomberg and Volpe, 2012). 

 

In a quantitative study, reliability and validity of the research instrument are required for 

decreasing errors that could be due to measurement problems. Validity in a quantitative 

study, therefore, refers to accuracy and precision of both the research instrument and the 

measurement procedure (Buckingham and Saunders, 2004). In this study, stability of the 

research instrument regarding its face and content validity was ensured through pilot 

study, which was carried out with 18 participants before actual data collection. Internal 

(construct) validity particularly evaluates whether respondents' answer to closely related 

questions would be consistent (Buckingham and Saunders, 2004). It benchmarks the 

validity by evaluating the agreement between the measures and theoretical entity. Internal 

(construct) validity of the measurement taken on the Likert scale was also assessed from 

the results of the pilot study. 

 

After collecting the data, reliability of the scale and the whole data was enhanced through 

preliminary analysis such as missing value analysis, Mahalanobis distance statistics, 

multicollinearity screening, detection of unengaged responses, and reliability analysis. 
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Deletion of factors that were negatively affecting reliability of the scale enhanced overall 

reliability of the data and findings of the study.  
 

 

7.11 Chapter Summary  

Quantitative approach was used as a means of data collection and analysis at the second 

stage of the study. Using findings from literature review and qualitative studies, a 

questionnaire was designed, pilot-tested and administered for data collection. 

Respondents were recruited through random sampling of databases of construction 

professional bodies and top UK construction companies, as well as through network of 

contacts within the UK construction industry. Pilot studies were used to improve the 

questionnaire, which was subsequently administered through face-to-face, postage and 

online platform. Out of 622 experts that were contacted, 302 respondents completed the 

questionnaire, representing a response rate of 48.6%. In order to ensure reliability of the 

findings, some preliminary data analyses were performed. These include missing value 

analysis, detection and removal of unengaged responses, Mahalanobis distance (D) 

statistics for detecting outliers, and reliability analysis.  

 

Reliability analysis of the whole factors resulted in a deletion of three, five and six factors 

for each of design, procurement and construction measures respectively. After grouping 

the variables based on their underlying factors, standardisation of Cronbach's Alpha 

required deletion of some factors to enhance groups' reliability. This resulted into 

Cronbach's Alpha ranging from 0.719 to 0.993, with 53 out of 69, 22 out of 30 and 70 

out of 89 factors established as being reliable for various groups of design and design 

competencies, procurement, and construction measures for waste minimisation 

respectively. Based on established groups with good value of Cronbach's Alpha, 10, 4 

and 12 factors underlie each of design, procurement and construction measures 

respectively. 

 

After achieving standardised Cronbach's Alpha, ranking of the factors was done using 

descriptive statistics. The factors were ranked within and across groups of design, 

procurement and construction measures, leading to an establishment of the key/critical 



138 
 

design, procurement and construction strategies for minimising waste in construction 

projects. 

 

In order to confirm whether the respondents perceived the factors in the same way, 

Kruskal-Wallis test was carried out on all the factors. Out of 69, 30 and 89 factors 

contained on the questionnaire for design, procurement and construction factors, only one 

design factor (DF4) was perceived differently. This represents less than 1% of all the 

factors, suggesting that job position of the respondents does not affect their perception of 

the factors. This means that combination of all the responses for further analysis would 

have no impact on the credibility and reliability of the finding.  
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CHAPTER 8: STRUCTURAL EQUATION 

MODELLING 

 

8.1 Chapter Overview 

In addition to descriptive statistics and non-parametric test, results of reliability analysis 

were presented in the previous chapter. The reliability analysis suggested that some 

factors were not contributing to the overall reliability of the groups; and as such, they 

were highlighted for removal from further analysis. In this chapter, structural equation 

models are developed to confirm the established factor structure, thereby testing the 

correlation and causal relationships between the observed variables and latent factors. 

The use of Structural Equation Modelling (SEM) is justified in the next section before 

discussion of various model fitness indices. This is followed by Confirmatory Factor 

Analysis (CFA) for second order factors of design, procurement and construction 

measures. Structural Model was developed to confirm relationship between design, 

procurement and construction measures, as well as their impacts on project waste output. 

The structural model helped to establish factor weighing, which is a significant input into 

System Dynamic Modelling that is presented in the next chapter.  
 

 

8.2 Use of Structural Equation Modelling 

Structural Equation Modelling (SEM) is a widely used multivariate technique for 

exploring and testing relationship between variables; and it encompasses regression 

analysis, factor analysis, multiple correlation and path analysis (Hair et al., 2006). Apart 

from its combination of these sets of analysis, SEM has an ability to estimate multiple 

interrelated relationships, while also taking care of measurement errors (Kline, 2010). It 

is also helpful in understanding model performance algorithms, as it provides visual 

representation of the complex relationships between constructs (Chen et al., 2011). Due 

to many benefits of SEM, it has been widely used in construction-related studies. For 

instance, Xiong et al. (2014) examine influence of participant performance factors on 

contractors’ satisfaction, using structural equation modelling. Mainul Islam and Faniran 

(2005) construct a SEM to investigate factors influencing project planning effectiveness, 

while Chen et al. (2012) employed SEM to investigate interrelationships among critical 
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success factors of construction projects. More recently, Xiong et al. (2015) carry out a 

review of 84 construction-related studies that employed SEM between 1998 and 2012.  
 

Modelling in SEM consists of two categories of variables, which are observed and latent 

variables. The former are the variables that are measured directly usually through item 

rating scale on questionnaires. The latter are dependent variables that cannot be observed 

directly, but they are constructed using some observed variables (Kline, 2010). Similarly, 

SEM consists of measurement model and structural model. While measurement model 

employs Confirmatory Factor Analysis (CFA) that evaluates how well the latent variables 

are represented by observed variables, structural model is the representation of the 

relationship between latent variables (Hoyle, 1995). Measurement models are valuable 

in establishing the reliability and validity of observed variables on the model, while 

structural models help in estimating relationship between latent (unobserved) variables 

(Kline, 2010). 

 

In order to understand the key dimensions of measures for minimising waste in 

construction project, through design, procurement and construction stages of project 

delivery, SEM is used in the study. A key benefit of using SEM in this study is that its 

CFA helps in confirming the relationship between measured variables and independent 

variables. It also helps in establishing magnitude and significance of the latent variables, 

which is a valuable input into dynamic system modelling that is presented in Chapter 9. 
  

 

8.3 Model Fitness 

In SEM, model fitness refers to the extent to which the data reflects the theory or 

propositions underlying the model. Although there is wide disparity about most suitable 

model fit indices as well as the cut-offs for various indices, model fitness remains a key 

step and requisite in SEM (Hooper et al., 2008). Based on its importance, several criteria 

for goodness of fit have been developed. These are generally in three categories, which 

are absolute fit, incremental fit and parsimonious fit (Xiong et al., 2014). Predictive fit 

indices are the fourth index category introduced by Kline (2010), and they are population-

based rather than being sample-based like others. It is important to use some fit indices 

across the three categories, especially as each index considers a unique aspect of the 

model (Crowley and Fan, 1997). Hair et al. (2010) suggests the use of alternative indices 
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across the categories, especially the Chi Square (X2) and assumed differences, Root Mean 

Square Error of Approximation (RMSEA) and Comparative Fit Indices (CFI). Similarly, 

Kline (2010) recommends the use of Chi-Square (X2), RMSEA, Global Fit Index (GFI), 

CFI, PCLOSE and Standardized Root Mean Square Residual (SRMR). The categories of 

model fit indices are explained below.  
 

 Absolute Fit 

Absolute fit indices explain the proportion of covariance in the sample data matrix that is 

explained by the model (Kline, 2010). It is similar to R2 statistics except that it explains 

the relationship between model and data rather than the explanatory power that is 

explained by R2 statistics. An absolute fit index of 0.75 suggests that 75% of covariance 

is explained by the model (Kline, 2010). Fitness indices in this category are Chi-Square 

(χ2), RMSEA, GFI, AGFI, SRMR and RMR.  

 

Model Chi-Square (χ2) evaluates overall model fit, and it assesses the extent of 

discrepancy between the data and covariance matrices. A good fit model produces 

insignificant χ2 at 95% confidence level, and as such, Chi-Square (χ2), is usually referred 

to as badness of fit (Hooper et al., 2008). A major limitation of this test is its sensitivity 

to sample, meaning that it may reject model with large sample size while providing bad 

fit for model with small sample (Kenny and McCoach, 2003). An alternative approach to 

this limitation is the use of relative/normed Chi-Square (χ2/df), which have acceptable 

value ranging from 2.0 to 5.0 (Hooper et al., 2008).  

 

RMSEA is another important fit index that evaluates the extent to which the model would 

fit the populations' covariance matrix with an unknown but optimally chosen parameter 

estimate. RMSEA in the range of 0.05 to 0.10 are acceptable, with 0.08 becoming an 

upper cut-off point (Hooper et al., 2008). The Goodness of Fit Index (GFI) is an 

alternative test to χ2 that evaluates the proportion of variance that the estimated 

population covariance accounted for (Tabachnick and Fidell, 2007). The index ranges 

from 0-1, and 0.9 is usually recommended as the lower cut-off point. Adjusted Good of 

Fit (AGFI), as the name implies, adjusts the GFI based on degree of freedom. Hooper et 

al. (2008) suggest that considering their sensitivity to sample size, GFI and AGFI are not 

reliable when used alone, but they remain important indices of model fit. Based on these, 



142 
 

this study combines Normed Chi-Square, RMSEA, GFI and AGFI as measures of the 

absolute fit of the model. 
 

 Incremental Fit Indices 

Incremental Fit Indices are a category of indices that do not use Chi-Square in its original 

form but compares the Chi-Square value to a baseline model (Kline, 2010). An 

assumption underlying indices in this category is that all variables in the model are not 

correlated (Hooper et al., 2008). Normed-Fit Index (NFI) and Comparative Fit Index 

(CFI) are the indices in this category. NFI compares the model's χ2 to that of a null model. 

Because of its sensitivity to sample size, it usually underestimates model with less than 

200 samples (Bentler, 1990). Another variance of NFI is the Tucker-Lewis Index (NNFI), 

which prefers simpler model. A value of 0.80 is acceptable, and a value above 0.95 is 

recommended (Hooper et al., 2008). CFI is a revised form of NFI that performs better 

with a small sample. Like NFI, a CFI value above 0.90 within its range of 0-1 is 

recommended (Kline, 2010). This study evaluates its incremental model fitness using 

NFI, NNFI and CFI. 
 

 Parsimonious Test Indices 

Parsimonious test builds in corrections for model complexity and it is measured through 

Parsimony Goodness of Fit (PGFI) and Parsimonious Normed Fit Index (PNFI). While 

PGFI is based on GFI with an adjustment for degree of freedom, PNFI is based on NFI 

with an adjustment for degree of freedom. While a value above 0.90 is expected, a value 

as low as 0.50 could be acceptable, provided the model satisfied other goodness of fit 

indices (Hooper et al., 2008). In this study, models were evaluated for Parsimonious fit 

through PGFI and PNFI. Table 8.1 summarises the benchmark for each of the model fit 

indices. 
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Table 8.1: Thresholds for model fit indices 

Goodness of fit measures Recommended level of GOF measuresa 

X2 ∕degree of freedom <5 (preferably 1 to 2) 
RMSEA <0.10 (preferably <0.08) 
Goodness of Fit Index (GFI) 0(no fit) – 1 (perfect fit) 
Adjusted Goodness of Fit Index (AGFI) 0(no fit) – 1 (perfect fit) 
Comparative Fit Index (CFI) 0(no fit) – 1 (perfect fit) 
Normed Fit Index (NFI) 0(no fit) – 1 (perfect fit) 
Tucker-Lewis Index (TLI) 0(no fit) – 1 (perfect fit) 
Parsimonious Goodness of Fit Index (PGFI) 0(no fit) – 1 (perfect fit) 
Parsimonious Normed of Fit Index (PNFI) 0(no fit) – 1 (perfect fit) 
 

a: Thresholds adapted from Doloi et al. (2012); Kline (2010); Hair et al. (2010) and Chen et al. (2012).  

 

 

8.4 Validity and Reliability of Constructs 

In order to evaluate adequacy of the model regarding the relationship established between 

latent and observed (measured) variables, tests of validity and reliability are usually 

performed. These include face validity, discriminant validity of the measurement model 

and convergent validity of the measures associated with latent variables (Doloi et al., 

2012; Kline, 2010). These set of evaluation are used to assess the accuracy of the model, 

thereby determining the extent to which the measured variables reflect the latent construct 

(Hair et al., 2010). 

 

Through extensive literature review, focus group discussion and pilot studies reported in 

Chapters 4, 6 and 7 respectively, face/content validity of the constructs has been 

achieved. Convergent validity of the model seeks to test that measures that are 

theoretically expected to be related are actually related (Kline, 2010). It is a degree of 

confidence that a latent variable is well measured by its indicators. It is examined through 

standardised factor loading, and it is believed to be satisfied in a measurement model 

when factor loading is significant at appropriate level (Anderson and Gerbing, 1988). 

Other measures of convergent validity include Average Variance Extracted (AVE), 

which estimates the degree of shared variance between latent variables in a model (Hair 

et al., 2010). It estimates the level of variance captured by a construct as well as those 

due to error. A model with convergent issue will have variables that do not correlate well 

with latent factor. An acceptable value of AVE is 0.5, with a value above 0.7 being 



144 
 

considered as good value. According to Fornell & Larker (1981), Average Variance 

Extracted (AVE) for a latent variable X, with indicators x1. x2, ….xn, is calculated as: 
 

 
 

Where λi is the loading of indicator xi on X, Var represents variance, εi represent 

measurement error of xi, and Σ means a sum. AVE is believed to be a more reliable 

measure of validity than Composite Reliability (Malhotra and Dash, 2011).  

 

Discriminant validity is another measure of construct validity that evaluates the extent to 

which a measure diverges from what it is theoretically expected to diverge. It basically 

tests whether measures that are not expected to be related are in true sense unrelated 

(Sureshchandar et al., 2002). It is usually evaluated through Maximum Shared Squared 

Variance – MSV (Hair et al., 2010). The MSV of a latent factor is a measure of the extent 

to which it is better explained by other factors outside its construct (Malhotra and Dash, 

2011). For a model to be reliable, AVE is expected to be greater than MSV, as the items 

(indicators) belonging to the factor should better explain it than the items belonging to 

another factor in the model (Hair et al., 2010). These sets of test are performed in addition 

to reliability analyses that were performed for all the dimensions of design, procurement 

and construction measures that are presented in Tables 7.2 to 7.5. 
 

 

8.5 Confirmatory Factor Analysis 

Confirmatory Factor Analysis were conducted to confirm the key underlying measures 

for mitigating waste through design, procurement and construction activities. The total 

sample size is above the N=200 threshold recommended by Kline (2010) for SEM, thus 

further buttressing the suitability of the data for measurement and structural models. 

Models were developed with AMOS 22 for structural equation modelling. For each of 

the CFAs, initial models were developed based on the factor established as presented in 

Tables 7.2 to 7.5. The factors that failed the initial reliability test were removed as 

indicated in the tables. As recommended by Ullman (2001), Kline (2010) and numerous 

other experts, Maximum Likelihood (ML) technique was used for the model estimation. 
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This is especially suitable as it yields maximum parameter estimate when used for 

normally distributed data of this nature (Ullman, 2001). Results of the covariance are 

assessed to test the appropriateness of the initial model, using some fit indices discussed 

in the previous section (8.3). 

 

Based on evaluation of the initial model, improvements were required for adequate 

validity, reliability and model fitness with data. In order to improve model fit, two 

methods were used for model modification. As suggested by Kline (2010), modification 

indices of SPSS AMOS (version 22) were used to add covariance and causal relationships 

between error terms and measured variables respectively. This approach is widely used 

for refining SEM and for improving its model fit (Chen et al., 2012). It was ensured that 

all modifications made theoretical sense concerning interrelationship between waste 

mitigation measures. In addition to the modification indices, the path diagram was 

screened to check for variables that show no significant correlation with latent factor and 

to check for significant variable with low correlation coefficient. The hypothetical models 

went through some refinements before the desired model fit, reliability and validity were 

achieved in each case. 

 

Based on the nature of constructs of this study, second-order factor analyses were 

performed for each of design, design competencies, procurement and construction 

measures for engendering waste minimisation. Apart from its preservation of multi-

dimensional constructs as required in this study, an additional benefit of the second-order 

factor is that it reduces collinearity by allowing causality through a single second-order 

factor (Benson and Bandalos, 1992). In this case, design, procurement and construction 

became the second-order factors, while their underlying dimensions became the first-

order factors that are estimated through observed variables. 
 

 

 Second Order CFA of Design Measures 

In order to confirm the structure of factors underlying waste-efficient design, CFA was 

conducted on the design factors and its established dimensions. The six dimensions for 

designing out waste (as presented in Table 7.2) are design documentation, design process, 

design for standardisation, design for modern methods of construction, design for 

flexibility, and organic design. These dimensions for designing out waste were modelled 
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as first-order latent variables, and they consist of seven, eight, eight, four, two and two 

indicator (measured/observed) variables respectively. Apart from confirming the main 

indicators contributing to each of the latent variables, an important aspect of this study is 

to establish the relationship between the six dimensions and waste-efficient design. This 

helped to establish the key dimensions for designing out waste. Based on this 

requirement, two-step approach that combined measurement and structural models were 

used as suggested by Anderson and Gerbing (1998). Thus, the model consists of both 

structural and measurement models. While the measurement model focuses on the 

relationship between indicators and first-order variables, the structural model confirmed 

the relationships between the first-order and second-order variables. Figure 8.1 show 

specification for initial model of relationship between indicators, first-order and second-

order variables.  

 

An evaluation of the model fit indices suggests the need to make some improvement on 

the model. Based on this, indicators with low factor loading and those with insignificant 

loadings were deleted from the model as suggested by Kline (2010). This affected one 

indicator (DF38) of design document, two indicators (DF3 and DF12) of design process 

and two indicators (DF16 and DF20) of design for modern methods of construction. After 

deleting the indicators, the model fit indices improved to satisfactory level and five of the 

six dimensions for designing out waste passed the convergent validity test with their AVE 

ranging between 0.62 and 0.79, which is above the 0.5 thresholds (Hair et al., 2008). All 

the loadings were also statistically significant. Design for flexibility with its two 

indicators was removed from the model as it is not contributing to the overall reliability 

of the model. Figure 8.2 shows the final model, while Table 8.1 shows the construct 

reliability and variance extracted for all constructs of designing out waste. 
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Figure 8.1: Initial/Hypothetical model of the design measures for waste minimisation 
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Figure 8.2: Final Model of design measures for construction waste minimisation 
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Table 8.2: Maximum Likelihood estimate and value of fit statistics for design measures 

First-order CFA Second-order CFA 

Relationship Estimate AVE CR Relationship Estimate AVE CR 
DF1 <--- Design doc 0.89 

0.62 0.84 

Design document <--- DESIGN 0.90 

0.83 0.92 
DF29 <--- Design doc 0.79 Design Process<--- DESIGN 0.91 
DF33 <--- Design doc 0.83 Design for MMC<--- DESIGN 0.89 
DF34 <--- Design doc 0.61 Design 4 standard<--- DESIGN 0.93 
DF35 <--- Design doc 0.60 Organic design <--- DESIGN 0.59 
DF37 <--- Design doc 0.58  
DF2<--- Design Pro 0.79 

0.58 0.71 

MODEL FIT INDICES 
DF4<--- Design Pro 0.83 
DF6 <--- Design Pro 0.82 Indices Initial Model Final Model 
DF9 <--- Design Pro 0.73 X2 ∕degree of freedom 6.165 2.791 
DF11 <--- Design Pro 0.64 RMSEA 0.073 0.052 
DF13 <--- Design Pro 0.74 GFI 0.930 0.987 
DF23<--- Design for MMC 0.82 

0.64 0.74 
AGFI 0.881 0.964 

DF24<---Design for MMC 0.85 CFI 0.641 0.982 
DF25<---Design for MMC 0.76 NFI 0.523 0.952 
DF26<---Design for MMC 0.58 TLI 0.563 0.981 
DF14<---Design 4 standard 0.59 

0.71 0.88 

PGFI 0.819 0.977 
DF18<---Design 4 standard 0.51 PNFI 0.589 0.956 
DF19<---Design 4 standard 0.62 IFI 0.646 0.973 
DF21<---Design 4 standard 0.55 Cronbach’s Alpha 0.831 
DF22<---Design 4 standard 0.67 

 DF41<---Design 4 standard 0.90 
DF10<---Organic design 0.61 0.51 0.68 
DF17<---Organic design 0.63 
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 Second Order CFA of Design Competencies 

Confirmatory Factor analysis was performed on the established competencies for 

designing out waste and its four dimensions as presented in Table 7.3. The aim of the 

CFA was to understand and confirm factor structure and underlying competencies for 

designing out waste. The four dimensions of competency, including design task 

competency, construction and materials related knowledge, waste behavioural 

competencies and inter-professional competencies, were modelled as first-order latent 

factor while design competency is the second-order variable. Figure 8.3 shows the initial 

model of design competencies for engendering waste-efficient design. 
 

 
Figure 8.3: Initial model of competencies for designing out waste 



151 
 

 

The initial model was evaluated for validity, reliability and model fit to check fitness of 

the model with data. The fit statistics and reliability test suggests the need for further 

model improvement, which was done by deleting indicators with insignificant coefficient 

as well as those having low factor loading with their latent factors. This affected one 

indicator each of design task competencies (Design Task) and waste behavioural 

competencies (Behavioural).  After some iteration and modifications, model fit indices 

were improved to expected standard. Both indicator and first-order factors loaded 

significantly onto their corresponding latent factor, with none of the value less than 0.53. 

Similarly, AVE and CR show that the model passed convergent validity and reliability.  

Figure 8.4 shows final model, while Table 8.3 shows the standardised estimate, model fit 

statistics and indices of validity. 

 
Figure 8.4: Final model of competencies for designing out construction waste 
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Table 8.3: Standardised estimate and value of fit statistics of design competencies  

First-order CFA Second-order CFA 

Relationship Estimate AVE CR Relationship Est. AV

 

CR 
DC2<--- Design Task 0.56 

0.67 0.74 

Design Task <--- COMPETENCY 0.94 

0.76 0.89 DC5<--- Design Task 0.61 Construction <-- COMPETENCY 0.91 
DC6<--- Design Task 0.88 Behavioural <--- COMPETENCY 1.40 
DC9<--- Design Task 0.74 Inter_Pro <--- COMPETENCY 0.76 
DC14<--- Design Task 0.53  
DC15<--- Design Task 0.78 

MODEL FIT INDICES DC22<--- Design Task 0.54 
DC24<--- Design Task 0.61 
DC3<--- Construction 0.64 

0.63 0.85 

Indices Initial Model Final Model 
DC4<--- Construction 0.69 X2 ∕degree of freedom 3.997 1.062 
DC7<--- Construction 0.88 RMSEA 0.062 0.042 
DC10<--- Construction 0.68 GFI 0.947 0.992 
DC11<--- Construction 0.81 AGFI 0.933 0.987 
DC16<--- Construction 0.87 CFI 0.951 0.989 
DC19<--- Behavioural 0.89 

0.62 0.72 
NFI 0.636 0.973 

DC20<--- Behavioural 0.79 TLI 0.794 0.986 
DC21<--- Behavioural 0.63 PGFI 0.895 0.985 
DC8<---Inter_Pro 0.79 

0.69 0.84 
PNFI 0.836 0.963 

DC17<---Inter_Pro 0.53 IFI 0.769 0.961 
DC27<---Inter_Pro 0.68 Cronbach’s Alpha       0.894 

 

 

 Second Order CFA of Procurement Measures 

Like design measures, CFA was performed on procurement measures to confirm the 

factor structure of waste-efficient procurement. Waste-efficient procurement is the 

second-order latent factor that is predicted by the previously established dimensions of 

waste-efficient procurement (see Table 7.4), which are the first-order latent factors. The 

four first-order factors are delivery planning and scheduling, suppliers' alliance and 

commitments, low waste materials purchase management and waste-efficient bill of 

quantity, having four, five, eight and four indicators respectively. The initial model of 

waste-efficient procurement is presented in Figure 8.5. 
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Figure 8.5: Initial model of waste-efficient procurement process 

 

In order to enhance model fitness, reliability and convergent validity, the initial model 

went through model re-specification and refinement. Indicators with low factor loading 

and insignificant relationship were removed from the model. One of the first-order factors 

– delivery planning and scheduling (DEL_PLAN) – failed reliability and convergent 

validity tests. It also has an insignificant loading with the second-order factor. Also, two 
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of its four indicators showed insignificant factor loadings. Hence, the first-order factor 

was deleted from the model. One indicator was deleted from each of low waste materials 

purchase management (MAT_PURCH) and waste-efficient bill of quantity (BoQ) due to 

insignificant and low loading with the first-order latent variables. In line with 

recommendation by Kline (2010) and Hair et al. (2008), covariance was introduced on 

error terms as suggested by AMOS modification indices. After model re-specification, 

the final model showed significant loading of factors at P<0.001 for both first and second-

order latent factors. The model also demonstrated excellent fit as presented in Table 8.4. 

Figure 8.6 shows the final model and its standardised estimates. 

 
Figure 8.6: Final Model of waste-efficient procurement process 
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Table 8.4: Maximum Likelihood estimate and value of fit statistics of waste procurement  
First-order CFA Second-order CFA 

Relationship Estimate AVE CR Relationship Estimate AVE CR 
PF7<--- Mat_Purch 0.56 

0.60 0.72 

Mat_Purch<--- PROCUREMENT 0.85 

0.58 0.73 PF8<--- Mat_Purch 0.67 Supp_All <-- PROCUREMENT 0.95 
PF10<--- Mat_Purch 0.77 BoQ<--- PROCUREMENT 0.95 
PF11<--- Mat_Purch 0.84  
PF14<--- Mat_Purch 0.58  MODEL FIT INDICES 
PF15<--- Mat_Purch 0.53 
PF28<--- Mat_Purch 0.69 Indices Initial Model Final model 
PF1<--- Supp_All 0.91 

0.63 0.77 

X2 ∕degree of freedom 2.028 1.029 
PF2<--- Supp_All 0.51 RMSEA 0.023 0.010 
PF3<--- Supp_All 0.63 GFI 0.961 0.992 
PF4<--- Supp_All 0.62 AGFI 0.945 0.952 
PF6<--- Supp_All 0.62 CFI 0.973 0.979 
PF9<--- BoQ 0.86 

0.59 0.79 
NFI 0.756 0.951 

PF12<--- BoQ 0.54 TLI 0.967 0.989 
PF13<--- BoQ 0.83 PGFI 0.881 0.950 

 PNFI 0.650 0.906 
IFI 0.978 0.982 
Cronbach’s Alpha       0.803 

 

 

 Second Order CFA of Construction Measures 

In order to establish the underlying dimensions of waste-efficient construction process, a 

second-order CFA was modelled. While waste-efficient construction is modelled as the 

second-order factor, other 12 latent factors presented in Table 7.4 were modelled as first-

order latent factors. Figure 8.7 shows the initial model that was subjected to further 

modification and re-specification, which ultimately improved fit statistics, reliability and 

validity of the constructs.  

 

The initial model shows poor fit statistics as well as insignificant loading of some of the 

first-order factors and their indicators. As such, the model was re-specified and modified 

to improve fit statistics and reliability of the constructs. This led to deletion of four latent 

factors, which are waste-efficient formwork (WEForm), Human resources management 

measures (HRMan), Waste segregation (WSeg) and Logistic Management (LogMan). 

Although two of the latent factors (WSeg and LogMan) have good Composite Reliability 

(CR ≥ 0.87) and Average Variance Extracted (AVE ≥ 0.61), they show low factor loading 

to the second-order variable at 0.18 and 0.21 respectively. What this suggests is that 

although the two factors have impacts on construction waste, they are of less significance. 

The other two latent factors (WEForm and HRMan) have poor CR and AVE, with 

insignificant impacts on the second-order factor (Waste-efficient Construction). 
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Figure 8.7: Initial model of waste-efficient construction indices
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Apart from deletion of first-order latent factors and their indicators, some indicators were 

also deleted from other latent factors to enhance model fit and validity. Rather than being 

an indicator of waste-efficient construction, legislative and policy provisions (L&PProv) 

was remodified as a formative construct that is contributing to waste effective decisions. 

The final model with good fit statistics, reliability and validity, are presented in Figure 

8.8. Table 8.5 shows estimate, fit indices and reliability index of waste-efficient 

construction model. 

 
Figure 8.8: Final Model of waste-efficient construction indices 
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Table 8.5: Maximum Likelihood estimate and value of fit statistics of construction strategies 

First-order CFA Second-order CFA 

Relationship Estimate AVE CR Relationship Est AV

 

CR 
CF17<--- SPlan 0.50 

0.57 0.84 

SPlan <--- CONSTRUCTION 0.94 

0.73 0.86 

CF29<--- SPlan 0.62 MatReuse <--- CONSTRUCTION 0.95 
CF30<--- SPlan 0.84 Deconstuct<--- CONSTRUCTION 0.81 
CF31<--- SPlan 0.64 PreFab <--- CONSTRUCTION 0.89 
CF32<--- SPlan 0.74 Contract<--- CONSTRUCTION 0.86 
CF34<--- SPlan 0.69 Contractor<--- CONSTRUCTION 0.88 
CF6<--- MatReuse 0.64 

0.63 0.85 

Culture<--- CONSTRUCTION 0.61 
CF9<--- MatReuse 0.77 CONSTRUCTION <--- L&PProv 0.63 
CF10<--- MatReuse 0.65  
CF13<--- MatReuse 0.93 
CF23<--- MatReuse 0.70 
CF24<--- MatReuse 0.72 
CF26<--- MatReuse 0.65 
CF36<--- MatReuse 0.69 
CF7<--- Deconstuct 0.46 

0.62 0.77 

CF38<--- Deconstuct 0.80 
CF44<--- Deconstuct 0.62 
CF45<--- Deconstuct 0.57 
CF47<--- Deconstuct 0.67 
CF55<--- Deconstuct 0.54 
CF40<---PreFab 0.81 

0.67 0.89 
MODEL FIT INDICES 

CF49<---PreFab 0.52 
CF50<---PreFab 0.70 Indices Initial Model Final model 
CF51<---PreFab 0.57 X2 ∕degree of freedom 1.582 1.299 
CF57<---Contract 0.73 

0.70 0.86 

RMSEA 0.032 0.027 
CF61<---Contract 0.80 GFI 0.855 0.961 
CF65<---Contract 0.66 AGFI 0.839 0.952 
CF70<---Contract 0.51 CFI 0.682 0.948 
CF77<---Contract 0.56 NFI 0.469 0.906 
CF1<---Contractor 0.70 

0.59 0.82 
TLI 0.556 0.953 

CF52<---Contractor 0.60 PGFI 0.766 0.953 
CF62<---Contractor 0.59 PNFI 0.554 0.957 
CF68<---Contractor 0.74 IFI 0.616 0.971 
CF74<---Culture 0.67 

0.51 0.72 
Cronbach’s Alpha 0.949 

CF75<---Culture 0.87  
CF76<---Culture 0.58 
CF85<---L&PProv 0.89 

0.63 0.79 CF86<---L&PProv 0.59 
CF87<---L&PProv 0.56 
CF89<---L&PProv 0.72 
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8.6  Structural Model of Design, Procurement and 
Construction Strategies  

After establishing model fit indices and validity of construct for each of design, 

procurement and construction measures for a waste-efficient project, the models were 

combined as a structural model. This helped to confirm the model structure of 

interrelationship between the three stages of project delivery processes, as well as to 

estimate impacts of each of the second order factors on project waste minimisation. In 

order to draw the final model as a second-order structural model, AMOS data imputation 

was used to generate values for the first-order factors of design, procurement and 

construction. This helped to prevent the use of third-order composite and reflective 

factors, which have been largely criticised for invalidity (Lee and Cadogan, 2013). 

 

The overall model was evaluated through value of fit statistics, Maximum Shared 

Squared Variance (MSV) and Average Variance Extracted (AVE). As presented in 

Tables 8.6 and 8.7, the model shows excellent validity, reliability and fit statistics above 

the thresholds recommended by Hair et al. (2010) and Kline (2010), among other experts. 

For instance, AVE value was above the threshold of 0.5 for all the constructs as required 

(Hair et al., 2010). Similarly, lower value of MSV than AVE indicated that the item 

belonging to each factor explained it better than items belonging to another factor in the 

model. The overall structural model indicated that most of the variables loaded 

significantly onto their latent variables (at P≤0.001), which in turn have significant 

impacts on overall waste effectiveness of construction projects. For the overall model, 

only one item with low but significant correlation with its latent factor was "organic 

design", which is an indicator of waste-efficient design. As the measure also has a squared 

multiple correlation (R2) of 28%, which is below the recommended threshold of 50% 

(Jöreskog and Sörbom, 1993), it is not confirmed to be a good reflection of waste-efficient 

design. The combined model is as presented in Figure 8.9.  
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Table 8.6: Standardised estimate and validity of the overall model 

Constructs Items Estimate P-Value AVE MSV 

LOW WASTE 
OUTPUT 

Waste-efficient design  0.90 ≤0.001 
0.792 0.217 Waste-efficient Procurement 0.60 ≤0.001 

Waste-efficient Construction 1.45 ≤0.001 

WASTE-EFFICIENT 
DESIGN  

Design document 0.65 ≤0.001 

0.81 0.396 
Design process 0.75 ≤0.001 
Design for MMC 0.68 ≤0.001 
Design for standard supplies 0.73 ≤0.001 
Organic Design 0.31 ≤0.01 

WASTE-EFFICIENT 
PROCUREMENT 

Material purchase management 0.59 ≤0.001 
0.62 0.429 Bill of Quantity 0.57 ≤0.001 

Suppliers’ alliance  0.82 ≤0.001 

WASTE-EFFICIENT 
CONSTRUCTION 

Site Planning 0.63 ≤0.001 

0.79 0.121 

Materials reuse 0.91 ≤0.001 
Deconstructability 0.59 ≤0.01 
Prefabrication 0.97 ≤0.001 
Contractual Provision 0.94 ≤0.001 
Contractors’ competency 0.71 ≤0.001 
Cultural change 0.51 ≤0.001 
Legislation and policy 0.53 ≤0.001 

 

 

Table 8.7: Value of fit statistics for the overall model 

Goodness of fit measures Recommended indices Final model fit 

X2 ∕degree of freedom <5 (preferably 1 to 2) 1.49 
RMSEA <0.10 (preferably <0.08) 0.04 
Goodness of Fit Index (GFI) 0(no fit) – 1 (perfect fit) 0.97 
Adjusted Goodness of Fit Index (AGFI) 0(no fit) – 1 (perfect fit) 0.98 

 Comparative Fit Index (CFI) 0(no fit) – 1 (perfect fit) 0.98 
Normed Fit Index (NFI) 0(no fit) – 1 (perfect fit) 0.98 
Tucker-Lewis Index (TLI) 0(no fit) – 1 (perfect fit) 0.96 
Parsimonious Goodness of Fit Index (PGFI) 0(no fit) – 1 (perfect fit) 0.97 
Parsimonious Normed of Fit Index (PNFI) 0(no fit) – 1 (perfect fit) 0.96 
 

 

A further evaluation of Squared Multiple Correlation (R2) for all the constructs on the 

model suggests that this model accounts for 72% of variance in waste-efficient 

construction, 68% in waste-efficient materials procurement and 81% of variance in 

waste-efficient design. The R2 also indicated that one dimension of construction had a 

squared multiple correlation of 43%, which is slightly below the threshold of 50%. This 

means that less than 50% of variance in de-constructability is explained by waste-

efficient construction; and as such it is recommended to be dropped from the model 

(Jöreskog and Sörbom, 1993; Kline, 2010).   
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Apart from significant relationship between overall waste efficiency and the three 

stage/processes considered in the study (design, procurement and construction), 

significant relationships were estimated between the three stages. The standardised 

estimate relating design to procurement was statistically significant at β=0.50, P≤0.001, 

while those of design to construction and procurement to construction are also significant 

at P≤0.001 with values of β=1.30 and β = 0.63 respectively. The percentage of variance 

in waste-efficient design, waste-efficient procurement and waste-efficient construction 

process explained by low waste output are 81%, 68% and 72%. In line with Falk and 

Miller (1992), the mean R2 computed for the three key endogenous variables is 73.7%, 

indicating that the model could account for significant process of construction waste 

minimisation. Based on the established factor loading, validity, reliability and model fit 

indices, the underlying dimensions for low waste project are as represented in Figure 

8.10.   
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Figure 8.9: Overall Structural Equation Modelling for low waste construction project 
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Figure 8.10: Framework of relationship between indices of low waste construction projects 
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8.7 Chapter Summary 

In order to understand the key dimensions of measures for minimising waste in 

construction project, through design, procurement and construction stages of project 

delivery, Confirmatory Factor Analyses (CFA) were performed. The analyses involved 

two stages; the first stage confirmed the factor structure for each of design, design 

competencies, procurement and construction measures for engendering waste-efficient 

projects. The second stage confirmed the impacts of design, procurement and 

construction measures on overall waste efficiency of construction projects. Using AMOS 

Structural Equation Modelling (SEM) tool, model estimation was performed through 

Maximum Likelihood technique. Based on output of qualitative and statistical analyses, 

initial SEM was performed on 6, 4 and 12 latent factors for each of design, procurement 

and construction strategies respectively. The design model consisted of 31 indicators, 

which were confirmed to reliably measure the four different dimensions of design 

through reliability analysis. The procurement and construction model consisted of 22 and 

70 indicators respectively. Competency for designing out waste was also modelled based 

on initial findings of statistical analysis. The competency model consisted of 22 factors, 

with four underlying variables/dimensions of competency for designing out waste. 

 

In order to ensure that the model measures what it is supposed to measure, the model was 

evaluated for fitness, reliability and validity using a number established indices. These 

include value of fit statistics, Composite Reliability (CR), Average Variance Extracted 

(AVE) and Maximum Shared Squared Variance (MSV). The model went through series 

of modifications, re-specifications and adjustments, which required deletion of 

insignificant and poorly fit variables from the model. In each case, the final model showed 

a good reliability, validity and value of fit indices. Also, significant positive relationships 

were established between waste minimisation and the three main dimensions, which are 

design, procurement and construction measures. The model confirmed that four key 

strategies underlying Waste-efficient design are waste-efficient documentation, Waste-

efficient design process, design for standard materials supply and design for modern 

method of construction, all of which consisted of 24 reliable and valid indicators. The 

other two previously established dimensions showed insignificant impacts on waste-

efficient design. In order to design out waste in construction projects, four key 

competencies were confirmed to be required of design professionals. These include 

design task proficiency, inter-professional collaborative competencies, behavioural 
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competencies and construction-related knowledge, all of which are based on 20 valid and 

reliable indicators.  

 

The model confirmed that three key factors underlying waste-efficient materials 

procurement are materials purchase management, suppliers' alliance and waste-efficient 

Bill of Quantity, all of which are based on 15 measured variables. Excellently fitted and 

reliable model suggests that delivery planning and schedule have insignificant impacts 

on waste efficiency of materials procurement process. Similarly, results of the SEM 

suggest that eight key factors determine waste effectiveness of construction process. 

These include waste effective site planning, materials reuse, prefabrication and offsite 

technique, contractual provisions, contractors' commitment and competencies, cultural 

change as well as legislative provisions. 40 measured variables were established as the 

main indicators of underlying measures for waste effectiveness of building construction 

process. The mean and overall percentage of variance extracted by the model shows that 

the measures on the model are fit and significant enough to account for waste 

effectiveness of construction projects.  
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CHAPTER 9: SYSTEM DYNAMIC MODELLING   

 

9.1 Chapter Overview 

This chapter presents the system dynamic approach used for simulating dynamic impacts 

of various categories of measures on the overall waste efficiency of construction projects. 

The chapter starts with a review of the use of dynamic system approach in construction 

management research, which is followed by a brief explanation of the methodological 

approach of SDM as well as its relevance to this study. The approach used in model 

development, model simulation and validation were then justified and explained. Before 

a brief culminating section, various scenarios were modelled to determine the dynamic 

impacts of each waste management strategy on the overall waste efficiency of 

construction projects. 
 

 

9.2 SDM in Construction Management Research 

Dynamic models have helped in overcoming several complex problems, such as multiple 

interdependent components and non-linear relationships that are associated with 

construction activities (Sterman, 1992). The SDM was developed by Professor Jay 

Forrester, using a computer simulation technology as means of providing quantitative 

analysis on multifaceted real-world systems (Zhao et al., 2011; Yuan and Wang, 2014; 

Yuan et al., 2011; Li et al., 2014). It is capable of simultaneously correlating several 

factors, and it has a tendency of being simulated under controlled situations that allow 

experimentation (Love et al., 2000). In order to gain methodological insights from the 

studies, the overall aim of this section is to review construction management studies that 

have adopted SDM in their approach, and how it has been successfully channelled to 

enrich the studies. 

 

A search for construction management studies with dynamic system approach shows that 

SDM has become increasingly important in construction research community in the 

recent years. Existing studies (e.g. Love et al., 2000; Ogunlana et al., 1998; Mohamed 

and Chinda, 2011; Dangerfield et al., 2003) show that the SDM has strong impacts in 

understanding, predicting and solving complex issues in design and construction 

management. Examples of construction management studies that used dynamic system 
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approach are presented in Table 9.1. While each of the categories of the studies offers 

good insights into how dynamic system theory has been used, application of the approach 

in waste management research is further evaluated. 
 

Table 9.1: Construction Management Studies that used SDM 

 Area of Application in Construction 
Management 

Examples of Studies in the Category 

1. Project management Ogunlana et al., 1998; Xu et al., 2012; Rodrigues et al., 1998 

2. 
Waste management 
 

Hao et al., 2008; Love et al., 2000; Ye et al., 2012; Sudhir et al., 
Kollikkathara et al., 2010  

3. 
Competitiveness of construction 
industry 

Dangerfield et al., 2010; Ogunlana et al., 2003; Kim and 
Reinschmidt, 2006. 

4. Risk and Safety Management 
Mohamed and Chinda, 2011; Shin et al., 2014; Han et al., 2010; 
Nasirzadeh et al., 2014 

5. Labour Productivity Chapman, 1998; Nasirzadeh & Nojedehi, 2013; Liao et al., 2012 
 

 

 Application of SDM in Urban Solid Waste Management 

Few studies have channelled the dynamism of SDM to investigate how various measures 

could be incorporated to ensure effective solid waste management approach. Sudhir et al. 

(1997) employed SDM to capture the dynamic interaction of various critical success 

factors (such as environment, cost, and health impacts) in solid waste management, with 

an intent of policy improvement. The model incorporated all processes involved in waste 

generation, collection and recycling system. Based on the dynamic simulation, the study 

recommended a solid waste management called "Structure Hard-Equivalent" and 

recovery of cost, by imposing a user fee, as a better policy that is capable of supporting 

more waste pickers, reducing management fees, and enhancing environment and health. 

 

Kollikkathara et al. (2010) also adopted SDM in evaluating the dynamic interaction 

between various interrelated issues such as environmental impacts, landfill capacity and 

cost, which are all important for solid waste management. The study shows that waste 

preventive measures are central to long-term success of solid waste management. 

Similarly, Anghinolfi et al. (2013) investigated the dynamic interaction of solid waste 

collection and recycling management using SDM. Apart from developing an optimised 

model for solid waste management, the study shows that substantial cost of waste 

management could be reduced through the use of SDM. 
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 Application of SDM in C&D Waste Management  

Dynamism of construction waste generation and its management approaches have been 

investigated through SDM. For instance, Tam et al. (2014) and Ye et al. (2012) developed 

SDM to investigate effects of different policies on waste management strategies, such as 

landfilling, prevention, reuse and recycling. Having simulated the effects of different 

legislative and strategic measures on waste management, optimal strategic and policy 

measures for effective waste management were recommended. Li et al. (2014) also adopt 

SDM in measuring impacts of prefabrication on waste reduction. Yuan and Wang (2014) 

proposed a dynamic model that is suitable for determining cost of waste disposal in 

China, by integrating various waste predictive factors, while Yuan et al. (2011) used 

SDM to carry out cost-benefit analysis of different waste management approaches. 

 

Hao et al. (2008) developed a simulation model that established interconnection between 

various onsite activities, towards determining ultimate waste management strategy. The 

model provides avenue for fine-tuning input parameters in order to predict suitable 

management strategy for onsite waste. While arguing for a need to study waste at 

dynamic level, Yuan et al. (2012) developed a dynamic model for determining impacts 

of waste management strategies on waste generation. Although their study left out non-

construction stages of building process, it provides decision support model for projecting 

likely waste based on adopted waste management strategies. Love et al. (2000) also 

applied SDM to design management. Reworks caused by design errors was modelled and 

simulated to unravel complex problems and interrelated factors that lead to design errors, 

cost overrun and time overrun. Factors influencing design errors were identified, and 

model was developed to give a proper understanding of how project documentation could 

be effectively carried out. 

 

Based on the review of the use of SDM in waste management studies, it is clear that SDM 

approach is suitable for unravelling dynamism of factors contributing to waste 

occurrence, as well as strategies for its management. However, existing studies show that 

despite the relevance of the dynamic system approach, no study has properly channelled 

the tool in a comprehensive manner to incorporate design, procurement and construction 

stages. Also, its capacity to identify interconnections between the stages and overall 

waste efficiency of projects is yet to be studied. Hence, in order to proffer a holistic 
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construction waste management approach, there is need for understanding dynamic 

relationship between all waste management strategies at design, procurement and 

construction stage. This would help in proposing effective design, procurement and 

construction strategies and guidelines for waste minimisation.  
 

 

9.3 Use of Dynamic Approach in this Study 

Dynamic analysis of complex system usually involves four stages, which are 

representation of the phenomenon, generation of solution, exploration of structural 

relations, and modification and control (Luenberger, 1976). The sole purpose of using 

mathematical equation/approach is to represent the relationship between various 

components of the system, usually through mathematical modelling. The generation of 

solution is arguably the most direct reason for using dynamic system. This involves 

generation of system specific solution, which could be further studied for several 

purposes, such as to determine reasonableness of a hypothesis or for various prediction 

and planning purposes (Luenberger, 1976). It is usually achieved through the use of 

computer simulation known as System Dynamic Modelling or various mathematical 

equations. It is, however, notable that most models represent calculation of solutions that 

are determined by the nature of its study condition, parameter value and inputs (Maria 

and Thaler, 2005). 

 

Apart from pattern prediction or generating solution to an identified problem, richness of 

dynamic system outspread to establishment and explanation of structural relations as to 

how different parameters could influence one another and how they can influence the 

whole system or the solutions it offers. This gives an opportunity to accept or reject a 

system not only based on its structure, but also regarding its system behaviour patterns 

(Luenberger, 1976). In the same vein, complex analysis involves modification and 

control of the whole system to comprehensively understand and improve its behaviour 

patterns. Through several simulation and control strategies, a dynamic system could help 

in proposing a modification to existing system so as to find solution to complex problems 

or to improve the system in generality (Luenberger, 1976; Ursem et al., 2002). 

Determination of appropriate control and modification strategy is the last stage of 

dynamic system analysis which marks the conclusion of a complete system analysis. It is 

held that if the system behaviour is fully understood though dynamic system process, 
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behaviour of solution to a whole system or any of its input could be perfectly predicted 

(Maria and Thaler, 2005; Ursem et al., 2002; Luenberger, 1976) 

 

Dynamic system modelling has successfully transformed several scientific paradigms 

(Spencer-Wood, 2013; Lerner, 2006; Lowie, 2012) so much that application of its 

concepts to construction waste has been widely advocated (Yuan et al., 2012; Hao et al., 

2008; Love et al., 2000; Ye et al., 2012). Detail recognition and critical understanding of 

the way waste is generated remains a seemingly insurmountable task partly because many 

solutions often focus only on regular, recurring and static pattern (Yuan et al., 2012), 

thereby disregarding irregular and dynamic patterns, which are capable of proffering 

holistic waste management solutions. Sterman (1992) argues that multidimensional 

activities, such as construction operations, usually involve complex processes that stress 

beyond shallow and fallible capacity of both mental and static models. It requires the use 

of dynamic based models to compile the logical sequence, and incorporate various 

interrelated activities usually involved in construction operations. 

 

Design, procurement and construction activities are in such a way that causes and effects 

are interrelated, lacking close and direct relationship as could be seen in other systems 

(Sterman, 1992). A flaw in one aspect of design could, unfortunately, results in errors in 

procurement and construction process, which would ultimately result in waste. As it 

would be difficult to trace the real cause and effect on static and direct basis, in this case, 

application of dynamic model is required to trace causal loops and feedback system of 

such interdependent system (Love et al., 2000). It is deemed that by modelling every 

possible waste mitigating strategy on construction projects using System Dynamic 

Modelling, efficient waste management solutions could be achieved. This is due to its 

ability to propose solutions to identified problems, predicts likely problems with certain 

parameters and identify dynamic cause and effects, which are required in construction 

management in general (Sterman, 1992), and waste management in particular 

(Kollikkathara et al., 2010). 

 

Based on its relevance, a basic System Dynamic Model (SDM) identifying dynamic 

relationship between each of the critical factors and KPIs was modelled through 

VENSIM modelling software. The SDM was used in identifying dynamic relationship in 

this study most especially as it incorporates feedback, capture non-linear relationship and 
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possess a functional capacity to distinguish between causality and correlation (Luna-

Reyes and Andersen, 2003). As a result, the SDM furnished the study with causal-impact 

loop that relates all stages of construction process as a single entity, thereby identifying 

impact of taking one action over the entire processes and overall waste efficiency of 

projects.  

 

9.4 Model Development  

As confirmed in Chapter 8, design, procurement and construction processes contribute to 

overall waste efficiency of construction projects. Each of the three components consists 

of various other underlying dimensions that determine their overall effectiveness. In line 

with the relationships established through SEM, relationships between the measures were 

modelled through the use of VENSIM SDM tool.  
 

 Causal Loop Diagram 

Causal loop diagram is a visual representation of cause and effect relationships between 

variables in a model. It aids in articulating and visualising the interconnectedness of 

various elements that make up a system (Kim, 1992). A causal loop diagram consists of 

various nodes and edges. While nodes refer to the variables, edge represents the 

relationship between the variables. A positively marked causal link connotes that 

increasing in the first element "A" leads to an increase in the other element "B". A 

negatively marked link depicts that an increase in the first element "B" will result in a 

decrease in the second element "C", and vice versa. Examples of positive and negative 

links are shown in Figure 9.1. 

 
Figure 9.1: Polarity in Causal loop diagram 
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Based on the established relationship between various strategies for mitigating waste at 

design, procurement and construction stages of project delivery processes, a causal loop 

diagram was drawn. The diagram represents the relationship between all variables in the 

model. It is as represented in Figure 9.2. Cause tree diagrams that show causal 

relationship between the variables are presented in Appendices 3 to 6. 

 

 
 Stock and Flow Diagram  

Stock and Flow diagram is another approach for representing causal relationships 

between elements in system dynamics models (Coyle, 1996). It is an algebraic 

representation of the model, which could be run on a computer. The main difference 

between causal loop and stock and flow diagram is that the latter is written in equation 

and computer coding, while the former is written in words and arrows. The causal loop 

diagrams facilitate understanding of problems under evaluation as well as tracing of the 

causal and use trees, while the stock and flow diagrams enhance mathematical simulation 

and quantitative analysis of the relationships between elements in the model (Wang et al., 

2015).  

 

In order to simulate the dynamic relationship between various strategies for minimising 

construction waste, the causal loop diagram was converted into a stock and flow diagram 

using VENSIM software tool. The stock and flow diagram is presented in Figure 9.3. 

Description of all variables included in the model is detailed in Table 9.2. The diagram 

allows imputation of mathematical equations and weighing to compute latent variables 

in the model. It provides an avenue for simulating impact of one variable on different 

sections of the model as well as on the overall model. Through this, impacts of adopting 

different strategies on overall waste effectiveness of construction projects were 

simulated. 
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Figure 9.2: The Causal Loop Diagram of Waste Minimisation Strategies 
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Figure 9.3: Stock and Flow Diagram of Waste Minimisation Strategies
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Table 9.2: Description of the Model Variables 

No Abbreviations Variable Name 

1  ACoD Drawings and other details are coordinated between design disciplines 
2  ACoS Adequate coordination of various specialities involved 
3  ACoxD Avoid overly complex design 
4  AfVarO Avoid frequent variation order 
5  AknowCMS Adequate knowledge of construction methods and sequence 
6  ARiSEQ Adoption of right work sequence 
7  BMwRC Order material with high content of recycled product 
8  BMwRP Buying materials with reusable packaging 
9  CarPSoW Carefully planned sequence of work to prevent damages to completed work 
10  CCDbC Completion of contract documents before construction process 
11  CDCoWMS Clear definition and communication of waste management strategies 
12  CfD Drawings and other details are devoid of clash 
13  CioCON Combined impacts of construction 
14  CioDes Combined Impacts of design 
15  CioPRO Combined impacts of procurement 
16  CoL Drawing and specifications are written in conventional lang. understood by all 
17  ColInFS Use of common collaborative platform for information sharing 
18  ColPRout Use of collaborative procurement routes such as IPD 
19  ContClaus  Contractual clauses to penalise poor waste performance  
20  DaDP Produce disassembly and deconstruction plan 
21  DaIWMP Development and implementation of waste management plan 
22  DCaRMat  Detect the construction activities that can admit reusable materials  
23  DfMMC Design for Modern Methods of Construction  
24  DFoE Design are free of error 
25  DfSDC Design for Standardization and dimensional coordination  
26  DfSDU Design for standard dimensions and units 
27  DimC Coordinate dimensions of building elements  
28  DWPart Specify the use of drywall partitions (e.g. timber walling) 
29  DwScoMR Discussion with sub-contractors on the reuse of materials 
30  ECC Cultural factors 
31  ECoA Early collaborative agreement before design activities 
32  EComDC Effective communication of design change 
33  EffMT Effective materials take-off 
34  EIoC Involvement of contractors at early design stage 
35  EoSDaA Suppliers’ alliance and commitments  
36  FewDC Ensure fewer design changes during construction 
37  FfOO Specifications are detailed & devoid of under/over ordering 
38  ICom Improved communication between various specialities 
39  JIT Use of Just-In-Time (JIT) procurement system 
40  MaxReuse  Maximisation of onsite reuse of materials  
41  ModCT  Adoption of modular construction technique 
42  ModPS Modification to products size and shapes in conformity with design 
43  MSubR  Making sub-contractors responsible for waste disposal 
44  OffSConT  Employment of offsite construction technology 
45  OpTil Tiles layout is optimised in conformity with design shape 
46  OptMP Optimisation of materials purchases to avoid over/under ordering 
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No Abbreviations Variable Name 

47  OverallWEoP Overall waste efficiency of project 
48  PaUPC Procurement and use of preassembled components 
49  PCoWC  Periodic checks on the use of C&D waste containers 
50  PDuM Purchase durable materials 
51  PoPcM Purchase of pre-cut materials 
52  PRAgg Procure recycled aggregate instead of virgin aggregates 
53  PreAss Design for preassembled components e.g. bathroom pods 
54  PreCCp  Use of Precast components such as bathroom and kitchen pods 
55  PreCCUM  Use of precast cladding, units and modules 
56  Prefab Prefabrication and offsite technology 
57  PrMinP Procurement route that minimises packaging 
58  PSLPbC Preparation of site layout planning before construction 
59  pvCCaC Contractors' dedication and competencies 
60  pvCP Contractual provisions 
61  pvMPM Low waste materials purchase management  
62  pvMR Materials reuse 
63  RCdBP  Complete and resolve contract document before procurement 
64  RMScrap  Reuse material scraps from cutting stock-length material into shorter pieces 
65  RoOMat  Reuse of off-cuts materials (such as wood) 
66  SaCD Detailing of the building elements is simple and clear 
67  SCAll Supply chain alliance with materials suppliers 
68  SCPMB Collecting package materials back by suppliers 
69  SDWaGa Standardise doors, windows and glazing areas 
70  SFiSSQ Supplier flexibility in providing small quantities of materials 
71  SoilRem  Soil remains to be used on the same site 
72  SPrefab Specification of prefabricated structural materials 
73  TBS Provision for unused materials to be taken away from site (take back scheme) 
74  TgfWM Establishing task group for onsite CWM 
75  TRPSbC Thorough review of project specifications by contractors 
76  UoDMfL  Use of demolition materials and excavation for landscape 
77  URcM  Use of reclaimed materials 
78  VolDes Employ volumetric modular design principles 
79  WEoBOQ Waste-efficient bill of quantity 
80  WEoC Waste efficiency of construction 
81  WEoD Waste efficiency of design 
82  WEoDD Waste-efficient design documentation  
83  WEoDD Waste-efficient design documentation  
84  WEoDP  Waste-efficient design Process  
85  WEoP Waste efficiency of procurement  
86  WEoSP) Site Planning  
87  WMP Waste management plan is prepared along with design 
88  WTfSubT  Waste target set for sub-trades 
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9.5 Data Collection and Analysis for Model Simulation 

After developing the stock and flow diagram, a case study of construction project is 

required to generate values for the measured variables. In order to achieve this, a case 

study of residential project was selected based on access to project information and key 

stakeholders involved in the project. Detail information about the case study is available 

in Table 9.3.  
 

Table 9.3: Specific characteristics of case study project 

Features Project Description 

Project Type New built residential units 
Usage Flats/Apartments 
Cost £11m 
Start Date June 2013 
End Date May 2015 
Project Duration 24 months 
Building Types Load bearing masonry  
Gross Floor Area 5578.36m2 
Waste Output 8912.54 tonnes  

 

Data was collected through formal meetings with five key members of project team, 

including the project manager, site manager, project architect, site waste manager and a 

representative of sub-contractors. All the five participants were involved from inception 

to completion of the design and build project, and they are all experienced in construction 

waste minimisation. A questionnaire was designed to determine the extent of adoption of 

the established waste management strategies in the case study project. Only measures 

that were previously confirmed through SEM were included on the questionnaire. The 

project team were asked to rank the adoption of each of the strategies on a range of 0 to 

100%, with 0 indicating narrowly adopted and 100 representing widely adopted. A copy 

of the questionnaire used for the project data collection is available in Appendix 2. 
 

 

 Mathematical Modelling for Model Simulation 

In order to compute relative adoption value for each of the strategies, mathematical 

models were developed for various latent variables included in the model. This involved 

a number of steps, some of which are as explained below.  
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1. Computation of significance index for each measured variable 

Based on the factor weight established for each element in the SEM, relative weights 

were computed for the elements using:  

𝑅𝑅(𝑎𝑎𝑖𝑖) = 𝑤𝑤(𝑎𝑎𝑖𝑖)
𝑤𝑤𝑎𝑎1+𝑤𝑤𝑎𝑎2+𝑤𝑤𝑎𝑎3+⋯+𝑤𝑤𝑎𝑎𝑛𝑛

    (1) 

Accordingly, Equation (1) could be generalised as: 

𝑅𝑅(𝑎𝑎𝑖𝑖) = 𝑤𝑤(𝑎𝑎𝑖𝑖)
∑ 𝑤𝑤𝑎𝑎𝑗𝑗
𝑛𝑛
𝑗𝑗=1

     (2) 

𝑅𝑅(𝑎𝑎𝑖𝑖) is the significance index of element “𝑎𝑎𝑖𝑖” that measures the extent to which “𝑎𝑎𝑖𝑖” contributes 

to its latent variable, 𝑤𝑤(𝑎𝑎𝑖𝑖) is the factor weight of element “a” taken from the structural equation 

models. ∑ 𝑤𝑤𝑎𝑎𝑗𝑗
𝑛𝑛
𝑗𝑗=1  is the sum of factor loadings for all elements a1, a2, a3….an in the same category 

as 𝑎𝑎𝑗𝑗, contributing to a latent factor.  

 
Taking for instance, a latent factor “Waste Efficiency of Design Document” represented as 

WEoDD where a1= DFoE, a2 = DaDP, a3 = FfOO, a4 = WMP, a5 = CFD, a6 = CoL, Wa1 = 0.89, 

wa2 = 0.79, wa3 = 0.83, wa4 = 0.61, wa5 = 0.60 and wa6 = 0.58 (see figure 8.2). Then, from Equation 

(2), the relative weight of DFoE, i.e. R(DFoE) = 0.89/4.3 = 0.21.  

 

2. Computation of adoption level for the underlying strategies – first-order 

variables in the SEM 

Adoption levels were computed for first-order latent variables (such as WEoDD, WEoD, 

PpvMR, etc.) using:  

𝐴𝐴𝐴𝐴(𝑆𝑆) = 𝐾𝐾(𝑎𝑎1) × 𝑅𝑅(𝑎𝑎1) + 𝐾𝐾(𝑎𝑎2) × 𝑅𝑅(𝑎𝑎2) + 𝐾𝐾(𝑎𝑎3) × 𝑅𝑅(𝑎𝑎3) +⋯+ 𝐾𝐾(𝑎𝑎𝑛𝑛) × 𝑅𝑅(𝑎𝑎𝑛𝑛) 

       (3) 

𝐴𝐴𝐴𝐴(𝑆𝑆) = ∑ 𝐾𝐾(𝑎𝑎𝑖𝑖) × 𝑅𝑅(𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1          (4) 

Where AL(S) is the adoption level of a strategy S. 𝐾𝐾(𝑎𝑎𝑖𝑖) is the level of adoption of sub-element 

𝑎𝑎1 contributing to strategy S. 𝑅𝑅(𝑎𝑎𝑖𝑖) is the significance index of sub-element 𝑎𝑎1 as calculated 

through Equation (2). 

 

3. Computation of the relative weight for the underlying strategies 

In order to understand the baseline efficiency for each of design, procurement and 

construction processes, it is important that their significance index is established. 

Significance index is calculated using:  
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𝑅𝑅(𝑆𝑆𝑖𝑖) = 𝑤𝑤(𝑆𝑆𝑖𝑖)
∑ 𝑤𝑤(𝑆𝑆𝑗𝑗)𝑛𝑛
𝑗𝑗=1

      (4) 

Where 𝑅𝑅(𝑆𝑆𝑖𝑖) is the significance index of strategy 𝑆𝑆𝑖𝑖 contributing to design, procurement 

or construction, 𝑤𝑤(𝑆𝑆𝑖𝑖) is the absolute weight of the strategy as extracted from the SEM, 

∑ 𝑤𝑤(𝑆𝑆𝑗𝑗)𝑛𝑛
𝑗𝑗=1  is the sum of absolute weights for all strategies at equal level as 𝑆𝑆𝑖𝑖 

contributing to design, procurement or construction. 

 

4. Equation for combined impacts of design, procurement and construction 

Impacts of each stage of project delivery were modelled through relative impacts of their 

contributing factors as well as their adoption levels. They were modelled using:  

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐴𝐴𝐴𝐴(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊) × 𝑅𝑅(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊) + 𝐴𝐴𝐴𝐴(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊) × 𝑅𝑅(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊) 

+𝐴𝐴𝐴𝐴(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) × 𝑅𝑅(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) + 𝐴𝐴𝐴𝐴(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) × 𝑅𝑅(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) (5) 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐴𝐴𝐴𝐴(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) × 𝑅𝑅(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) + 𝐴𝐴𝐴𝐴(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) × 𝑅𝑅(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) + 𝐴𝐴𝐴𝐴(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊) ×

𝑅𝑅(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊)  (6) 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐴𝐴𝐴𝐴(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊) × 𝑅𝑅(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊) + 𝐴𝐴𝐴𝐴(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) × 𝑅𝑅(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) + 𝐴𝐴𝐴𝐴(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) ×

𝑅𝑅(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) + 𝐴𝐴𝐴𝐴(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) × 𝑅𝑅(𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃) + 𝐴𝐴𝐴𝐴(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) × 𝑅𝑅(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) + 𝐴𝐴𝐴𝐴(𝐸𝐸𝐸𝐸𝐸𝐸) × 𝑅𝑅(𝐸𝐸𝐸𝐸𝐸𝐸)

        (7) 

Where: 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is the combined impact of design strategies 

CioPRO is the combined impacts of procurement strategies 

CioCON is the combined impacts of construction strategies 

AL(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊) (for instance) is the adoption level for WEoDD calculated using Equation 

(3). R(S) is the significance index for each of the strategies S 

 

Using similar approach, mathematical equations were computed for other variables in the 

model. As a result of the calculation, adoption values computed for each of the strategies 

are as presented in Table 9.4.  
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Table 9.4: Inputted data on adoption rate for key dimensions of waste-efficient projects 

Strategies confirmed by SEM  Values (Adoption 
level)% Abbreviations Strategies 

WEoDD Waste-efficient design documentation 53 
DfMMC Design for Modern Methods of Construction 45 
WEoDP Waste-efficient design Process  57 
DFSDC Design for Standardization and dimensional coordination 7 
EoSDaA Suppliers’ alliance and commitments 10 
pvMPM Low waste materials purchase management 30 
WEoBOQ Waste-efficient bill of quantity 18 
WEoSP Site Planning 40 
pvMR Materials reuse 57 
Prefab Prefabrication and offsite technology 5 
pvCP Contractual provisions 35 
pvCCaC Contractors' dedication and competencies 70 
ECC Collaborative culture  4 

 

Based on the mathematical approach and ability to compute values for the latent 

variables, the whole model could be simplified as presented in Figure 9.4 

 
Figure 9.4: Simplified model of the overall system 
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9.6 Model Testing and Validation 

Model validation is an essential part of modelling processes in system dynamic modelling 

(Sterman, 2000). It is used to ensure accuracy of the model in reflecting actual 

environment in a reasonable pattern (Richardson and Pugh, 1981). Various techniques 

are being used to confirm the behaviour and validity of model to establish confidence in 

the model. These include structure verification test, parameter verification test, 

dimensional consistency test and extreme condition test (Ding et al., 2016; Qudrat-Ullah 

and Seong, 2010). Model validation techniques used in this study are as discussed in the 

subsequent sections. 
 

 Structure Verification Test 

The essence of structure verification test is to ensure that the model represents the real-

life relationship and interplay of various elements included in the model, as well as the 

actual description of the system being modelled (Ding et al., 2016). In order to ensure 

this, causal loop diagram and its subsequent stock and flow diagrams were based on the 

confirmed relationship between the variables as previously established through SEM. 

Variables with insignificant loadings to their latent factors were excluded from the SDM. 

In addition to this test, model check function of VENSIM confirmed that all the elements 

with causal influence on one another had been adequately considered.  Figure 9.5 and 9.6 

confirm the structural validity of the models. 

 
Figure 9.5: Structural validation of the simplified model 
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Figure 9.6: Structural validation of the main model 

 

 Parameter verification test 

Parameter verification test is used to confirm whether the parameter value is numerically 

and descriptively consistent with the system knowledge (Sterman, 2000). In this model, 

the parameters used were based on rigorously confirmed factors that are grounded in 

literature and real-life practices. 
 

 

 Dimensional Consistency Test 

In SDM, dimensional consistency test is performed to confirm that the unit of measure 

of variables on both sides of any equation is equal (Pejić-Bach and Čerić, 2007). The test 

ensures that the model is dimensionally consistent with its use of parameters (Sterman, 

2000). The modelling tool, VENSIM has an inbuilt capacity to verify the dimensional 

consistency of the model. As shown in Figures 9.6 and 9.7, the two models were verified 

for dimensional consistency and the results indicate that the model is dimensionally 

consistent. 
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Figure 9.7: Confirmation of Dimensional consistency for the simplified model 

 
Figure 9.8: Confirmation of dimensional consistency for the main model 

 

 Extreme Condition Test 

Extreme condition test is used to evaluate model behaviour to extreme cases. It is used to 

simulate the behaviour of the system when its input is at extremely high or extremely low 

level (Sterman, 2000). According to Pejić-Bach and Čerić (2007), if the demand for a 
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company’s product is at zero during a simulation, it would be expected that sale and 

income from the product are at zero level. In this study, model behaviour at extreme cases 

was simulated with 0% implementation of all the strategies and at 100% implementation 

of all the strategy. As presented in Figures 9.9 and 9.10, the results indicated validity of 

the model. At 0% adoption of all the strategy, the overall waste efficiency of the project 

is about 0.4% and at 100% adoption of all the strategies, the overall waste efficiency of 

the project is 99.9%.  

 
Figure 9.9: Model behaviour at 0% adoption of all the strategies 

 
Figure 9.10: Model behaviour at 100% adoption of all the strategies 

 

9.7 Scenario Testing 

In order to understand optimal approach for mitigating waste generated by construction 

activities, various scenarios were modelled in two categories. The first scenario evaluated 

influence of design, procurement and construction processes on overall waste efficiency 
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of projects. The second scenario evaluated impacts of various strategies on overall waste 

efficiency of construction projects.  
 

 Dynamic Impact of the three Stages 

Scenario models were performed, using Simulate and Synthesim functionality of 

VENSIM, to investigate overall impacts of each of design, procurement and construction 

processes. For each of the stages, implementation levels were increased to 100% to 

evaluate their impacts on overall waste efficiency of construction projects, while leaving 

all other strategies at the baseline implementation as presented in Table 9.4. The "baseline 

implementation of all strategies" yielded approximately 40% efficiency as shown in 

Figure 10.11. Results of the scenario modelling are presented in Figure 9.11. The results 

suggest that design has the highest impacts on overall waste generated in construction 

projects. The graph indicates that at 100% implementation of design for modern methods 

of construction, collaborative design process, effective design documentation and design 

for standardisation and dimensional coordination, the project would achieve about 75% 

of waste efficiency. This is not only as a result of design from a unitary perspective; it is 

partly due to its ability to drive other activities at the procurement and construction stages. 
 

Construction stage has the second highest impacts on overall waste efficiency of 

construction projects. This impact is driven by 100% adoption of other construction 

strategies on the model with 50% adoption of prefabricated elements. The result suggests 

that at 100% of promotion via materials reuse, adequate site planning, collaborative 

environment, contractual provisions and contractors' dedication, the project would 

achieve about 72.5% of waste efficiency, provided prefabrication is adopted for 50% of 

the project. However, at 100% adoption of prefabrication, which is the most significant 

construction driver of waste-efficient project, the project achieved about 82.5% of waste 

efficiency. This is an increase of 42.5% waste efficiency over the baseline waste 

performance of about 40%. This suggests that the construction stage is the most 

significant driver of construction waste minimisation for a fully prefabricated building. 

Otherwise, the design stage is the major driver of construction waste minimisation. 

 

The dynamic simulation suggests that increasing use of procurement measures is capable 

of reducing waste generated by construction activities. As shown in the graph (Figure 

9.11), the result indicated that waste-efficient procurement could drive overall waste-
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efficient of construction project to about 50%. With the baseline adoption of all measures 

being about 40%, this suggests that procurement process could improve project waste 

efficiency by around 10%, while design and construction could improve it by 35% and 

32.5% respectively.  

 
Figure 9.11: Dynamic impacts of different stages of project delivery process 

 

 Key Dynamic Drivers of Overall Waste Efficiency 

Dynamic impacts of adopting individual strategies on overall waste efficiency were simulated by 

keeping other strategies at the baseline adoption level. The result extends beyond unitary impacts 

of the strategies, as it indicated dynamic impacts of adopting each strategy or group of related 

strategies at design, procurement and construction stages.   
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Among the design strategies, design for modern method of construction has the highest 

impacts on the overall waste minimisation in construction projects. This is followed by 

collaborative design process, which entails adequate communication, effective 

collaboration and involvement of construction team right from the design stage. As 

shown in Figure 9.12, design for standardisation and dimensional coordination has the 

third highest impact, while the impact of design document is ranked fourth. 

 
Figure 9.12: Dynamic impacts of different strategies for designing out waste 

 

Relative impacts of different procurement strategies were also simulated to understand 

how they influence overall waste efficiency of construction projects. As shown in Figure 

9.13, suppliers’ alliance has the highest impacts on overall waste efficiency of 

construction projects. Materials purchase management has the second highest impact, 

while bill of quantity has lowest relative impact. 
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Figure 9.13: Dynamic impacts of different procurement strategies for waste mitigation 

 

The construction strategies for waste minimisation were similarly simulated to 

understand relative impacts of various strategies on overall waste efficiency of 

construction projects. As presented in Figure 9.14, the result indicated that prefabrication 

construction method has the highest possibility of minimising waste generated by 

construction activities. Collaborative construction process such as the use of IPD and 

BIM has the second highest waste minimisation tendency, while contractual provision 

has the third highest tendency of mitigating waste generated by construction activities. 

Other strategies in order of their significance are materials reuse, site planning and 

contractors' dedication respectively. 
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Figure 9.14: Dynamic impacts of different construction strategies for waste mitigation 

 

In order to understand the top measures for engendering waste minimisation, irrespective 

of stage of its implementation, simulation results for the design, procurement and 

construction strategies were combined. The result indicates that designing for modern 

method of construction and its associated modern method of construction – prefabrication 

– have the highest tendency of reducing waste generated by construction activities. Other 

measures are collaborative design process, design standardisation and collaborative 

construction, among others. Order of their significance is presented in Figure 9.15. 
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Figure 9.15: Dynamic impacts of design, procurement and construction measures 

 

 Underlying strategies for Holistic Waste Minimisation 

Based on the dynamic impacts of different strategies for construction waste minimisation, 

related strategies were combined to develop key measures with highest impacts on waste 

mitigation. The top key measure for driving waste minimisation is the use of 
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prefabrication technique, which is made up two components of designing for modern 

methods of construction and prefabrication construction technique. The design for 

modern methods of construction encompasses specification of prefabricated materials, 

volumetric design principles, design for preassembled components and the specification 

of dry walling system, while the prefabrication construction encompasses onsite 

implementation of the design for modern methods of construction. This includes the use 

of offsite construction, modular system, precast elements and prefabricated components. 

As shown in Figure 9.16, the use of this technique has tendency of significantly 

improving waste efficiency to about 73% from a baseline of about 40%.   

 
Figure 9.16: The two holistic drivers of construction waste minimisation  

 

The second combined approach for driving waste minimisation is collaborative 
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culture in construction and suppliers’ alliance in materials procurement. Combining the 

effects of the three components, collaborative procurement routes have tendencies of 

improving construction waste efficiency up to 70% from the baseline of about 40%.  
 

 

9.8 Chapter Summary 

In this chapter, a system dynamic model was developed to simulate dynamic impacts of 

design, procurement and construction stages, as well as their associated strategy, on 

overall waste efficiency of construction projects. The model was developed using 

VENSIM system dynamic modelling tool, and it consists of cause and effect diagram, 

which was converted into stock and flow diagram with the aid of mathematical equations. 

In order to simulate impacts of adopting each strategy on overall waste efficiency of 

construction projects, a case study of a completed building construction project was used. 

In line with the recommended steps for system dynamic modelling and simulation, the 

model went through a number of testing and validation before various scenarios were 

modelled. 

 

The result suggests that design stage has overall highest impacts on construction waste 

minimisation. This is followed by construction stage, with materials procurement 

processes having the least impacts. Effects of all design, procurement and construction 

measures were also evaluated. Through combination of related strategies over the entire 

lifecycle of construction projects, the results suggest that prefabricated design and 

construction has the highest significance in driving waste minimisation. Similarly, the 

result suggests that substantial construction waste could be reduced through collaborative 

procurement routes and collaborative techniques such as Integrated Project Delivery 

(IPD) and the use of Building Information Modelling (BIM). 
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CHAPTER 10: FINDINGS AND DISCUSSIONS 

 

10.1 Chapter Overview 

In this chapter, findings from the previous chapters are discussed and elaborated. The 

chapter is discussed under five broad headings. The first part addresses the difference in 

perception of waste minimisation strategies based on job role, which illuminates deep-

rooted non-collaborative culture within the construction industry. Subsequent four 

sections discuss findings of design, design competencies, procurement and construction 

strategies for engendering waste minimisation. Preceding the culminating section is the 

discussion of dynamic relationship and interplay of design, procurement and construction 

strategies for engendering project waste efficiency. Table 10.1 summarises the findings 

that are discussed in this chapter.  

 
 

10.2 Difference in Perception Based on Job Role 

Results of non-parametric test confirmed null hypothesis that respondents agreed on all 

but one measure based on their job roles. The affected factor is DF4, which is 

“involvement of contractors at early design stage”. An evaluation of mean values for 

architect/design managers, project managers, civil/structural engineers and waste 

managers suggests an interesting trend in the construction industry. While other 

respondents ranked the measure as being requisite for designing out waste, 

architect/design managers posited that the strategy is of low importance. Designers 

believed that early involvement of contractors at design stage have less impact on the 

likelihood of designing out waste.  

 

This finding suggests that while contractors and other site-based team believed that their 

input is invaluable at the design stage of project delivery process; designers believed that 

they independently possess skillsets required for designing out waste. However, evidence 

suggests that design could be responsible for about a third (33%) of construction waste 

(Innes, 2004). This means that despite the acclaimed ability of designers in designing out 

waste, the design remains a major factor responsible for waste intensiveness of the 

construction industry. Oyedele et al. (2014) suggest that inadequate use of recycled 

products in the UK construction industry is partly due to poor consideration of the 
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materials at the design stage. This specifically called for increasing collaborative 

arrangement at the design stage, where contractors and other team members would have 

their input into the design. Apart from waste minimisation tendencies, evidence suggests 

that early involvement of contractors have positive impacts on drawing quality, 

information flow, materials supply and schedule performance (Song et al., 2009). 
 

Considering the manufacturing industry where low waste is generated, there is more 

integration of design with manufacturing process (Koskela, 2004; Mohd Nawi et al., 

2014). This prevents the likelihood of over-the-wall syndrome, a phenomenon that occurs 

due to poor collaboration among project participants (Chary, 1988). Notwithstanding the 

difference in experts' view of the early involvement of contractors, there is an agreement 

on several other factors requiring collaborative working system among project 

participants. For instance, there is a general agreement that the use of collaborative 

procurement route such as Integrated Project Delivery (IPD) is essential to reducing 

waste generated by the construction industry. Nonetheless, such collaborative system 

requires win-win approach rather than imposition and unequal commitment, which could 

offset the benefits (Rahman and Alhassan, 2012). 

 

Based on this difference in perception, it could be inferred that unlike manufacturing 

industry, the construction is highly fragmented and each party prefers to work 

independently. This affects the ability of other parties to contribute their expertise, which 

in turns results in errors, reworks and subsequent waste generation. In line with this, Arain 

et al. (2014) suggest that non-involvement of the contractor at the design stage is 

responsible for errors in construction projects. Consequently, while designers are 

expected to collaborate with contractors during the construction stage, inputs from 

contractors is capable of enhancing waste effectiveness of the design. Thus, there is a 

need for cultural and behavioural change from fragmented to a collaborative approach to 

project delivery. 
 

 



195 
 

Figure 10.1: Summary of the key and underlying measures for design, procurement and construction processes 
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10.3 Designing out Construction Waste 

The widely referred McLeamy curve recognised design stage as being a decisive stage 

with multiple implications on project outcome (McLeamy, 2004). It has critical impacts 

on key project performance indicators such as cost, time and quality, among others 

(Isikdag and Underwood, 2010). In addition, the cost of change is cheaper if such change 

is made at the design stage of project delivery process (McLeamy, 2004). In line with 

these benefits, evidence suggests that waste could be significantly reduced by taking 

waste preventive measures at the design stage (Cf. Osmani et al., 2008; Faniran and 

Caban, 1998; Ekanayake and Ofori, 2004). With design stage widely reckoned as being 

decisive for construction waste minimisation, this section discusses the design measures 

for driving low waste construction projects. The discussions are in three sections, which 

are based on the results of statistical analysis and Structural Equation Modelling (SEM). 

The first section addresses the underlying dimensions for designing out waste based on 

final structural models of strategies for designing out waste. The second section discusses 

five key design strategies for designing out waste based on results of descriptive statistics. 

 

 
 Underlying Dimensions for Designing out Waste 

Results of the Structural Equation Modelling shows that the 39 previously identified 

measures for designing out waste could be replaced by four key factors that were 

rigorously confirmed through Confirmatory Factor Analysis. These factors include: 

• Design for modern methods of construction  

• Waste-efficient design process 

• Design for standardisation 

• Waste-efficient design document 

 The four underlying factors have significant proportion of their variance explained by 

waste-efficient design, and they are discussed in the next subsequent sections. 
 

10.3.1.1 Standardisation and dimensional coordination 

A key measure that loaded significantly with Waste-efficient design is standardisation 

and dimensional coordination, which has 77% of its variance explained by waste-efficient 

design. It is constituted by six measures for designing out waste, which are clear detailing, 

dimensional coordination, optimised layout, standardised fixtures, simplicity and overall 
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standardisation. Dimensional coordination of design refers to a scenario whereby 

standard materials supplies are considered and taken into consideration during design. 

Coordination of design dimensions and specification of standard materials would not only 

improve constructability of buildings, but it would also help in preventing avoidable off-

cuts, which could lead to waste. Constructability of a building is a key factor that 

measures the extent to which efficient construction is factored into design and design 

processes (Mbamali et al., 2005). It has been reasoned that design teams are expected to 

take a leading role in ensuring buildability and constructability of their projects (Lam et 

al., 2006). Improved buildability of design is not only required for early project 

completion and resource efficiency (Lovell, 2012), it is a proven way through which 

construction waste could be reduced (Yeheyis et al., 2013; Yuan, 2013b). 
 

Crawshaw (1976) suggests that a discrepancy of 10mm in one dimension would not only 

affect contractors' programmes, but it could also cost up to £3,000 in reworks. As such, 

it is important that while error is prevented in dimension, design should also be 

standardised to avoid unnecessary offcuts. In a similar note, WRAP (2009) recommends 

standardisation of building forms and layout and the use of full height doors as a means 

of reducing construction waste. This is in line with this study, which posits that apart 

from preventing errors in design, individual elements of the buildings are to be 

standardised based on market size of the materials. For instance, window and glazing 

area, as well as door openings, should be appropriately sized. 

 

In line with this study, other authors have also recommended dimensional coordination 

and standardisation of building elements as an optimal means of reducing construction 

waste (Dainty and Brookes, 2004; Ekanayake and Ofori, 2004; Baldwin et al., 2007; 

Alshboul and Ghazaleh, 2014). It is expected that buildings are designed in response to 

site topography to avoid excavation waste (Yuan, 2013b), complex designs are 

adequately detailed to improve buildability (Negapan et al., 2013) and structural grid and 

planning grid are properly coordinated (WRAP, 2009). Thus, it is not only important that 

designers address dimensional coordination of the building elements, spaces and 

elements need to be standardised in design. This would result in reduction of both 

construction and end of life waste. 
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Another benefit of dimensional coordination and standard materials supplies is ability to 

reuse the materials at the end of buildings' life cycle. In order to reduce waste generated 

by the construction industry, designers' waste management measures should go beyond 

immediate construction activities and current use to which the building is put. It is 

important that buildings be designed for flexibility and change, in a way that building 

modification and change in spatial configuration will result in minimal waste. This is 

particularly necessary as evidence suggests that substantial proportion of waste generated 

by the construction industry is as a result of renovation works (Esin and Cosgun, 2007).  
 

10.3.1.2 Collaborative Design Process 

Early collaboration and improved communication during the design process is confirmed 

as a key approach for designing out waste in construction projects. The SEM of design 

strategies in Figure 8.2 shows that design process is a key dimension for designing out 

waste, with a β value of 0.91 at 99.9% confidence level. The five key contributing factors 

that were confirmed in the final model pointed towards collaborative design arrangement 

that engenders adequate information sharing and communication among the project team.   

 

Due to its fragmented and dynamic nature, construction activities usually involve series 

of errors capable of influencing project success. When error occurs, it leads to reworks, 

which in turns affect project cost and results into waste. Although cost of reworks has 

significantly reduced from 30% around 1970s (Crawshaw, 1976), it could still account 

for about 5% of project costs (Hwang et al., 2012). Rework is one of the major activities 

that contribute to waste intensiveness of the construction industry (Faniran and Caban, 

1998; Ekanayake and Ofori, 2004). Although design change might not be totally 

prevented in construction, increasing collaborative working has tendency of preventing 

error-induced design change and reworks (Osmani, 2012). This could be achieved by 

involving the contractors at early design stage to contribute to design decisions, materials 

specification and technology. Dainty and Brooke (2004) suggests that most error at 

construction stage is usually due to contractors' poor knowledge of the design and its 

documentation. This results in insufficient understanding of design, and as such, results 

in error. Thus, involving contractor in the design process would not only benefit the 

design, but it would also equally enhance contractors' understanding of project 

requirements and design documents. 
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The SEM suggests that a key factor that defines Waste-efficient design process is 

adequate communication between various specialities involved in design. Typically, 

design input is made by various professionals within the built environment, involving 

architects, civil/structural engineers and M&E engineers among others. In order to ensure 

adequate coordination of design from various specialities involved, as well as to prevent 

design clash, there is need for effective communication among the parties (Domingo et 

al., 2009). This further buttresses the importance of collaboration right from design stage, 

as collaborative procurement routes are characterised by improved communication and 

adequate information sharing (Cicmil and Marshall, 2005). 

 

Meanwhile, the need to improve collaboration in the construction industry has 

engendered various procurement route and digital platforms, among which BIM and 

Integrated Project Delivery are becoming increasingly required (Ilozor and Kelly, 2011). 

While IPD is underpinned by integration of people and every aspect of project to harness 

insights and inputs for project optimisation (AIA, 2007), BIM is a technologically driven 

collaborative platform for enhancing digital representation, collaboration, production, 

storage and sharing of building information (Eastman et al., 2011). Thus, apart from 

likelihood of preventing immediate clash and other causes of waste, increased 

collaboration would enhance information sharing and early collaboration among project 

stakeholders, thereby foreseeing and preventing likely causes of waste. 
 

10.3.1.3 Design for Modern Methods of Construction (MMC) 

Design for Modern Method of Construction (MMC) is confirmed as a key dimension for 

designing out waste, with a β value of 0.68 at 99.9% confidence level. It also has 74% of 

its variance explained by waste efficiency in design, suggesting that it is a good reflector 

of the extent by which waste is designed out in a construction project. MMC usually 

refers to building construction technique whereby buildings are factory manufactured and 

site assembled (Lovell, 2012). It involves a situation whereby various components of 

buildings are manufactured in controlled factory environment and are transported to the 

site, where the components are assembly. Innovative onsite building technologies are also 

sometimes referred to as MMC (Mohd Nawi et al., 2014). The result of SEM shows that 

designing for MMC is a key dimension for designing out waste. These measures include 
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designing for modular construction, prefabrication and preassembled components as well 

as the use of modern low waste techniques such as drywall partitions (Baldwin et al., 

2007; Yuan, 2013). 

 

This finding is also buttressed by earlier studies, which posit that adoption of modern 

methods of construction, such as offsite construction and prefabrication of building 

components, significantly reduces construction waste (Cf. Dainty and Brooke, 2004; Al-

Hajj and Hamani, 2011).  

 

In addition to its tendencies for waste minimisation during construction, MMC supports 

constructability and de-constructability of buildings (Formoso et al., 2002; Oyedele et al., 

2013). This could ensure that building elements are reused after the end of its lifecycle, 

as the elements are appropriately sized to conventional standards. For instance, bathroom 

or kitchen pods could be diligently removed and reused in another building. It is, 

therefore, important that designers consider the MMC while designing, as the methods 

are proven waste-efficient (Yuan, 2013; Kozlovska and Splsacova, 2013). 

 

 

10.3.1.4 Waste-efficient design Documentation 

Another reflector of Waste-efficient design is the quality and comprehensiveness of 

design document, which has a β value of 0.65 at 99.9% confidence level, with 72% of its 

variance explained by the latent factor. The quality of design documents has great impacts 

the on overall effectiveness of the build process (Andi and Minato, 2003; Gann et al., 

2003). It is a key requisite for preventing waste generated by construction activities. For 

instance, design errors and wrong detailing have tendency of resulting in construction 

errors, which will in turns lead to reworks (Faniran and Caban, 1998). As such, 

completeness and accuracy of design documents is important for reducing waste 

generated by construction activities.  This is because; design documents do not only affect 

buildability of the project, its comprehensiveness and accuracy would go a long way in 

preventing errors that could lead to reworks (Formoso et al., 2002). Therefore, it is not 

only important that design documents provide adequate information, but it is also 

required that it employs conventional language and incorporates all features that are site 
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specific. It is vital that design documents are legibly presented in a consistent detailing 

language and format, easily understood by all trades involved in the project lifecycle. 

 

Specification as an important document has a decisive influence on the waste output of 

construction project. Oyedele et al. (2003) and Osmani (2013) considered inadequate 

specification as a major cause of waste in construction projects. If over-ordering, under-

ordering and over-allowance were well addressed in schedule and specification 

document, less waste would be generated on construction sites. It is, therefore, important 

that design and specification documents be accurately prepared in order to prevent waste 

that could arise from deficiencies in design documentation. In addition, evidence suggests 

that design document usually lack some essential details required for successful 

construction exercise, thereby leaving the contractors with guesswork and subsequent 

waste generation (Begum et al., 2009). It is expected that adequate design information is 

provided in the design document to ensure that subsequent businesses are carried out with 

less waste (Khanh and Kim, 2014). 

 

Similarly, current industry practices lack provision for preparation of deconstruction 

plan, which in itself would not reduce waste generation during construction but become 

a vital document for demolition and end of life waste diversion from landfill. The 

deconstruction plan is an important document for reducing waste intensiveness of the 

construction industry, as building demolition waste constitutes a larger portion of total 

waste generated by the construction industry. Designing for deconstruction is recognised 

as one of the five spectrums through which waste could be designed out in construction 

projects (WRAP, 2009). It involves careful planning, designing and selection of building 

materials in such a way that buildings support selective demolition of its elements 

(Saghafi and Teshnizi, 2011). Careful planning for buildings to support deconstruction at 

the end of its lifecycle, and subsequent availability of deconstruction plan, would reduce 

waste generated by the industry. This finding buttressed earlier studies by Oyedele et al. 

(2013) which suggests that in order to reduce landfill waste, there is a need for 

deconstruction plan to become part of design documentation. Thus, a major attribute of 

Waste-efficient design is the extent to which deconstruction has been factored into it. 
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 Key Strategies for Designing out Waste 

Results of statistical analyses suggest that error free design, early involvement of 

contractors, design standardisation, adequate design coordination and design freeze are 

the top ranked measures for designing out waste. While the top four factors have been 

adequately addressed by the key dimensions for designing out waste as discussed in the 

previous section, the study suggests the need for design freeze at the end of the design 

process. Meanwhile, design change is one of the major activities that contribute to waste 

intensiveness of the construction industry (Faniran and Caban, 1998; Ekanayake and 

Ofori, 2004). This is usually as a result of errors that require amendment to the design, 

need to work within a realistic budget or as a result of owners' change in requirement. As 

such, a major feature of waste-efficient design is that it incorporates adequate measures 

capable of preventing design change. This means that efforts should be made to ensure 

that design is made for the targeted budget and should be devoid of errors, which could 

otherwise require amendments. The key strategy for mitigating such change and its 

subsequent waste generation is through design freeze, which is ranked as the fifth 

measure for designing out waste. This would ensure that construction activities are 

carried out with legally binding and completed design documents and adequate 

information, thereby preventing errors that could otherwise result in reworks and 

subsequent waste generation. 

 

 

10.4 Competencies for Designing out Waste 

The relationship between competencies and achievement of desired goals has become 

more noticeable in many project-based organisations within the construction industry (cf. 

Dainty et al., 2005; Zhang et al., 2013, Hardison et al., 2014, Lampel, 2001). 

Concomitantly, several studies have suggested adequate design competencies as key 

requisite for minimising waste generated by the construction industry (Cf. Wang et al., 

2014; Oyedele et al., 2014). Based on this, designers' competencies for driving low waste 

projects have been investigated in this study. The underlying competencies for designing 

out waste as well as the top-ranked competencies are discussed based on results of 

statistical analyses and SEM. 
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 Dimensions of Competencies for Designing out Waste 

Four categories of competencies for designing out waste were established in the study. 

These include:  

• Waste behavioural competency 

• Design task proficiency  

• Construction-related knowledge  

• Inter-professional competency  

The underlying competencies along with their overall impacts on designers’ capability 

for driving waste minimisation are discussed in the subsequent sections.  
 

10.4.1.1 Waste Behavioural Competency 

Likelihood of designing out construction waste is not only determined by cognitive 

ability and knowledge of designers, behavioural competence and personal commitment 

is the underlying factors that determine whether the skill and knowledge would be 

applied. These sets of behavioural competencies have also been referred to as self-

competence or contextual dimension of competency. Harter (1982) refers to self-

competence as one's perceived ability and belief in a particular task. With respect to 

designing out waste, this study refers to self-competence as self-awareness and concept, 

ability, motivation, attitude and dedication to waste minimisation. Results of SEM 

indicate that behavioural competency is a key competency for designing out waste having 

a β value of 1.40. With the highest factor loading among all latent factors of design 

competency, this finding confirms that contextual competency is a key requisite for 

driving task competencies for designing out waste. This aligns with Motowildo's task-

contextual model, which posits that contextual and behavioural traits are essential 

components of competency (Motowildo et al., 1997). 

 

In order to design out waste, this study finds that designers should be dedicated to 

understanding waste causative influence of design in addition to their knowledge of 

design actions that result in waste. While investigating architects' perspectives to waste 

reduction by design, Osmani et al. (2008) similarly claimed that understanding 

underlying causes and origin of waste is a requisite knowledge for reducing waste by 

design. Asides basic understanding of design causes of waste, commitment on the part of 

designers determines attitudes to waste management, and whether their skill would be 
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used for designing out. To raise self or behavioural competence for designing out waste, 

more dedication is needed from designers, some of who believe that waste is only site 

induced and that they have no professional responsibility for tackling it (Osmani, 2013). 

This commitment could be demonstrated by setting waste minimisation as priority, 

avoiding known waste-inducing activities, and engagement in training and development, 

among others (Lu and Yuan, 2010; Mckechnie and Brown, 2007). In addition, ability to 

prepare waste scenario plan that compares and improves design based on likely waste 

outcome is an essential part of competency for designing out waste. 
 

10.4.1.2 Design Task Proficiency  

This study suggests that design task competencies are indispensable to achieving low 

waste construction projects. The factor has a β value of 0.94 as a significant reflector of 

competency for designing out waste. This buttresses findings of earlier studies aiming at 

identifying design factors with causative influence on construction waste. For instance, 

design error, poor detailing and inadequate specification are known causes of 

construction waste (Faniran and Caban, 1998; Formoso et al., 2002). Results of SEM 

indicates that the extent to which a designer is capable of considering basic design quality 

indicators would reduce waste induced by design. These sets of design quality indicators 

include design functionality, detailing, specification as well as the quality of its 

documentation (Gann et al., 2003; Andi and Minato, 2003). As illegible or incorrectly 

detailed design leads to construction waste, ability to produce error-free design, correct 

materials specification and coherent documentation are key competencies for designing 

out waste.  

 

In addition, the result suggests that competency of a designer in designing out waste is 

determined by the extent to which constructability thinking comes into his/her thought 

process. Constructability of a design refers to the extent to which it facilitates ease of 

construction (Lam et al., 2006). A construction project tends to be waste intensive if 

buildability/constructability, as basic design quality, is not thoroughly considered in the 

design process (Yuan, 2013b). It results in project delay, cost overrun and design change, 

which is a major cause of waste (Yeheyis et al., 2013). A similar competency that 

significantly reflects designers' overall competency is ability to design in response to the 

site topography as well as integration of existing facilities into the new design. This 
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finding aligns with earlier suggestion that designers are not only to design in response to 

site topography (WRAP, 2009) but are also expected to identify and integrate reusable 

elements into design (Begum et al., 2009). This could range from materials from previous 

buildings, in case of redeveloped site, to excavation materials where new sites are being 

developed (Del Río Merino et al., 2009). Thus, in addition to adequate technical and 

cognitive design skills, constructability thinking and ability to design in conformity with 

site are basic task competencies required for designing out construction waste. 

 

Certain design techniques and skills are potentially waste-effective. Improving 

proficiency of designers in such technique are agenda for Continuous Professional 

Development (CPD) with respect to waste management. Consequently, the result 

suggests that designers' competency for designing out waste is directly related to their 

proficiency in such skill as design for prefabrication, clash prevention and standard 

materials supply. While prefabrication is evident to reduce waste by up to 84% (Jaillon 

et al., 2009), design for standard materials supply is essential to preventing materials 

offcuts, which is a major source of construction waste (Formoso et al., 2002). In addition 

to this, Crawshaw (1976) points out that a little discrepancy of 10mm in dimension would 

result in reworks up to a cost of £3,000. Without necessarily considering waste output, it 

is essential that designers are versed enough to prevent clash, while also coordinating and 

standardising the dimensions of building elements, as these set of measures would in 

turns reduce waste output of construction projects. 
 

10.4.1.3 Construction-related knowledge 

Causative influence of design stage on construction outcome is well established across 

literature (Cornick, 1991). The extent to which designers consider actual construction 

process would determine the ease with which construction is carried out. In line with this, 

the study suggests that designers’ proficiency in construction-related knowledge is a 

measure of their competencies for designing out waste. This is as the study confirmed 

construction and materials related knowledge as key competency for designing out waste, 

having a β value of 0.91. In line with this finding, Alshboul and Ghazaleh (2014) suggest 

that knowledge of construction process and sequence would assist designers in preventing 

certain forms of error that could result in waste. For instance, adequate knowledge of 

which of wall tiles and floor rendering comes first could reduce offcuts or over ordering 
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of tiling materials. In the same vein, understanding whether ceiling materials is fitted 

before wall rendering could assist in saving cost and preventing materials wastage. By 

understanding how construction site layout and activities are carried out, designers would 

be able to design in line with subsequent businesses.  

 

Apart from awareness of construction operation sequence and real site activities, 

adequate knowledge of construction materials is required for designing out waste. This 

corroborates the position of Dainty and Brooke (2004) who argued that large percentage 

of building renovation waste is due to the use of less durable materials, which requires 

incessant replacement. Thus, designers are not only expected to be versed in standard 

materials supply and specification, their knowledge of materials quality and suitability 

for purpose is a key competency for preventing waste. 

 

Balance theory for recycling suggests that by using secondary materials equivalent of 

waste generated, landfill sites would be freed (Wong and Yip, 2002). Notwithstanding 

this, Oyedele et al. (2014) found that recycled material is less acceptable in construction 

industry as designers lack adequate awareness of its durability, market availability and 

correct specification. As such, adequate knowledge of secondary materials, as well as 

their efficient specifications is an important competence for driving low waste culture 

within the construction industry.                                                                                                                                                           
 

10.4.1.4 Inter-professional Competency  

Due to highly fragmented project-based nature of the construction industry, this study 

confirmed that inter-professional collaborative competency is essential to driving low 

waste projects. The measure has a β value of 0.76, and it is a significant reflection of 

designers' competency for designing out waste. Corroborating the need for inter-

professional collaborative competencies, Osmani (2013) opines that although zero waste 

target was debated for construction industry, concerns regarding the industry's 

fragmentation and poor collaboration prevents its implementation. Meanwhile, Canadian 

National Inter-Professional Competency Framework (2010) suggests that achieving 

optimal outcome in a multi-professional engagement requires effective collaboration and 

role awareness between parties involved. All these point to the importance of inter-
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professional competencies in such a fragmented and multi-party setting as the 

construction industry. 

 

Ability to coordinate design from various trades including architecture, M&E, and 

structural engineering is an important competency required of design managers, as it will 

assist in early detection and mitigation of design clash before construction. This aligns 

with argument by Crashaw (1976) who points out that poor coordination of designs is a 

major cause of waste and rework. In order to avoid make-do waste which occurs as a 

result of poor communication between design team (Koskela, 2004), this study suggests 

that designers are not only required to understand team functioning and role 

responsibility, they are expected to have competencies for effective communication 

within and across trades.  

 

Apart from competencies required for managing project team works, interpersonal 

management, inter-professional conflict management skill and collaborative 

competencies are required for minimising waste in construction projects. This means that 

other than proficiency in design task, contextual job performance in terms of 

collaborative competency of designers is a good measure of their competency for 

designing out waste. 
 

 

 Top Ranked Competencies for Designing out Waste 

Significance ranking for design competencies suggests that most of the key competencies 

for designing out waste are part of designers' core skills. For instance, the top-ranked 

factor is the designers' ability to coordinate dimension of building elements and 

components in line with standard materials supply, which is essential task proficiency. 

By coordinating dimension of building elements and components, there is likelihood of 

preventing offcuts, which is a major cause of construction waste (Formoso et al., 2002). 

It is as such important that designers are aware of standard materials supply so that 

dimensions could be adequately coordinated in line with the supplies.  

 

The second, third and fifth ranked factors are ability to produce error-free design, ability 

to coordinate design from all trades and ability to ability to produce coherent and 

comprehensive design information respectively. These sets of competency felled within 
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the task competencies that are required of designers, whether or not waste mitigation is 

of concern. As previously discussed, design errors, clash and inadequate information 

could result in rework, a major cause of waste in construction project (Love et al., 2000). 

The fourth-ranked factor is the ability to detect and prevent clash in design. This felled 

within both task and inter-professional competency, as design clash could occur at both 

individual and collaborative levels. Based on this requirement, it is essential that 

designers possess adequate skills needed for preventing design clash. An increasingly 

popular among such skill is the use of BIM tools such as Revit, which could help in 

coordinating design from all trades. 
 

 

10.5 Procurement Strategies for Waste-efficient Projects 

As materials could contribute up to 50% of project cost (Kong et al., 2001), success and 

profitability of a construction project largely depend on the extent to which its materials 

purchase is effectively managed. Notwithstanding the knowledge that wasted materials 

are purchased through the procurement process, relevance of the process in reducing 

construction waste has not been adequately considered. This is albeit the fact that 

substantial percentages of waste generated in construction activities have been traced to 

ineffective coordination of materials procurement activities (Greenwood, 2003; Lu et al., 

2011; Wang et al., 2008). Based on the importance of materials procurement process in 

mitigating construction waste, this study has investigated procurement measures for 

waste-efficient projects. Underlying procurement measures for mitigating waste, as well 

as the top-ranked procurement strategies for construction waste minimisation, are 

discussed in this section. 

 

 

 Underlying Dimensions of Waste-efficient Procurement 

Results of SEM confirmed that all the procurement strategies for mitigating construction 

waste could be substituted with three underlying factors, which are: 

• Waste-efficient materials purchase management  

• Suppliers’ alliance and commitment 

• Waste-efficient bill of quantity.  
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The three factors are significant indicators of waste-efficient procurement, with none of 

the factor having its β value less than the benchmark of 0.50 (Kline, 2010). They are 

further discussed in subsequent sub-sections.  
 

10.5.1.1 Waste-efficient Materials Purchase Management 

The structural model confirmed that waste effectiveness of materials purchase 

management is essential to reducing overall waste generated by construction activities. It 

has a β value of 0.79 and waste-efficient procurement accounts for 59% of its variance. 

Materials purchase management entails management of materials purchase management 

and its related activities. It ensures that the right quantity and quality of materials are 

purchased and adequately transported at the right time. In line with this study, Tam (2008) 

identified purchase management as an effective measure for reducing waste in 

construction projects. Other studies have pointed out various measures through which 

materials purchase could be adequately used to reduce waste. It is important that activities 

that could lead to wrong materials purchase be addressed before actual materials ordering 

(Bernold et al., 1991; Muhwezi et al., 2012). 

 

Key measures that significantly contribute to waste-efficient purchase management is the 

purchase of secondary materials such as recycled aggregate and materials with high 

content of recycled products. Although these sets of measures would not contribute to 

onsite minimisation of waste, they help in diverting waste from landfill thereby reducing 

overall waste generated by the construction industry. This is in agreement with earlier 

studies, which suggest that specification and subsequent use of recycled materials is 

indispensable to waste minimisation and the overall global sustainability agenda 

(Oyedele et al., 2014). Based on this, there is need to procure secondary materials and 

support reuse of existing materials (Begum et al., 2009). This, according to the study, is 

important for reducing waste output of the construction industry. In addition, reusability 

of packaging materials will reduce waste output of the project, especially as packaging 

waste constitutes substantial proportion of construction waste (Esin and Cosgun, 2007; 

Wang et al., 2008). 

 

While materials optimisation should be carried out to avoid over ordering, under ordering 

and excess waste allowance (Begum et al., 2007), adequate considerations should also be 
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given to the nature of materials purchased. This is because the quality and reusability of 

materials would ensure its longevity and conservation of mineral resources respectively. 

This corroborates earlier findings that the use of low-quality construction materials is a 

major cause of incessant renovation and its subsequent waste generation (Dainty and 

Brooke, 2004). As such, purchase of durable materials is a long-term strategy for 

reducing waste intensiveness of the construction industry. 

 

A key procurement strategy that reflects waste efficiency of materials purchase 

management is the use of Just in Time delivery route, which ensures that materials are 

delivered to the site in batches when needed. This helps in reducing the length of time 

the materials are stored as well as eliminating the likelihood of over-ordering that could 

otherwise result in leftovers and breakages (Dainty and Brooke, 2004). Another key 

benefit of the use of JIT delivery system is its likelihood of preventing double handling 

of materials, which is a known cause of materials breakage and subsequent waste 

generation (Al-Hajj and Hamani, 2011). As it prevents waste due to double handling and 

materials leftover, the use of JIT delivery system is a key strategy for preventing waste 

generated by construction activities. Similar to JIT in preventing waste is purchase of pre-

cut and preassembled materials and components. These would prevent waste due to 

offcut, which is a key source of construction waste (Formoso et al., 2002). 
 

10.5.1.2 Suppliers’ Alliance and Commitment 

This study reinforces the significance of materials manufacturers/suppliers as an 

important stakeholder in the construction industry. The result of SEM confirmed that a 

major measure for ensuring waste-efficient procurement is alliance with materials 

suppliers in waste-efficient materials supply, which has a β value of 0.67 and 82% of 

variance. Owing to their contribution to the industry, most literature often places them at 

equal level as such stakeholders like designers, waste managers and contractors (Adams 

et al., 2011). Apart from their central role in the industry, this study confirmed their role 

in reducing waste intensiveness of the construction industry. 

 

Meanwhile, a common cause of waste on construction site is excessive stocking of 

materials, which could result in breakage (Del Río Merino et al., 2009).  In such instance, 

supplier that is flexible in providing small quantity of materials, when required, could 
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assist in reducing waste. This confirms earlier suggestion by Dainty and Brooke (2004), 

who posit that flexibility of materials suppliers in providing small quantities is requisite 

to reducing waste generated by construction activities. It is as well important that 

measures be taken to modify materials in conformity with design, as it is capable of 

reducing offcut, which is a major source of waste landfilled by the industry (Bernold et 

al., 1991).  

 

Similarly, another measure through which readiness of materials suppliers for waste 

mitigation could be ascertained is their commitment to take back scheme. This involves 

an agreement between project team and suppliers so that the latter would take back 

unused materials at the end of construction activities. This finding confirmed earlier 

studies, which suggest take back scheme as a means of reducing waste due to materials 

leftover (Osmani et al., 2008; Oyedele et al., 2013; Nagapan et al., 2013; Al-Hajj and 

Hamani, 2011; Bernold et al. 1991). As such, it is important that materials suppliers be 

committed to take back scheme as a means of getting the reusable materials back to the 

market. Overall, this study suggests that commitment and support of materials supplier is 

a key requisite for achieving waste minimisation through materials procurement process. 
 

10.5.1.3 Waste-efficient Bill of Quantity 

The third dimension of waste-efficient procurement is extent of waste effectiveness of 

Bill of Quantity, which has a β value of 0.67. The result suggests that a way of minimising 

waste generated by construction activities is to ensure that ordered materials are devoid 

of over/under ordering. Within the industry, it is a norm that a certain proportion of 

materials are added procuring as waste allowance while ordering materials. According to 

Buchan et al. (1991), this allowance is usually in the range of 2.5 to 10% of quantity 

purchased. The cost of this proportion that usually ends up as waste is normally factored 

into project cost, and the clients pay for it. As such, waste effectiveness of materials 

procurement process requires optimisation of materials purchase to avoid over-ordering, 

which is a major cause of materials leftover and subsequent waste generation 

(Greenwood, 2003). It is, therefore, important that materials take-off is accurately done 

in preparation for actual materials purchase (Muhwezi et al., 2012; Nagapan et al., 2013). 

This is then expected to be followed up by materials ordering that is devoid of over 

ordering. 
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 Key Procurement Measures for Low Waste Projects 

Effective materials take-off is considered as the most important step for waste-efficient 

procurement process. This is due to the understanding that volume of materials purchase 

is largely influenced by materials take-off. Based on its importance, accuracy of materials 

ordered and likelihood of materials leftover is determined by materials take-off (Nagapan 

et al., 2013). As it drives other materials procurement process, careful attention needs to 

be given to materials take-off so as to avoid over-ordering and its subsequent waste 

generation.  

 

Similarly, findings suggest that the second-ranked procurement and materials logistics 

measures for preventing waste is the take-back scheme, which is a agreement between 

project team and suppliers so that the latter would take back unused materials from site. 

Through this agreement, waste due to materials leftover would be significantly reduced. 

According to Osmani et al. (2008) and Oyedele et al. (2013), materials leftover 

constitutes significant proportion of total waste generated by construction activities. 

 

Prevention of over-ordering and adherence to carefully prepared specification are ranked 

as the fourth and fifth procurement strategies for engendering waste minimisation. As 

earlier evident, over-ordering is a major cause of materials leftover and subsequent waste 

generation in construction projects. This is usually due to mistakes made in quantity 

estimates, poor delivery schedule or as a result of deliberate waste allowance that is added 

to ordered materials (Begum et al., 2007; Hassan et al., 2012). In line with the established 

impacts of over ordering on materials waste, this study suggests the need for preventing 

over ordering as a requisite for mitigating waste generated by construction activities. 

Modification to products size and shapes in conformity with design is also a top ranked 

measure for engendering waste minimisation through materials procurement. By 

modifying materials supply in conformity with design, materials offcut would be 

eliminated. This finding conforms with Formoso et al. (2002) who argued that materials 

procurement that supports pre-cut and precast materials is indispensable to waste 

effectiveness of the construction industry.  
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10.6 Construction Strategies for Holistic Waste Minimisation   

Effective management of construction processes is indispensable to overall performance 

of construction projects (Forster, 2014). It involves direction and supervision of 

operations on construction projects in order to ensure timely, safety, quality and cost-

effectiveness of the projects, among other success indicators (Harlow, 1992). Apart from 

these sets of KPIs, certain construction techniques, strategies and processes could 

substantially reduce waste generated by construction activities. This section discusses the 

underlying measures and key strategies for mitigating waste at the construction stage of 

project delivery process. 
 

 Dimensions for Waste-efficient Construction 

Results of SEM confirmed that in addition to legislative provisions that influence 

adoption of various strategies for construction waste mitigation, six factors are requisite 

for driving waste effectiveness of construction projects. These include: 

• Prefabrication and offsite technology 

• Contractual provisions for waste minimisation 

• Maximisation of materials reuse 

• Contractors’ dedication and competencies 

• Waste effective site planning 

• Collaborative culture in project delivery 

The seventh measure for driving waste minimisation is legislative provisions, which is 

an external driver of waste minimisation practices within the industry.  All the confirmed 

factors significantly reflect waste-efficient construction, with 51-98% of their variance 

explained by waste-efficient construction. They are further discussed in the subsequent 

sections below.  

 

10.6.1.1 Prefabrication and Offsite Technology 

Prefabrication and offsite technology is confirmed as the key underlying measure for 

preventing waste generated by the construction industry. The key dimension of waste-

efficient construction has a β value of 0.97 and 94% of its variance is explained by the 

latent factor. This makes the construction technique the underlying strategy with the 

highest factor loading to waste-efficient construction process. A key factor contributing 
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to the measure is the use of precast components such as bathroom and kitchen pod in 

place of cast in-situ. This means that building elements are manufactured offsite, 

assembled onsite, while several factors that cause waste such as materials handling, poor 

storage as well as design changes have been entirely prevented. This would not only 

reduce construction waste due to in-situ and finishes (Poon et al., 2003), it would also 

support reusability of the components at the end of building lifecycle.  

 

Modular construction is another technique that loaded significantly to prefabrication and 

offsite technology. It is a term that describes factory produced building units that are 

delivered and assembled on site as building elements or volumetric components. The use 

of precast units and modules, as well as all other offsite technologies, has been evident to 

reduce waste generated by construction activities (Lu and Yuan, 2013a). A study by Tam 

et al. (2007b) suggests that waste minimisation tendency of prefabrication construction 

is up to 84.7%. As such, the use of offsite techniques is requisite to reducing waste 

generated by construction activities. 
 

10.6.1.2 Contractual Provisions for Waste Minimisation 

Another measure that influences waste effectiveness of construction process is the 

contractual clauses and provision, which has a β value of 0.94, with 98% of its variance 

explained by the second-order latent factor. The factor name, “contractual provisions for 

waste minimisation”, was imposed on the factor grouping, as all measures that made up 

the group are suggesting what could only be achieved through contractual clauses. For 

instance, a key factor that contributes to the component is to penalise poor waste 

performance, which makes waste management a key performance indicator. This would 

mean that contractor would treat waste minimisation in similar as time performance, 

which is essential to project success (Sanvido et al., 1992). 

 

Usually, construction waste minimisation receives little or no attention in several projects 

due to lack of its consideration in project contracts (Osmani, 2013). Time, cost and 

quality, among others, have become the top performance indicators for benchmarking 

success of construction projects (Sanvido et al., 1992). Because of this, site managers and 

other project stakeholders always give their priority to activities that could directly 

contribute to indices upon which their performance would be measured. This is rational 
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from static point of view, as waste minimisation is not usually required of project 

stakeholders from benchmarking point of view. Nonetheless, this practice is albeit the 

understanding that waste minimisation has tendency of improving cost of construction 

projects (BRE, 2003). In addition, the use of project contracts to prevent some of the key 

causes of construction waste could significantly prevent cost and time overrun, which are 

rife in the construction industry (Assaf and Al-Hejji, 2006). A project that has clear 

communication of waste management strategy in contract document is more likely to 

have a good waste performance, as contractual provisions engender commitment. A 

project that sets waste and recycling target as part of contractual provision is more likely 

to divert substantial waste from landfill site (Marinelli et al., 2014). Thus, there is need 

for using contractual clauses as strategy for engendering waste minimisation on 

construction projects.     

 

10.6.1.3 Maximisation of materials reuse  

Material reuse is confirmed as another dimension for minimising waste generated by 

construction activities, and it has a β value of 0.91 with 78% of its variance explained by 

the second-order latent factor. It requires maximisation of on-site reuse of materials, and 

it includes reuse of such materials as off-cut, soil remains, as well as excavation and 

demolition materials. This factor incorporates various waste mitigating practices 

suggested by previous studies (Cf. Del Río Merino et al., 2009; Al-Hajj and Hamani, 

2011; Cha et al., 2009; Lu and Yuan, 2010). As such, it is a key measure that combines 

various strategies that are capable of diverting substantial proportion of construction 

waste from landfill. Begum (2009) recommended that by reusing soil remains on site, 

substantial proportion of waste could be diverted from landfill. In line with this, WRAP 

(2009) identified that apart from using demolition and excavation materials for filling, it 

could as well be used for landscape mulch. 

 

Apart from preventing landfilling, materials reuse, in this case, prevents the need for 

waste transportation and recycling, which is not without its negative environmental 

impacts (Oyedele et al., 2014). In addition to reuse of materials on-site, this factor 

requires the use of reclaimed materials for construction activities. This could be achieved 

by identifying the construction activities that could admit secondary materials, rather than 

using virgin materials that require substantial amount of energy. Nonetheless, materials 
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reuse requires adequate planning for waste segregation, which requires provision of 

specific skip for different forms of waste. With this practice, there is likelihood of on-site 

reuse of the materials in waste skips (Tam, 2008). This will equally help in preventing 

waste mixture with soil (Jingkuang and Yousong, 2011). 
 

10.6.1.4 Contractors’ Dedication and Competencies 

Contractors’ competencies and dedication is confirmed as an essential requisite for 

mitigating waste generated by construction activities. The factor has a significant loading 

with a β value of 0.71 and 51% of variance explained by waste-efficient construction 

process. This suggests that without contractors’ commitment to construction waste 

minimisation, no significant progress could be made in reducing waste intensiveness of 

the construction industry. Teo and Loosemore (2001) suggest that despite the 

development and advancement in construction waste management research and 

strategies, there is a deep-rooted waste behaviour in the industry due to poor managerial 

commitment to reducing waste. In line with this, the study suggests contractors’ 

commitment and competency as key drivers of waste effectiveness in construction 

projects.  

 

Knowledge of site team in activities planning and sequence of work could prevent 

damage to previously completed work, thereby preventing the need for reworks. 

Expertise knowledge in construction methods and technology would as well ensure that 

mistakes and subsequent rework is prevented. Although the use of secondary materials is 

a way of diverting waste from landfill, it has been less adopted as practitioners believe 

that it requires more effort regarding specification and sourcing (Oyedele et al. 2014). In 

such instance, commitment of project team to the use of secondary materials is an 

essential measure for diverting waste from landfill (Wang et al., 2014). This could be 

achieved by detecting construction activities that could admit reusable materials and by 

subsequently using the materials.  
 

10.6.1.5 Waste-efficient Site Planning 

Effective planning of site activities is confirmed as a key dimension for mitigating waste 

generated by construction activities. The important dimension of Waste-efficient design 

has a β value of 0.63, with 79% of its variance explained by the second-order latent factor. 
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Effective site planning and management is increasingly recognised as a strategic 

approach for achieving the required performance in construction projects (Forster, 2014). 

This is because of the understanding that project performance could only be achieved 

through an effective site management practices.  

 

Efficient planning of site activities is required for preventing errors, reworks and 

associated waste generation. For instance, a thorough review of project specification 

during site planning is capable of preventing reworks, which is a major source of 

construction waste. Site layout planning as a key site planning document is an important 

document that could prevent waste causative activities such as inadequate site access for 

materials delivery and double handling of materials (Dainty and Brooke, 2004; Formoso 

et al., 2002). Good access for materials delivery and central location of materials storage 

facilities could prevent materials damage due to poor access and double handling. As 

such, consideration of such measures in site planning would enhance waste minimisation. 

 

As a means of facilitating waste minimisation in construction projects, Site Waste 

Management Plan (SWMP) is another document that could be prepared during site 

planning. Before it was repealed in 2013, site waste management regulation required 

preparation of SWMP for every project above the value of £300,000. It also required 

dedicated role of site waste manager, who is responsible for coordinating onsite waste 

management activities. Preparation of such document would enhance adequate planning 

and communication of proposed strategies for waste management. Apart from 

establishing a task group or dedicated job role for waste management, strategies for 

minimising and communicating design change should be developed during site planning 

process. These would ensure that waste causative activities are adequately considered 

during planning of construction activities. 
 

10.6.1.6 Collaborative Culture as Requisite for Waste Minimisation 

Results of SEM suggest the need for cultural change in the industry as means of 

engendering waste minimisation. The key dimension of waste-efficient construction has 

a β value of 0.51 and 55% of its variance is explained by second-order latent factor. A 

key practice that requires cultural change within the industry is the level of collaboration 

within the industry. Evidence suggests that inadequate collaboration between designers, 
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procurement team and contractors is a key feature that compromises profitability and 

effectiveness of the construction industry (Hughes et al., 2012). Traditionally, a client 

commissions the design team, which will subsequently involve engineers and building 

service consultants. As a result of fragmented nature of the industry, the drawings are 

passed from one trade to another, without necessarily working collaboratively. The 

design documents are then passed to the contractor who undertakes the actual work on 

the site. This results in what is regarded as over-the-wall syndrome, which is a difficulty 

that arises when different professionals are working independent of one another towards 

the same goal. It, therefore, results in late detection of errors and the need for reworks 

that subsequently result in construction waste generation. 

 

Similarly, it has often been evident that the major causes of construction waste are 

ineffective project communication and coordination (Osmani, 2012), document delay, 

and non-involvement of contractors in design decisions (Arain et al., 2004). All these 

occur as a result of poor collaboration among the project team. Waste-efficient projects 

require an environment for effective communication, information sharing, early warning 

system and early contribution of expertise by all parties (Hughes et al., 2012). As such, 

every ambiguity and inaccuracies would have been resolved before design completion, 

thereby preventing construction errors, reworks and waste. Similarly, collaborative 

working between the designers and contractors would assist in addressing 

constructability of the design, which could otherwise result in error and waste.  

 

Rather than working collaboratively, the whole process is interested in passing blame to 

another party (Fewings, 2013). This shifting of blame is one of the major factors 

contributing to ineffectiveness of construction waste management strategies. While the 

contractors believe that designers contribute to waste generation, designers posit that their 

activities have nothing to do with waste (Osmani et al., 2008). This hinders likelihood of 

collaborative waste management effort among all parties involved in project delivery 

processes. With the industry being characterised by blame culture as in this case, 

collaborative working environment could not be more important.  
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10.6.1.7 Policy and Legislation as Key Drivers of Waste Minimisation  

A key measure that engenders construction waste minimisation is legislative and policy 

provision, which has a β value of 0.53, with a causative influence on waste effectiveness 

of construction process. By its nature, the construction industry is one of the most 

regulated industries, and its activities have been largely shaped by national and regional 

legislation. As planning approval is required before any physical construction activities, 

it means that the project has to fall within the framework provided by the legislation. In 

the UK construction industry, for example, compliance with the provision of Code for 

Sustainable Homes was a requirement for all residential building construction. This had 

driven sustainable building practices as the code became more stringent before its 

provision was incorporated into building regulations in 2015. Before the compulsory 

SWMP was repealed (in December 2013), it has been the industry's standard to prepare 

and monitor detailed SWMP for all projects above £300,000. These practices suggest 

relevant impacts of legislation in driving sustainable practices within the construction 

industry. 

 

Since the introduction of landfill tax in 1996, influences of tax and fines on construction 

waste minimisation has become clear. The impartial tax measure ensures that tax is paid 

per unit tonne of waste deposited in landfill sites. Results of the SEM suggest increased 

stringency of existing fiscal measures as a strategy for engendering waste minimisation.  

This is especially required, as the financial implications of waste management strategy 

determine its acceptability in the construction industry.  For instance, increasing cost of 

waste landfilling as well as cost of mixed waste would ensure waste separation, reuse and 

recycling. As the contractors are more concerned about cost implications of waste 

disposal (Cooper, 1996), such measure is capable of engendering waste management 

practices. As such, by making waste minimisation and reuse cheaper than its landfilling, 

substantial proportion of waste would be diverted from landfill. 

 

As a means of promoting good waste performance, tax breaks and incentives are 

important for the construction industry.  Apart from imposing stringent legislations and 

fiscal policies, the use of incentives and tax break is a key measure for achieving 

construction waste minimisation. Cooper (1996) posits that stringent waste management 

legislation and fiscal policies would remain ineffective if there are no ways of facilitating 
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such practices.  In line with this, Bartl (2014) opined that since waste generation is in 

itself a positive factor of economic growth, while also serving as a source of business, 

sophisticated incentives would be required for decoupling economic growth from waste 

generation. This finding is similar to earlier suggestion of economic carrot, which is 

deemed a way of moving waste management practices up the ladder of waste hierarchy 

within the UK (Wilson, 1996).  

 

Low use of recycled construction materials is attributed to its high cost, despite its 

perceived low quality (Oyedele et al., 2014). Direct subsidisation of secondary materials, 

provision of tax break for its manufacturers and suppliers, and provision of economic 

incentives for waste management infrastructures are measures for enhancing its use in 

the construction industry. Similarly, sustainable design appraisal tools have remained an 

effective mechanism for driving sustainability practices across the globe. They set best 

practice standards for environmental performance of buildings throughout its project 

delivery processes as well as during operational stage. With the increasing popularity of 

the sustainability appraisal tools, this study suggests allocation of higher points to waste 

management practices. Apart from dedicated waste management policies and regulations, 

allocation of more points to waste in the existing and widely used sustainability appraisal 

tool could further engender waste management practices in the construction industry. 

This corroborates earlier findings by Dainty and Brookes (2004), which suggests that 

inclusion of waste in sustainable design appraisal tools, such as BREAM, is a key 

motivator for designing out waste. A similar study in Japan (Tam et al., 2004) also 

concluded that green construction appraisal tools are key drivers of construction waste 

minimisation.  

 

Notwithstanding these prior studies, no significant importance has been attached to waste 

in such sustainable design appraisal tools as the UK BREAAM and the US LEED. Most 

appraisal systems have only considered the extent of material sorting, reuse, and 

recycling that are incorporated into the management plan (Cha et al., 2009). Currently, 

8.5% of possible 110% addresses waste management in BREAAM, while 6.4% of 

possible 100% address waste management in the Code for Sustainable Homes. Increasing 

the points allocated to waste means that waste management could be taken as important 

as land use, materials, pollution, energy and management, which are given 10%, 13.5%, 

10%, 15% and 12% respectively in BREEAM. While it would not be taken as a 
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compulsory provision, inclusion and allocation of points to waste management influence 

factors, according to Cha et al. (2009), could enhance waste management practices and 

subsequent reduction. 
 

 

 Key Construction Measures for Low Waste Projects 

The top-ranked construction measures are based on four key dimensions for engendering 

waste minimisation. The highest ranked factor is the use of prefabrication construction 

method instead of cast in-situ, which could otherwise generate large portion of waste. As 

previously evident, prefabrication technique could reduce waste by well over a half. This 

could be achieved by using precast units and modules, modular construction and other 

offsite technologies, all of which are proven waste-efficient techniques (Tam et al., 

2007b). 

 

The second and third-ranked factors are supply chain alliance with materials suppliers 

and use of collaborative procurement routes. The two factors suggest the need for 

increasing collaboration within the construction industry. This requires collaboration 

among all project teams as well as alliance with materials suppliers, who are important 

stakeholders in facilitating waste-efficient materials procurement. By partnering the 

materials suppliers, there is tendency for take back scheme, supply of precut and 

preassembled materials and flexibility in supplying materials just in time (Osmani et al., 

2008; Al-Hajj and Hamani, 2008). 

 

Knowledge of construction methods and sequence possessed by contractors and building 

operatives is ranked as the fourth factor for mitigating waste generated by construction 

activities. This falls within the competencies and dedication of contractors, which is 

requisite for preventing waste causative activities. By following the right sequence of 

work, damages to previously completed works and subsequent reworks would be 

prevented.  

 

Ensuring fewer design changes during construction is ranked fifth among the construction 

factor for engendering waste minimisation. Formoso et al. (2002) suggest design change 

as a major cause of reworks and subsequent waste generation in construction projects. 

This could be due to design errors (Osmani, 2012), change in clients' need or the need to 
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work within a realistic budget (Chan and Kumaraswamy, 1996). As earlier discussed, 

increasing use of collaborative procurement process and technologies such as IPD and 

BIM could prevent error-induced design change as well as those due to poor clients' 

understanding of initial design. Similarly, contractual clauses that limit design changes 

or freezes design would prevent reworks due to design change and its associated waste 

generation (Osmani, 2013). However, where a design change is inevitable, adequate 

communication of such change is important for waste minimisation (Faniran and Caban, 

1998). 
 

 

10.7 Dynamic Interplay among Design, Procurement and 
Construction Measures 

The system dynamic model shows relative impacts of different processes and stages of 

project delivery. It also suggests that at holistic level, impacts of different strategies 

extend beyond their stage of implementation. Activities carried out at early stage have 

significant impacts on subsequent processes. The results of various scenario models 

performed on the system dynamic model are discussed in the next sub-sections.  

 

 Stage-Based Impacts and Associated KPIs 

Simulation of dynamic impacts of design, procurement and construction measures 

indicate that design process has the highest impacts on overall waste efficiency of 

construction projects. The result suggests that design has a tendency of raising waste-

efficiency of construction project to about 75%. This finding shows that like key project 

performance indicators, such as cost, time and quality (Iskidag and Underwood, 2010); 

construction waste could be significantly reduced by measures taken during the design 

stage. In line with this finding, similar studies have illuminated the significance of design 

processes in reducing waste generated by construction activities. For instance, Osmani et 

al. (2008), Faniran and Caban (1998) and Ekanayake and Ofori (2004) posit that design 

stage is important to reducing waste generated by construction activities. Innes (2004) 

also suggests that design activities could reduce construction waste by up to 33%.  

 

A further evaluation of the key measures contributing to the overall impacts of design 

suggests that designing for modern methods of construction is the highest contributor to 

waste effectiveness of design. This involves volumetric modular design, design for 
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preassembled components and specification of prefabricated materials, among others. 

These sets of measures are requisite to prefabrication construction method, which is 

evident to reduce waste by well over a half (Tam et al., 2007b). As shown in Figure 9.12, 

the second significant design strategy, contributing to the highest impacts of design on 

overall waste generation, is the extent of collaboration involved in the design process. 

The study suggests that collaborative design process, involving adequate communication, 

effective design coordination and early involvement of other stakeholders, is a key 

approach for preventing waste generated by construction activities. The finding shows 

that collaborative design process has a tendency of reducing waste than error-free design 

documentation that is prepared in a non-collaborative environment. This is partly due to 

likelihood of over-the-wall syndrome, which occurs as a result of poor collaboration 

(Chary, 1988). The dynamic simulation suggests that notwithstanding the competencies 

of designers as well as ability to produce error-free documentation and standardised 

design, inadequate collaboration could result in construction waste generation. As such, 

collaborative procurement route and design for modern method of construction are 

essential to minimising waste generated by construction activities. 

 

The system dynamic simulation suggests that prefabricated construction method could 

improve the waste efficiency of construction projects to about 82.5%. This confirms 

earlier studies by Jaillon et al. (2009) and Tam et al. (2007b) who argued that wastage 

reduction level in prefabricated building is up to 52% and 84.7% respectively. 

Prefabrication construction method and its associated design for modern method of 

construction have the highest impact on construction waste minimisation as shown in 

Figure 9.14. However, for project that is not based on prefabrication technology, waste 

minimisation tendency of construction process is about 72.5%, which is slightly lower 

than the overall impacts of design activities. Meanwhile, apart from prefabrication as the 

key determinant of the overall waste efficiency of construction processes, other measures 

also have significant impacts. Specifically, collaborative construction process has the 

second highest impact. This shows similar trend as the design processes, where 

collaborative design and design for modern method of construction drive the significance 

of design stage in waste minimisation. Apart from these, contractual provisions and 

materials reuse are the third and fourth ranked construction measures for driving waste 

minimisation in construction projects. This confirms earlier findings by Dainty and 
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Brooke (2004), which suggests that contractual provision is a key measure for driving 

waste minimisation in construction projects.  

 

Although the procurement processes contribute the least proportion to the overall waste 

efficiency of construction project, the simulation suggests that it has tendency of reducing 

waste by an additional 10% over the baseline of 40%. As shown in Figure 9.13, the key 

contributor to the overall impact of procurement is suppliers’ alliance and commitment. 

This entails supply chain alliance with materials suppliers in reducing construction waste. 

Such alliance could facilitate take back scheme, flexibility in supplying materials just in 

time, and modification to products in conformity with project requirements, all of which 

are proven strategies for waste minimisation (Formoso et al., 2001: Bernold et al., 1991; 

Dainty and Brooke, 2004). The main underlying concept behind the suppliers’ alliance is 

collaboration among all stakeholders involved in project, including the materials 

suppliers. Thus, improved collaboration among project stakeholders is capable of driving 

construction waste minimisation through design, procurement and construction 

processes.  

 

 

 Underlying Dynamic Drivers of Waste Minimisation 

Trends in dynamic simulation of different design, procurement and construction 

strategies suggest two key measures for effective minimisation of construction waste. 

The study suggests that by taking care of the two key measures, which are prefabrication 

technique and collaborative procurement, construction waste would be significantly 

reduced.  

 

Ranking of significant impacts of adopting various strategies suggests that design for 

modern methods of construction and its associated construction strategy, prefabrication 

construction, have the highest impacts on overall waste efficiency of construction 

projects. Usually, prefabrication construction requires the need to design for 

prefabrication by specifying prefabricated materials and modular components (Platts, 

1994). As the two strategies complement one another, their combined impacts were 

simulated as shown in Figure 9.16. The graph suggests that prefabricated design and 

construction is capable of improving waste efficiency of construction project to about 
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75%. This confirms earlier findings by Jaillon et al. (2009) and Tam et al. (2007b) who 

suggest that prefabrication construction is capable of reducing construction waste by up 

to 52% and 84.7% respectively.  

 

Apart from its tendency of reducing waste generated during construction activities, the 

use of prefabrication supports de-constructability and reusability of building materials 

(Jaillon and Poon, 2014). As the building components are factory produced and site 

assembled in most cases, prefabricated building supports disassembly, transportation and 

reuse of building elements thereby diverting waste from landfill sites (Akinade et al., 

2015). Since demolition waste contributes the largest portion of waste generated by the 

construction industry (WRAP, 2009), the use of prefabrication technique is significant to 

reducing waste intensiveness of the construction industry. However, notwithstanding the 

significance of prefabrication method in driving waste minimisation, premium is always 

paid for using prefabrication method in construction projects (Chen et al., 2010). Based 

on this, waste minimisation is not usually the key driver for adopting prefabrication in 

construction projects. This calls for the need to adopt other measures as ranked in Figure 

9.15.  

 

The second underlying driver of construction waste minimisation is the use of 

collaborative procurement routes and collaborative technologies. The result of the 

dynamic system suggests that collaborative design and collaborative construction are 

ranked third and fifth among the key strategies for mitigating waste generated by 

construction activities. Similarly, the highest ranked procurement measure for waste 

minimisation is suppliers' alliance, which equally points to the need for improved 

collaboration among project stakeholders, including the materials suppliers. Based on the 

continuous trend, the three measures were combined to simulate the overall impacts of 

collaboration on construction waste minimisation. 

 

The result suggests that collaborative procurement route is capable of improving waste 

efficiency of construction project to about 72%. In order to achieve this, there is need for 

adequate collaboration right from design stage of project delivery process. The key 

benefit of such collaboration is that each stakeholder could contribute their expertise, 

while also understanding the key project requirements (Fewings, 2013). Through 

adequate collaboration between the designers and contractors, there is tendency of 
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preventing various factors responsible for waste generation, including design errors, poor 

information sharing and design buildability, among others (Hughes et al., 2012). 

Complexities in design, poor clients' understanding of initial design and over-the-wall 

syndrome have been blamed for reworks and subsequent waste generation in construction 

projects (Arain et al., 2014; Chary, 1988; Koskela, 2004). An effective collaborative 

process such the IPD and the use of BIM involve the designers, contractors, clients and 

materials suppliers, among other stakeholders. Involvement of all parties from inception 

of the project would clear all ambiguities, while diverse expertise knowledge would as 

well ensure that waste is designed out of the whole process. Poor communication, late 

information supply, design clash and other potential causes of waste would be avoided, 

especially as collaborative procurement routes such as IPD and BIM is characterised by 

improved coordination and communication. 

 

 

10.8 Chapter Summary 

Findings from statistical analyses, structural equation modelling and system dynamic 

modelling are discussed in the chapter. Although the result of Kruskal-Wallis test 

suggests that the respondents differ in their perception of early involvement of contractors 

during design stage, further evidence suggests that it is a reflection of deep-rooted 

fragmentation and culture of poor collaboration within the construction industry. The 

need for early collaboration and improved collaboration throughout all stages of project 

delivery process are discussed in the chapter.   

 

The chapter elaborates on the key and underlying dimensions for designing out waste in 

construction projects. This could be achieved through standardisation and dimensional 

coordination, collaborative design process, design for modern methods of construction, 

and Waste-efficient design documentation. Apart from designers' task competency, 

construction-related knowledge and inter-professional competencies as essential drivers 

of low-waste design, behavioural competency of designers is established as the main 

determinant of their tendency for designing out waste. The underlying dimensions for 

driving waste minimisation through materials procurement processes were discussed in 

the chapter. The need for waste-efficient materials purchase management, suppliers' 

alliance and waste-efficient bill of quantity were elaborated. In addition, the top rated 
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procurement measures, including accurate materials take-off and take back scheme, were 

also discussed in the chapter. At the construction stage of project delivery processes, the 

underlying measures for driving waste minimisation, including prefabrication, 

contractual provisions, materials reuse, contractors' commitment, effective site planning 

and collaborative procurement, were discussed in the chapter. In addition, the 

significance importance of legislative provisions in driving waste minimisation 

behaviour is discussed in the chapter. 

 

Based on the results of various scenarios modelling in system dynamic modelling, the 

design stage is established as the most significant stage for driving waste minimisation in 

construction projects. Nonetheless, other stages and processes of project delivery 

processes were also established as being important for diverting substantial construction 

waste from landfill, especially as the activities carried out at one stage have impacts on 

the other stages of project delivery processes. Similarly, due to repetitive patterns in the 

results from system dynamic modelling, two key practices and strategies were established 

and elaborated as the dynamic drivers of construction waste minimisation. These include 

the use of prefabrication method and increasing collaboration among project 

stakeholders. The significance of these measures, as well as their overall impacts on 

construction waste minimisation, is discussed in the chapter. 
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CHAPTER 11: CONCLUSION AND RECOMMENDATIONS 

 

11.1 Chapter Overview 

This chapter culminates the study by summarising the whole study and the outcomes of 

data collection and analysis. The next section provides a holistic summary of the study, 

covering the goal, research design, data collection and data analytical techniques adopted 

in the study. This is then followed by key findings of the study, which is presented in line 

with the aim and objectives of the study as earlier presented in the first chapter. 

Implications of the study for theory and practice, as well as its limitation, are presented 

before culminating the chapter with directions for future research. 

 

11.2 Summary of the study 

The construction industry contributes the highest portion of waste to landfill, and it 

consumes a large portion of mineral resources excavated from nature (Anink et al., 1996). 

Due to negative environmental impacts of waste generation, waste intensiveness of the 

industry has remained a major concern for the global sustainability agenda (Anderson 

and Thornback, 2002). In order to reduce waste generated by construction activities, this 

study investigates design, procurement and construction strategies for minimising waste 

in construction projects. Apart from investigation of the key and underlying measures for 

construction waste mitigation, the study considers interrelationship between stages of 

projects’ lifecycle. This is as evidence suggests that activities carried out at earlier stage 

are capable of engendering occurrences at later stages of the dynamic construction 

processes.  

 

In order to achieve the aim of the study, various methods of data collection and analyses 

were used in the study. Following the tenets of critical realism philosophy, the study 

combined qualitative and quantitative approaches at intensive and extensive stages 

respectively. At the early stage of the study, data were collected through systematic 

literature review and four focus group discussions, involving 30 experts from the 

construction industry. Using Atlas-ti for qualitative data analysis, thematic analysis was 

carried out to determine strategies for driving waste minimisation through design, 

materials procurement and construction processes. After combining factors emerging 

from literature and focus group discussions, 78 unique factors were established for design 
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and design competencies, while 39 and 93 factors were established for procurement and 

construction strategies respectively. 

 

The identified factors were used to develop a questionnaire, which was pilot tested before 

being administered to expert within the UK construction industry. Through this process, 

302 responses were received with 285 used for further analysis, including reliability 

analysis, descriptive statistics, non-parametric test and multivariate analysis. These sets 

of statistical analyses helped in establishing the critical success factors for engendering 

waste minimisation through design, procurement and construction processes.  

 

Structural equation models were developed to establish the underlying design, 

procurement and construction strategies for construction waste minimisation. Results of 

reliability analysis and data screening were used to ensure that only relevant factors were 

included in the models. Through rigorous processes of fitness, re-specification and 

modification of measurement and structural components of the model, the underlying 

design, procurement and construction measures enabling waste minimisation were 

established. The underlying competencies for driving waste minimisation were also 

confirmed.  

 

Based on the aim of this study, which extends beyond unitary study of various strategies 

contributing to waste minimisation, a system dynamic model was developed to 

investigate the dynamic relationship and interplay among the key strategies established 

through the structural equation modelling. A case study of a completed project was used 

to establish the extent by which the various strategies were adopted as well as the overall 

waste efficiency of the project. Through the adoption rate and factor weight established 

in structural equation modelling, mathematical equations were developed to convert 

cause-and-effect diagram to stock-and-flow diagram for model simulation.  

 

After series of model testing and validation processes, various scenario modellings were 

performed to establish significant impacts of different strategies on overall waste 

minimisation in construction projects. This helped in ranking the strategies based on their 

dynamic impacts. Relative impacts of each of the design, materials procurement and 

construction processes were also simulated and determined. Also, similar strategies were 
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combined to simulate the holistic effects of related strategies on overall waste 

minimisation in construction projects. 

 

 

11.3 Key Findings of the Study 

Findings of the study are discussed in line with the aim and objectives that the study was 

designed to achieve. The first and second parts of this section are based on the first 

objective of the study, which is to investigate the critical success factors and underlying 

measures for mitigating waste in construction projects. Based on the results of structural 

equation modelling, the first part concludes on the underlying measures for enabling 

construction waste minimisation through design, materials procurement and construction 

processes. The second part concludes on the critical success factors for waste 

minimisation. The third part is in line with the second objective, and it combines findings 

from statistical analysis and structural equation modelling to conclude on competencies 

for designing out waste. The last two parts of this section provide conclusions on the third 

and fourth objectives by elaborating on the dynamic drivers of construction waste 

minimisation at holistic level using findings from system dynamic modelling.   
 

 Underlying Measures enabling construction waste 
minimisation  

Results of the structural equation confirmed underlying design, procurement and 

construction measures for enabling waste minimisation in construction projects. The 

findings suggest that four key measures are essential for designing out waste. The first 

measure is standardisation and dimensional coordination of building element, which 

encompasses such measures as coordination of building elements, design for standard 

materials supplies, and space optimisation. Efficient implementation of this key measure 

would prevent materials offcut, which is known to be a major cause of construction waste 

generation (Formoso et al., 2002). The second underlying measures for designing out 

waste is collaborative design process, which requires involvement of contractors at early 

design stage, as well as adequate communication and collaboration among project team. 

The significance of this strategy is that it is important for preventing waste due to rework, 

which is usually caused by design error, design clash, late information supply, and poor 

understanding of design, among others (Tam et al., 2007a). Increasing collaboration 

would, therefore, ensure that each stakeholder contributes their competencies right from 
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design stage, while also having collaborative agreement that enhances communication 

and information sharing. 

 

Design for modern methods of construction is established as the third underlying 

measures for designing out waste in construction projects. This strategy entails 

volumetric modular design, specification of prefabricated materials and design for offsite 

technologies. Although prefabricated construction could significantly reduce 

construction waste, designing for modern methods of construction is a requisite step in 

prefabricated construction. The fourth underlying strategy for designing out waste is 

design documentation, which could be evaluated based on its accuracy and 

comprehensiveness. Waste-efficient design documents are characterised by being free 

from errors and buildability issues, while it provides adequate information for waste-

efficient construction processes. 

 

Materials procurement process is an important process for driving waste minimisation in 

construction projects. This is not only because of understanding that materials contribute 

substantial proportion of project cost, but also that various waste causative factors have 

been traced to the processes of materials procurement (Faniran and Caban, 1998; Dainty 

and Brooke, 2004). In order to drive waste minimisation through materials procurement 

processes, three key underlying measures were established in the study. Low waste 

materials purchase management is confirmed as the first underlying measures for driving 

waste minimisation through materials procurement. It mainly entails purchase of 

materials with low waste output as well as secondary materials that support was diversion 

from landfill sites. It also advocates for the use of JIT procurement system, where 

materials are supplied when needed on site. The strategy is capable of preventing offcut, 

materials breakage and leftover, all of which are key causes of waste generation (Al-Hajj 

and Hamani, 2011; Del Río Merino et al., 2009).  

 

The second materials procurement strategy for engendering waste minimisation is 

suppliers’ alliance and commitment, which requires involvement of materials suppliers 

as an important stakeholder in project delivery processes. Through this involvement, take 

back scheme could be implemented, and suppliers could be more flexible in supplying 

small quantity of materials thereby preventing materials leftover and breakages. The 

waste efficiency of bill of quantity is confirmed as the third dimension for mitigating 
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waste through materials procurement processes. This involves correct and accurate 

materials take off that is devoid of waste allowance and subsequent over ordering of 

materials. 

 

At construction stage of project delivery processes, seven dimensions for preventing 

waste generation were confirmed. A waste-efficient project is characterised by 

maximisation of materials reuse during the construction activities. This requires adequate 

segregation of different materials, by providing skips for specific materials and through 

adequate communication of materials reuse strategies. The second factor underlying low 

waste construction project is the site planning, which could essentially drive waste 

minimisation. Site layout planning, site waste management plan, communication 

strategies, review of project specification are part of site planning measures for driving 

waste minimisation. Another key underlying strategy for minimisation waste during 

construction process is the use of prefabrication technique. This strategy is in line with 

the propositions of lean construction principles, and it involves the use of precast 

components and modules, modular construction technique and other offsite technologies. 

Through this measure, waste due to wet trades, offcuts, materials breakage and reworks 

could be prevented (Hassan et al., 2012; Dainty and Brooke, 2004).  

 

Contractors’ competencies and dedication is also confirmed as another underlying 

strategy for driving waste minimisation in construction projects. The study suggests that 

without committed and dedicated contractors, other waste management strategies could 

not be effective. This is especially as poor work sequence could result in breakage of 

previously completed work, thereby resulting in reworks and subsequent waste 

generation. In addition, it is when contractors are committed to waste minimisation that 

materials reuse or secondary materials could be considered. Nonetheless, such 

commitment could be engendered by contractual and legislative provisions that penalise 

and reward waste generation and minimisation respectively. Usually, waste minimisation 

is of secondary importance in many construction projects. This is especially as project 

performance is measured through such key performance indicators as cost, time and 

quality. The study, therefore, suggests that by making waste minimisation a part of key 

performance indicators, substantial volume of waste would be diverted from landfill. 
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Apart from strategies for minimisation waste in construction project, an overarching 

approach to preventing waste is improved collaboration within the construction industry. 

Currently, the construction industry is characterised by fragmentation and poor 

collaboration among project stakeholders. This results in information loss, poor 

communication and blame shifting rather than ensuring collaborative working 

environment (Fewings, 2013). This is despite the fact that each profession has its unique 

input, which could be valuable throughout the process of project delivery. In concurrence 

with this, the study confirmed collaborative culture as a key driving force for engendering 

waste minimisation in construction projects.  

 

 Critical Success Factors for Construction Waste Minimisation 

The results of descriptive statistics show relative importance attached to various design, 

procurement and construction strategies for driving waste minimisation. At the design 

stage, the critical success factors are error free design, early involvement of contractors, 

design for standard dimensions and units, design coordination, and design freeze at the 

end of design process in respective order. These set of factors point to the need for 

certainty in design and prevention of factors that could lead to reworks and excessive 

materials offcut.  

 

In order to drive waste minimisation through materials procurement processes, the 

established critical success factors include effective materials take-off, take back scheme, 

optimisation of materials purchase, modification to product size and shape, and purchase 

of preassembled components in order of their significance. The top three factors are 

related to measures for preventing materials leftover, which is evident as a major cause 

of construction waste (Dainty and Brooke, 2004). The fourth and fifth critical success 

factors are concerned with strategies for preventing materials offcut, another established 

cause of construction waste (Formoso et al., 2002). This suggests that materials 

procurement processes could essentially drive waste minimisation by optimising 

materials ordering to prevent leftover and by using the process to support pre-cut, 

preassembled and durable materials. 

 

At the construction stage of project delivery process, the critical success factors for 

driving waste minimisation include prefabricated construction method, supply chain 
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alliance with materials suppliers, collaborative procurement route, contractors' dedication 

and less design change. While the highest ranked factor reinforces the significance of 

prefabrication and autonomation in construction waste minimisation, the second, third 

and fifth ranked factor buttress the importance of collaboration in achieving construction 

waste efficiency. The third-ranked factor shows that competencies of contractors in 

project planning, as well as their waste behavioural competency, is important to driving 

waste minimisation. 

 

 

11.4 Critical Competencies for minimising waste in 
construction projects 

Despite the established significance of design in minimising construction waste, various 

studies have suggested that designers lack adequate competencies for driving low waste 

projects (Mansikkasalo et al., 2014; Sassi and Thompson, 2008). Due to this, the study 

has investigated the key and underlying competencies for designing out waste in 

construction projects. Results of the structural equation modelling confirmed four 

underlying competencies for designing out waste in construction projects. Most 

importantly, behavioural competency, which is a reflection of designers' personal 

commitment and belief, is confirmed as the key requisite competency for driving low 

waste project. This is especially important, as the likelihood of implementing strategies 

for designing out waste is determined by their belief in design as the main cause of waste 

generation. Proficiency in design task, which is the main role of designer, is also 

confirmed as a key underlying strategy for waste minimisation. Through proficiency in 

main design techniques such as error free design, dimensional coordination, clash 

prevention, and detailing, among others, waste causative factors would be prevented. 

 

As design is essentially a graphical representation of buildings for subsequent 

construction, designers’ knowledge of construction is confirmed as a key competency for 

designing out waste. This knowledge would enhance adequate specification, detailing 

and integration of reusable elements into design. Similarly, inter-professional 

collaborative competency is confirmed as an underlying competency for designing out 

waste. These include ability to coordinate design from all trades as well as adequate 

communication of design information in collaborative environment.  
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Significance ranking of design competencies for waste minimisation suggests that ability 

to coordinate dimension of building elements and components is the highest ranked 

competency. This is followed by proficiency in design coordination across trades and 

ability to produce error-free design respectively. Proficiency in clash prevention and 

ability to provide comprehensive design information are the fourth and fifth ranked 

competencies. As these sets of competencies are essential for preventing waste causative 

factors, possession of the skillsets is requisite for designing out waste in construction 

projects. 

 
 Key Dynamic Drivers of Construction Waste Minimisation 

Results of various simulations on system dynamic modelling suggest that the impacts of 

implementing a strategy extend beyond its unitary level. Activity carried out at a stage 

has far-reaching effects on other stages of project delivery process. Through simulation 

of dynamic impacts and interrelationship among key dimensions for waste mitigation, 

relative importance of the strategies was established. 

 

Most significant among waste minimisation strategy is design for modern methods of 

construction, which could be equally referred to as design for prefabricated elements. 

Notwithstanding that prefabrication is confirmed as a key measure that is capable of 

reducing construction waste, failure to design for modern methods of construction would 

make prefabricated construction infeasible. As such, the significance of designing for 

modern method of construction extends beyond unitary dimension.  

 

Apart from prefabricated construction, which has the second highest dynamic impacts at 

holistic level, collaborative design process is the next significant measure in terms of its 

holistic impacts on project waste efficiency. This strategy ensures that all project 

stakeholders collaborate right from design stage, thereby preventing all waste causative 

factors that are associated with inadequate communication, information loss, poor design 

interpretation, design clash and reworks due to errors, among others (Arain et al., 2004; 

Charry, 1998). Similar to this, collaborative construction process has the fifth highest 

dynamic impacts on project waste efficiency. This suggests that collaboration is not only 

required at the design stage of project delivery process, increasing collaborative working 

process is required through the whole processes of project delivery process. Meanwhile, 
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ranking fourth among the strategies is design for standardisation and dimensional 

coordination. This strategy requires design optimisation in line with standard materials 

supply, thereby preventing waste due to offcuts. By coordinating and optimising design 

dimensions, building materials would be easily reusable in other projects. 

 

Other than relative significance of different strategies, an investigation of the significant 

impacts of design, procurement and construction processes to waste minimisation 

suggests that design has the highest dynamic impacts in driving waste management 

practices. This is especially as the step taken during the design process would affect other 

activities during materials procurement and construction stages. While design could 

improve waste efficiency to about 75%, materials procurement and construction 

processes could raise project waste efficiency to 50% and 72.5% respectively. This 

advocates for the need to plan for waste minimisation right from design stage of project 

delivery process, where the cost of change is cheaper.  

  
 Underlying Strategies for Holistic Waste Minimisation 

Across all the dynamic simulation, two key patterns that majorly drive waste 

minimisation are prefabricated construction and collaborative procurement route. The 

result suggests that either or both of the strategies are capable of engendering significant 

waste minimisation in construction projects. While prefabrication method demands 

design for modern methods of construction as well as prefabrication construction, 

collaborative procurement route demands collaborative design, collaborative culture in 

construction, and suppliers’ alliance, all of which are confirmed as significant strategies 

for waste minimisation.   

 

 

11.5 Implications for Practice 

Findings of this study have significant implications for practices throughout every stage 

of project delivery processes. The study shows that design stage is very crucial for 

construction waste minimisation. Based on this, there is need for increasing dedication 

among the design professionals by considering waste during the design process. The 

established design competency is an agenda for professional development among the 

designers.  While inter-professional collaborative competency is particularly required of 
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design managers, proficiency and conventionalism in basic design task, and knowledge 

of construction operation and materials are expected to be improved among designers, as 

they are important for designing out waste.  

 

While seeking to design out waste, the main focus of designers should be on optimisation 

of building design in line with standard materials supplies. This specifically becomes the 

key driving force when project does not involve prefabricated construction method. At 

project level, design process usually involves inadequate coordination and poor 

collaboration among design professionals. Rather than the usually fragmented approach, 

this study suggests the need for integrated approach in design process. Gaining more 

importance in the construction industry is the use of BIM for design coordination. Use of 

this technique would enhance collaboration required for driving waste minimisation 

through design activities. 

 

In order to reduce construction waste, there is need for increasing attention to materials 

procurement strategies. While materials suppliers are usually considered as external 

stakeholders in construction, adequate waste minimisation requires increasing alliance 

with materials suppliers. This would ensure that they facilitate waste minimisation by 

supplying pre-cut, preassembled and suitable materials. Such alliance could as well 

facilitate take back scheme and JIT delivery, which are proven to prevent materials 

leftover and subsequent waste generation (Negapan et al. 2013; Dainty and Brooke, 

2004).  

 

The increasing use of prefabricated construction method is requisite for reducing waste 

intensiveness of the construction industry. This is especially as the findings suggest that 

the construction technique is capable of reducing substantial proportion of waste. The 

construction technique ensures that building elements and components are offsite-

produced and site assembled. In such case, waste-inducing practices such as offcuts 

would have been prevented. 

 

While it is clear that prefabrication technique could not be employed on every project due 

to its higher cost (Chen et al., 2010), another key measure that could equally facilitate 

waste minimisation is the use of collaborative procurement route. The study suggests that 

most factors responsible for waste generation could be adequately prevented by using 
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collaborative procurement routes, which enhance adequate communication and 

information sharing among project stakeholders. This would as well ensure that all 

professionals contribute their unique competencies that are not only essential for waste 

minimisation, but also for driving key project performance indicators such as cost, time 

and quality.  
 

 

11.6 Theoretical Implications of the Study 

In concurrence with the theory of lean construction, this study confirms autonomation as 

a requisite for holistic waste minimisation. Through structural equation modelling and 

system dynamic modelling, prefabrication and collaboration were confirmed as the key 

drivers of construction waste minimisation. This confirms the relevance of Lean 

construction theory, which advocates for increasing use of prefabrication and improved 

collaborative process. 

 

Although there is an existence of waste behaviour within the construction industry, the 

study suggests that waste behaviour is not as a result of behavioural intention of building 

operatives. This is especially as the results of Structural Equation Modelling (SEM) 

suggest that human resource management is less significant in driving waste 

minimisation. Rather, the study confirms prevalence of deep-rooted non-collaborative 

culture as the key driver of waste behaviour within the industry. As a result of poor 

collaboration, there is poor project coordination and shifting of waste management 

responsibility among project stakeholders. This results in errors, reworks and subsequent 

waste generation. Rather than concentrating on human behavioural intention at individual 

level, there is need to drive project waste minimisation through collaborative 

procurement and contractual clauses. This would engender commitments to waste 

minimisation among project participants.  

 

This study shows that the adopted task-contextual competency model is a valuable 

framework for mapping out competencies required for effective task performance. 

Concurring with the tenet of its theoretical basis, the study suggests that both task and 

contextual performance are measures of competencies for designing out waste. The result 

of structural equation modelling shows that behavioural competency, which is a 
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contextual skill, has the highest factor weight among the constructs of competencies. 

Taking factor weight as a measure of significance, the finding confirms the antecedent 

position that contextual performance, such as interpersonal relationship are more likely 

to enhance effective performance in designing out waste.  This suggests that, as rightly 

predicted by the task-contextual model, proficiency in design tasks is not enough for 

designing out waste. It rather requires effective contextual competencies, which could, 

however, be seen as being external to the fundamental roles of designers. For instance, 

apart from proficiency in design task, adequate inter-professional collaboration and 

construction-related knowledge are required for designing out waste.  

 

The dynamic system theory and its associated system dynamic modelling suggest 

weaknesses in studying construction activities at unitary level. Just like activities on 

project critical path, measures with impacts on other stages have more dynamic influence 

on construction waste minimisation. It is, therefore, important that complex and 

interrelated processes like construction are studied at dynamic level, rather than providing 

solutions that are conceived from unitary perspective. 

 

 

11.7 Limitations of the Study 

Albeit the robustness of its methodological approach that extends beyond studying 

construction waste at unitary level, the study has some limitations in terms of its scope. 

It is, therefore, important that the findings of this study are interpreted in line with its 

scope and limitation. The data for the study has been collected from the UK construction 

industry. While effort was made to enhance generalizability through probabilistic 

sampling of participants and critical sampling of project roles, findings of this study could 

not be generalised to other countries than the UK. Similarly, focus group discussions and 

questionnaire were designed to collect data on building projects. As such, no attempt was 

made to investigate strategies for waste minimisation in civil engineering projects such 

as road and other infrastructural facilities. This is due to some differences in construction 

methods and materials use between building and civil engineering projects. Based on this 

limitation, result of this study should be interpreted as strategies for minimising waste in 

building construction projects. 

 



240 
  

Another limitation of the study is its evaluation of waste from materials perspective. 

Although the theory of lean construction served as a theoretical lens for the study, waste 

has not been studied from lean perspective. Within the context of lean, waste is 

approached from both materials and non-materials perspective, including time loss 

(Koskela, 2004). This study has only approached waste from materials aspect, especially 

as the study is motivated by the need to improve environmental performance of the 

construction industry. From this perspective, materials waste is of paramount importance 

(Faniran and Caban, 1998). 

 

A key component of the study is an investigation of competencies for minimising waste 

in construction project. However, this aspect of the study has only addressed design 

competencies for driving low waste construction projects. This limitation is partly due to 

the lack of significant information on competencies required at procurement and 

construction stages of project delivery process. Findings from focus group discussions 

also suggest that most competencies for engendering construction waste minimisation are 

design-related. This is especially as the design, design documents and designers have 

been blamed for onsite waste generation (Osmani et al., 2008; Sassi and Thompson, 

2008).  

 

11.8 Directions for Future Research 

As earlier stated, this study has been carried out within the UK. Other studies could 

investigate generalizability of its findings to the global construction industry by collecting 

data from other countries and comparing its findings with this study. Similarly, as this 

study covers only building projects, future research could specifically investigate 

strategies for minimising waste in civil engineering projects. This would allow 

comparison of strategies for waste minimisation in building and civil engineering 

projects. 

 

This study has been unable to comprehensively investigate competencies for driving 

waste minimisation at construction stage of project delivery process. As design 

competencies were established, other studies could investigate key competencies for 

driving waste minimisation at construction stages of project delivery processes. Materials 

suppliers’ capacity for supporting waste minimisation could as well be investigated.  
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Appendix 2: Sample of the Questionnaire used for System Dynamic Modelling (SDM) 
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Appendix 3: Cause tree diagram for waste-efficient construction projects 
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Appendix 4: Cause tree for waste-efficient design  
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Appendix 5: Cause tree for waste-efficient materials procurement processes 
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Modification to products size and shapes

Provision for unused materials to be taken away from site
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Appendix 6: Cause tree for waste-efficient construction processes 

Promotion via Construction process

Contractors' Competencies and Commitment

Adequate knowledge of construction methods and sequence

Adoption of right work sequence

Carefully planned sequence of work

Detect the construction activities that can admit reusable

Contractual Provisions

Clear definition and communication of waste management plan

Contractual clauses to penalize poor waste performance

Making sub-contractors responsible for waste

Resolution of contract doc before procurement

Waste target for sub-trades

culture

Collaborative platform for information sharing

Supply chain alliance with materials suppliers

Use of collaborative procurement routes such as IPD

Materials Reuse

Discussion with sub-contractors on the reuse of materials

Maximization of onsite reuse

Periodic checks on the use of C&D waste containers

Reuse material scraps

Reuse of off-cuts materials

Soil remains to be used

Use of demolition materials and excavation for landscape

Use of reclaimed materials

Prefabrication

Design for MMC

Modular construction technique

Offsite construction technology

Precast cladding, units and modules

Use of Precast components

Promotion via Design

(Design for MMC)

Design for Standardization and Dimensional Coordination

Waste Efficient Design Documentation

Waste Efficient Design Process

Promotion via Procurement

Bill of Quantity

Materials Purchase

(Promotion via Design)

Suppliers' Dedication and Alliance

Waste Efficient Site Planning

Effective comm. of design changes

Fewer design changes

Site layout planning before construction

Task group for onsite CWM

Through review of project specification

Waste management plan
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