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Abstract

The problem of thermal convection in a horizontal �uid-saturated porous layer is examined,

where the �ow is governed by the Brinkman extension of Darcy's law. A uniform internal heat

source and vertical through�ow are also considered. The linear and nonlinear stability analyses

are performed in order to determine the stability characteristics of the system. The linear and

nonlinear thresholds give good agreement in the absence of vertical through�ow. However, it is

shown that there are potential regions of sub-critical instabilities for increasing values of internal

heat source parameter Q, Péclet number Pe and Darcy number Da.
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1 Introduction

The �ow and heat transfer in porous media has been a highly active area of research for the past

few decades due to broad range of applications in engineering �eld as well as in the hydrology of

ground water, food processing, geophysics, and petroleum reservoirs etc.

Horton and Rogers [1] and Lapwood [2] were �rst to study the �ow and heat transfer in a

porous media. These studies are based on the Darcy law, which neglects the e�ects of inertial

forces and solid boundary. However, in the case of highly porous materials, where these e�ects are

signi�cant. The permeability K in the Brinkman equation is such that the equation reduces to a

form of the Navier-stokes equation as K →∞ and to the Darcy equation as K → 0. Brinkman

[3] calculated the viscous force exerted by �uid �ow on a dense swarm of particles embedded

in a porous medium which lead to the formation of the Darcy-Brinkman model. In Brinkman

[3] the simultaneous e�ects of boundary and inertia are discarded. Tam [4] speci�ed that when

the spatial length scale is much higher than 1
α (where α2 = µ

Kµ̃ : µ is the viscosity, µ̃ is the

e�ective viscosity, K is the permeability), the term 4v (linear in �uid �ow v) is insigni�cant in

comparison with the linear term v. In this case the Darcy-Brinkman model reduces to the Darcy
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law. Later, Vafai and Tien [5] analyzed the inertia and solid boundary e�ects on �ow and heat

transfer in porous media, in which the local volume averaging technique was used to establish

the governing equations. These e�ects are more pronounced in high Prandtl-number �uids, high

permeable porous media and for large pressure gradients. It is noted that the e�ect of Brinkman

term will only be in thin layers adjacent to rigid boundary, mainly within a distance K1/2. Nield

[6] con�rmed that Brinkman model is applicable to porous media whose porosities are greater

than 0.6. Vafai and Kim [7] addressed the work of Nield [8] and conveyed that the e�ect of

porosity variation is not required for high porous medium, but it should be considered for dense

porous medium. Walker and Homsy [9] studied the convective instabilities in an isotropic porous

media. Later, Rees [10] analyzed the work of Walker and Homsy [9] in detail, by performing an

asymptotic analysis. Barletta et al. [11] studied the convective instability in highly permeable

porous medium, taking viscous dissipation into account.

The buoyancy force generated by heating at the bottom plate or an internal heat generation

is one of the main sources of research interest for the onset of convection in a �uid-saturated

porous medium. The onset of convection in a porous medium with internal heat generation

is investigated in Gasser and Kazimi [12], in which the critical internal and external Rayleigh

numbers were obtained for both stabilizing and destabilizing boundary conditions. Later, the

�nite amplitude convection in a porous layer heated from within was studied by Tveitereid [13] by

analyzing steady solutions in the form of hexagons and two-dimensional rolls. Then after, Royer

and Flores [14] studied natural convection in a rectangular heterogeneous anisotropic porous

medium with an internal heat generation and compared numerical results of the problem with the

cases of homogeneous and heterogeneous isotropic porous media. Subsequently, Parthiban and

Patil [15] studied the thermal instability problem in an anisotropic porous media with internal

heat source subjected to inclined gradients and obtained numerical results by using Galerkin

technique. Nouri-Borujerdi et al. [16] studied the e�ect of uniform internal heat source in a

horizontal porous layer with local thermal non equilibrium model, and then Nouri-Borujerdi et

al. [17] focused on the in�uence of Darcy number on the onset of convection in the presence of

uniform internal heat source where the equation of motion is modeled by Brinkman law.

The study of through�ow is important as it gives the possibility to control the potential

convective instabilities by adjusting the through�ow. Wooding [18] was the �rst to study the

Rayleigh instability of convection in a porous medium with through�ow. Convective �ow in a

two dimensional porous channel was studied by Sutton [19] when there is a net �ow of �uid

through the channel. Later, Homsy and Sherwood [20] provided the stability results for the

problem of thermal convection for the case of net �uid discharge through porous medium, and

obtained the linear and energy bounds. These bounds coincide at low discharge rates. The

e�ect of through�ow on convection with inclined temperature gradients was addressed by Nield

[21] and Qiao and Kaloni [22]. The onset of convection with internal heat generation and net

through�ow (strong and weak) for di�erent hydrodynamic boundary conditions is examined in

the article by Khalili and Shivakumara [23]. The stability of a saline boundary layer formed by

through�ow near surface of the porous medium was studied in Van Duijn et al. [24] and Pieters

and Schuttelaars [25]. The linear instability of boundary layer formed by vertical through�ow
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in horizontal porous medium with local thermal nonequilibrium was examined in Patil and Rees

[26]. The studies on the the e�ect of vertical through�ow and internal heat source on the onset

of convection in a layered porous medium were found in Kuznetsov and Nield [27], [28]. Later,

the combined e�ects of through�ow and variable gravity on Hadley-Prats �ow was studied by

Deepika and Narayana [29]. The e�ect of vertical through�ow of a non-newtonian power-law

�uid on the onset of convection in a horizontal �uid saturated porous layer was examined in

Barletta and Storesletten [30]. In the absence of Brinkman term, the present problem is similar

to the problem considered in Barletta et al. [31], in which viscous dissipation is considered as an

internal heat source just as uniform internal heat source considered in this manuscript.

Owing to the important applications of the vertical through�ow and internal heat source in

engineering applications, we analyze these combined e�ects in a �uid saturated Darcy-Brinkman

porous layer. Section 2 deals with the governing equations and basic state solution, which is

followed by the linear theory in Section 3 and the nonlinear theory via energy method in section

4. Numerical results of both the linear and nonlinear theories are discussed in Section 5. From

the numerical results, we observed that the combination of vertical through�ow and internal

heat source signi�cantly e�ects the stability of the convection pattern. These observations are

concluded in section 6.

2 Mathematical Formulation

Let us consider a horizontal �uid-saturated porous layer Ω bounded by two planes separated at

a distance L > 0, such that Ω = R2 × (−L/2, L/2) where O ¯xyz to be the Cartesian coordinate

system with x̄, ȳ being the horizontal axes and z̄ being the vertical axis. The Oberbeck-Boussinesq

approximation is assumed to be valid throughout the domain i.e. the density ρ is constant

everywhere except in the body force term and it can be expressed as

ρ = ρ0(1− β(T̄ − T̄0)),

where ρ0 is the density at reference temperature T̄0, T̄ is the temperature, and β is the thermal

expansion coe�cient.

The set of governing equations for the �ow and heat transfer in dimensional form are given

by

∇̄ · ū = 0, (1a)

µ

K
ū = −∇̄P̄ + µe4̄ū + ρgk̂, (1b)

(ρh)m
∂T̄

∂t̄
+ (ρhp)f (ū · ∇̄)T̄ = k4̄T̄ + q, (1c)

where ū = (ū, v̄, w̄) is the seepage velocity vector, 4̄ = ∂2

∂x̄2
+ ∂2

∂ȳ2
+ ∂2

∂z̄2
, P̄ is the pressure,

k̂ = (0, 0, 1) and g is the acceleration due to gravity. Furthermore, µ, µe,K, t̄, ρ and k are

dynamic viscosity, e�ective viscosity, permeability, time, reference density of �uid and thermal

conductivity, respectively. The term q > 0 in (1c) is a (constant) internal heat source, and

(ρ0h)m = (1− φ)(ρ0h)s + φ(ρ0hp)f ,
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where hp is the speci�c heat of the �uid and h is the speci�c heat of the solid, with the subscripts

f, s andm referring to the �uid, solid and porous components respectively. The walls are assumed

to be permeable, with a through�ow velocity w̄0 in the vertical direction such that

(ū, v̄, w̄) = (0, 0, w̄0), T̄ = T̄1, at z̄ = −L
2
,

(ū, v̄, w̄) = (0, 0, w̄0), T̄ = T̄0, at z̄ =
L

2
. (1d)

We de�ne the following dimensionless variables

x = (x, y, z) =
1

L
(x̄, ȳ, z̄) =

x̄

L
, u = (u, v, w) =

L

α
(ū, v̄, w̄), t =

α

L2A
t̄,

A =
(ρh)m
(ρhp)f

, α =
k

(ρhp)f
, P =

K

αµ
(P̄ + ρ0gz̄), T =

T̄ − T̄0

T̄1 − T̄0
, (2)

where α is the thermal di�usivity, A is the ratio of volumetric heat capacity (ρh)m of �uid

saturated porous medium to the volumetric heat capacity (ρhp)f of �uid. By substituting the

dimensionless variables into (1a)-(1d), the following non-dimensional governing equations are

obtained:

∇ · u = 0, (3a)

u = −∇P +Da4u +Rak̂, (3b)

∂T

∂t
+ (u · ∇)T = 4T +Q, (3c)

(u, v, w) = (0, 0, P e), T = 1, at z = −1

2
,

(u, v, w) = (0, 0, P e), T = 0, at z =
1

2
.

(3d)

In the above equations, the dimensionless parameters are

Da =
µe
µ

K

L2
, Ra =

ρ0βg(T̄1 − T̄0)KL

µα
,

Q =
L2

k(T̄1 − T̄0)
q, Pe =

L

α
w̄0, (4)

where, Da is the Darcy number, Ra is the Rayleigh number, Q is the coe�cient of internal heat

source, and Pe is the Péclet number. The steady-state solution to the equations (3a)-(3d) is

given by

uB = (uB, vB, wB) = (0, 0, P e), (5a)

TB =
1

2
+

(
1 + Q

Pe

)
2 sinh

(
Pe
2

) (cosh

(
Pe

2

)
− ePez

)
+

Q

Pe
z. (5b)

When there is no through�ow in the vertical direction, i.e., Pe = 0, the basic state solution tends

to

uB = (0, 0, 0), pB = p(x, y, z), TB = −Q
2
z2 − z +

(
Q

8
+

1

2

)
. (6)

To study the stability of the basic state, the following perturbations are added

u = uB + U, p = pB + P, T = TB + θ, (7)
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where U = (U, V, W ), to yield the governing perturbation equations

∇ ·U = 0, (8a)

U = −∇P +Da4U +Raθk̂, (8b)

∂θ

∂t
+ U · ∇TB + uB · ∇θ + U · ∇θ = 4θ, (8c)

W = θ = 0 at z = ±1

2
. (8d)

Equation (8) indicates that there is zero perturbation on velocity and temperature at the

boundary planes.

3 Linear stability analysis

To proceed with the linear instability analysis, products of the perturbations in (8b) and (8c)

are discarded. Since the resulting system is linear and autonomous, we may seek solutions of the

form

(U, V,W, θ, P ) = (U (x),V (x),W (x), θ(x),P(x))eσt (9)

where σ = σr + iσi is the exponential growth rate parameter. Before proceeding further, we

demonstrate that the linear stability analysis for the present problem admits the principle of the

exchange of stabilities, i.e., σ is real.

Substituting (9) into (8c) yields

(4− σ − (uB · ∇))θ − dTB
dz

W = 0. (10)

Taking the third component of double curl of (8b) yields

Ra42θ = 4W −Da42W. (11)

where

4 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, 42 =

∂2

∂x2
+

∂2

∂y2
, ∇ =

∂

∂x
î +

∂

∂y
ĵ +

∂

∂z
k̂.

From (10) and (11) it follows that

(4− σ − (uB · ∇))(4W −Da42W )−RadTB
dz
42W = 0,

which subsequently implies

(4− σ)4W −Da(4− σ)42W − (uB · ∇)4W +Da(uB · ∇)42W −RadTB
dz
42W = 0. (12)

Let W ∗ = Wr − iWi and θ∗ = θr − iθi be the complex conjugates of W = Wr + iWi and

θ = θr + iθi, respectively. Now, multiplying equation (12) with W ∗ and integrating over V

(where V is a periodicity cell), leads to

‖4W‖2 + σ ‖∇W‖2 +Da ‖∇4W‖2 + σDa ‖4W‖2 −Ra
∫
V

dTB
dz
|∇2W |2 dV

−
∫
V

((uB · ∇)4W )W ∗dV +Da

∫
V

((uB · ∇)42W )W ∗dV = 0,

(13)
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where ‖.‖ denote norm on L2(V ). It follows that
∫
V
dTB
dz |∇2W |2 dV ∈ R since dTB

dz ∈ R and

−
∫
V

((uB · ∇)4W )W ∗dV =

∫
V

((uB · ∇)∇W ) · ∇W ∗dV

= 〈(uB · ∇)∇(Wr + iWi),∇(Wr − iWi)〉

= 〈(uB · ∇)(∇Wr,∇Wr)〉 − i 〈(uB · ∇)(∇Wr,∇Wi)〉

+ i 〈(uB · ∇)(∇Wi,∇Wr)〉+ 〈(uB · ∇)(∇Wi,∇Wi)〉

= 〈(uB · ∇)(∇Wr,∇Wr)〉+ 〈(uB · ∇)(∇Wi,∇Wi)〉 ∈ R.

Similarly
∫
V ((uB · ∇)42W )W ∗dV ∈ R. Now, taking the imaginary part of (13) gives

σi(‖∇W‖2 +Da ‖4W‖2) = 0.

Therefore σi = 0. Hence, the only existing modes are stationary modes in the linear theory.

Introducing the normal modes of the form

W = W (z)f(x, y) θ = θ(z)f(x, y) (14)

where f(x, y) is plan-form which tiles the plane (x, y) with 42f = −a2f such that a2 = ax
2 +ay

2

(ax is the wave number in x−direction, ay is the wave number in the y−direction, a is the overall
wave number). The plan-form indicates the horizontal shape of the convection cells formed at

the onset of convection. These cells form a regular horizontal pattern tiling the (x, y) plane,

where the wave number a, is a measure of the width of the convection cell. By substituting

normal modes (14) in (10) and (11), the obtained eigenvalue problem for linear instability is

Da(D2 − a2)2W − (D2 − a2)W − a2Raθ = 0, (15a)

(D2 − a2)θ − dTB
dz

W − PeDθ = 0. (15b)

z = ±1

2
: W = DW = θ = 0. (15c)

where D = d/dz. Numerical thresholds for linear instability generated by (15a)-(15c) are given

in Section 5.

4 Nonlinear stability analysis

To study the nonlinear stability, we de�ne the energy functional as follows

E(t) =
ξ

2
‖θ‖2 , (16)

where ξ is a positive coupling parameter. Multiplying equation (8b) by U, equation (8c) by

θ, integrating over V (where V is a periodicity cell) and applying the divergence theorem, the

following equations are obtained:

‖U‖2 = −Da ‖∇U‖2 +Ra 〈θ, W 〉 , (17)

1

2

d

dt
‖θ‖2 + 〈(U · ∇TB), θ〉 = −‖∇θ‖2 , (18)
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where ‖ · ‖ and 〈· , ·〉 denote the norm and inner product on L2(V ), respectively. Now, di�eren-

tiating (16) with respect to t and using equations (17)-(18) , we get

dE

dt
= I −D (19)

where

I = −ξ 〈(U · ∇TB), θ〉+Ra 〈θ, W 〉 , (20a)

D = ξ ‖∇θ‖2 + ‖U‖2 +Da ‖∇U‖2 . (20b)

From equations (16)-(20b), (and the Poincaré inequality π2 ‖θ‖2 ≤ ‖∇θ‖2), we can write

dE

dt
≤ −2π2(1−m)E, (21)

where

m = max
H

(
I

D

)
(22)

and H = {(U, θ) ∈ L2(V ): ∇·U = 0, W = θ = 0 at z = ±1
2}. Integrating the above inequality

(21), guarantees E(t) → 0 as t → ∞ for 0 < m < 1. Assuming the critical condition m = 1 in

the maximization problem, the associated Euler-Lagrange equations are

−ξ∇TBθ +Raθk̂− 2mU + 2mDa4U = ∇λ, (23a)

−ξ(U · ∇TB) +RaW + 2mξ4θ = 0, (23b)

where λ is a Lagrange multiplier which is introduced as U is solenoidal. Applying the double

curl to equation (23a), and taking third component in order to remove λ, we obtain

2

(
∂2W

∂x2
+
∂2W

∂y2

)
−Ra

(
∂2θ

∂x2
+
∂2θ

∂y2

)
+ ξ

dTB
dz

(
∂2θ

∂x2
+
∂2θ

∂y2

)
− 2Da

(
∂2

∂x2
+

∂2

∂y2

)
4W

+ 2Da
∂

∂z

(
4
(
∂U

∂x
+
∂V

∂y

))
− 2

∂

∂z

(
∂U

∂x
+
∂V

∂y

)
= 0.

(24)

Using normal modes, as given in the equation (14), to the equations (23a) and (24), the eigenvalue

problem for nonlinear theory is given as

Da(D2 − a2)2W − (D2 − a2)W +
1

2
ξ
dTB
dz

a2θ − 1

2
a2Raθ = 0, (25a)

(D2 − a2)θ − 1

2

dTB
dz

W +
1

2ξ
RaW = 0, (25b)

z = ±1

2
: W = DW = θ = 0. (25c)

Equations (25a)-(25c) constitutes an eigenvalue problem for Ra as a function of Pe,Da and

Q. In addition this eigenvalue problem involves a positive coupling parameter ξ which is to be

selected optimally. The procedure to �nd optimal ξ now follows.

Rescaling the temperature perturbation as

θ̃ = θ
√
ξ,
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the modi�ed I and D are

Ĩ = −
√
ξ
〈

(U · ∇TB)θ̃
〉

+
Ra√
ξ

〈
θ̃W
〉
,

D̃ =
∥∥∥∇θ̃∥∥∥2

+ ‖U‖2 +Da ‖∇U‖2 ,

where we are investigating the maximum of Ĩ

D̃
. To solve this maximization problem, we �nd the

Euler-Lagrange equations are of the form

Xθk̂− 2U + 2Da4U = p,i ,

XW + 24θ = 0.

(where the˜ has been removed for the ease of notation), and

X =
Ra√
ξ
− dTB

dz

√
ξ.

Let (U(1), θ(1)) and (U(2), θ(2)) be solutions to above equation corresponding to ξ(1) and ξ(2),

respectively. We take the above equation with the superscript (1), multiply each equation with

U(2), θ(2) respectively, and integrate over V in each case. The same procedure is repeated with

superscripts (1) and (2) reversed. After dividing the system obtained from this procedure by

ξ(2) − ξ(1) and taking the limit ξ(2) → ξ(1), it follows that

∂

∂ξ
〈XWθ〉 = 0,

which implies that the optimal coupling parameter as

ξ = − Ra(
dTB
dz

) .
Clearly ξ>0 as dTB

dz < 0. This optimal value of ξ is used in the eigenvalue problem of nonlinear

theory (25a)-(25c), in the numerical experiments.

5 Results and discussion

The eigenvalue problems (15a)-(15c) for linear theory and (25a)-(25c) for nonlinear theory have

been solved numerically using shooting and Runge-Kutta methods. For the shooting method,

the boundary value problems (15a)-(15c) and (25a)-(25c), can be reduced to initial value problem

with the following conditions

W

(
−1

2

)
= 0, DW

(
−1

2

)
= 0, D2W

(
−1

2

)
= 1, D3W

(
−1

2

)
= χ,

θ

(
−1

2

)
= 0, Dθ

(
−1

2

)
= ζ, (26)

where D2W
(
−1

2

)
= 1 is the normalization condition for breaking the scaling invariance of

eigenfunctions in (15a)-(15c) and (25a)-(25c). The unknown parameters χ, ζ, can be evaluated
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by the shooting method with the target conditionW
(

1
2

)
= DW

(
1
2

)
= θ

(
1
2

)
= 0. More precisely,

for �xed values of Q,Pe,Da, one can �nd χ, ζ,Ra in the initial value problems (eigenvalue

problem (15a)-(15c), (25a)-(25c) with replacement of initial condition (26)) by using the Runge-

Kutta method. While implementing this procedure, we �nd eigenvalue Ra(a) for a �xed set

of �ow governing parameters. Rayleigh number Ra is minimized over wave number a with the

condition ∂R/∂a = 0. Critical Rayleigh number RaL (or RaE) refers to the minimum value of

Ra at critical wave number aL (or aE). The critical Rayleigh number for linear and nonlinear

theories, are de�ned as

RaL = min
a
Ra(a,Q, Pe,Da),

RaE = max
ξ

min
a
Ra(a,Q, Pe,Da, ξ),

respectively. To perform the Runge-Kutta method, a built in function, ode45 was used in the

software packageMatlab R2012b. The critical Rayleigh numbers for both the linear and nonlinear

theories have been compared in this section for a �xed set governing parameters Q, Pe, and Da.

Throughout the discussion, the solid lines indicate neutral stability curves for linear instability

thresholds, whereas dashed lines indicate neutral stability curves for nonlinear stability thresh-

olds. In this article, Pe > 0 refers to upward through�ow whereas Pe < 0 refers to downward

through�ow.

The Darcy �ow model can be recovered by putting Da = 0 in the equations (15a) and (25a).

Small values of the Darcy number Da cause system of di�erential equations to become sti�

and creates numerical di�culties. Therefore, the range of the Darcy number is restricted to

10−3 ≤ Da ≤ 102 during the numerical computations. Higher values of the internal heat source

Q causes convective instability even in the absence of external temperature gradient. Thus, the

neutral stability curves are presented for 0 ≤ Q ≤ 50 and −20 ≤ Pe ≤ 20.

In the absence of vertical through�ow and the Brinkman term, the present problem reduces

to the study by Gasser and Kazimi [12]. Table 1 shows a very good agreement of the present

numerical results with the external Rayleigh number R̃E given in Gasser and Kazimi [12]. In both

the linear and nonlinear theories critical Rayleigh numbers RaL and RaE increase for upward

through�ow, and decrease for downward through�ow. This observation is consistent with the

observation made by Nield and Kuznetsov [27].

When Q = 0 and Da = 0, the present problem can be reduced to the study of in Barletta

et al. [31]. From Table 2, the comparison between Barletta et al. [31] and the present linear

stability theory results (Q = 0 and Da = 0) demonstrate excellent agreement.

Fig. 1 represents neutral stability curves for di�erent governing parameters. Fig.1a shows that

in the absence of through�ow, both linear and nonlinear thresholds coincide. This observation is

consistent with the classical Darcy-Bénard convection in porous media as reported in Straughan

[32]. These two theories give di�erent stability thresholds as soon as the through�ow is introduced

in the medium (Pe 6= 0). It is observed that increasing the value of Pe, increases the critical

thermal Rayleigh number in both linear and nonlinear theories. Fig.1b shows that Ra increases

as the Darcy number increases. Fig. 2 displays neutral curves for the onset of convection for

Q = 0, 2 where Da = 0.01 and Pe = −5, 5. In the case of downward through�ow (Pe = −5),

Ra decreases as Q increases for certain range of wave number. However, in the case of upward
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Table 1: Comparison between the linear stability results of Gasser and Kazimi [12] and this

article's linear stability results at Pe = 0.

Q Gasser and Kazimi [12]

R̃E

RaL

0 39.48 39.4783

5 34.59 34.5950

10 27.02 27.0160

15 21.45 21.4461

20 17.63 17.6264

25 14.92 14.9163

30 12.91 12.9115

40 10.16 10.1605

50 8.37 8.3689

60 7.11 7.1120

80 5.47 5.4669

100 4.44 4.4390

Table 2: Comparison between the linear stability results of Barletta et al. [31] (for the case of

Gebhart number Ge = 0) and this article's linear stability results for Q = 0 and Da = 0.

Pe Barletta et al. [31]

Critical value of Ra

RaL

-15 215.283 215.2828

-10 143.518 143.5185

-5 73.4146 73.41465

-0.001 39.4784 39.47839

0.001 39.4784 39.47839

5 73.4146 73.4144

10 143.518 143.5182

15 215.283 215.2824
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(a) Q = 5, Da = 0.01 (b) Q = 5, P e = 5

Figure 1: Neutral stability curves for the onset of convection. Solid lines represent linear theory

and dashed lines represent nonlinear theory.

(a) Pe = −5 (b) Pe = 5

Figure 2: Neutral stability curves for Da = 0.01. Solid lines represent linear theory and dashed

lines represent nonlinear theory.

through�ow (Pe = 5), Ra increases as Q increases. This demonstrates that upward through�ow

delays the onset of convection even in the presence of internal heat source.

The critical thermal Rayleigh number plotted against the internal heat source parameter is

displayed in �g. 3 for the values of Da = 0.1 and Pe = 5,−5. In �g. 3a it can be observed

that RaL and RaE decrease with an increase in the value of the internal heat source parameter.

Since, the internal heat source raises the global temperature of the medium and causes instability

to commence. Furthermore, it is observed that the stability thresholds for nonlinear theory

are smaller than the instability thresholds for the linear theory, clearly leading to sub-critical

instabilities in the medium. For smaller values of the internal heat source parameter Q, the

region of sub-critical instabilities is large. This sub-critical region of instabilities is narrowed

with increasing internal heat source in the medium. Fig. 3b shows that (for the range of values

considered for Q) the results obtained for the upward through�ow (Pe = 5) show the opposite

11



(a) Pe = −5 (b) Pe = 5

Figure 3: Variation of RaL and RaE against Q for Da = 0.1.

trend to the results obtained for the downward through�ow (Pe = −5). For Pe = 5, the upward

through�ow dominates the internal heating e�ect and causes the stabilization of the �ow. From

�g. 3b, it is observed that upward through�ow dominates nearly up to Q = 10 and for higher

values of Q = 10, the internal heating e�ect becomes signi�cant to cause destabilization.

(a) Pe = −5 (b) Pe = 5

Figure 4: Variation of critical wave number aL and aE with Q for Da = 0.1.

Fig. 4 exhibits the variation of critical wave number aL (and aE) versus Q for the same set

of parameters used in �g. 3. For Pe = −5 (downward through�ow), the critical wavenumber

decreases with an increasing value of the internal heat source parameter Q = 6, beyond Q = 6

the critical wavenumber increases with Q. While for Pe = 5 (upward through�ow), the critical

wavenumber increases with Q.

Fig. 5 presents the response of RaL (or RaE) to vertical through�ow Pe for Q = 1, 5 and

Da = 0.1. In the �gures 5a and 5b, the critical thermal Rayleigh numbers RaL and RaE are

increasing with the magnitude of Pe. When Pe = 0, the linear and nonlinear stability theories

show good agreement. As Q increases, the �ow is destabilized for downward through�ow, and

stabilization is seen as the Pe dominates Q in the upward through�ow. The region of sub-critical
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(a) Q = 1 (b) Q = 5

Figure 5: Variation of RaL and RaE against Pe for Da = 0.1.

(a) Q = 1 (b) Q = 5

Figure 6: Variation of critical wave number aL and aE with Pe for Da = 0.1.

instabilities increases with the magnitude of Pe. The variation of aL (or aE) against Pe is shown

in �g. 6, for the same set of other parameters used in �g. 5.

Fig. 7a depicts the linear and nonlinear stability curves for Q = 5, Pe = 5 with varying of

Darcy number Da. Small values of Darcy number Da has no signi�cant impact on RaL and RE ,

but when Darcy number Da increased beyond 0.1, it showed considerable stabilizing e�ect. The

region of sub-critical instabilities increases with the Darcy number. From �g. 7b, it is observed

that aL and aE are decreasing with increasing Da.

6 Conclusions

The onset of the instability of a vertical through�ow with a uniform internal heat source in a

porous medium has been studied, where the �ow is governed by the Brinkman-extended Darcy

law. Linear and nonlinear stability analyses have been conducted, where the nonlinear stability

theory was performed by using Energy Method. The eigenvalue problem in both the linear and

nonlinear theories was solved numerically using shooting and Runge-Kutta methods. The critical
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(a) RaL (or RaE) versus Da (b) aC (or aE) versus Da

Figure 7: Plots of RaL (or RaE) and aL (or aE) against Da for Q = 5, Pe = 5.

Rayleigh number for the linear and nonlinear theories were compared for Darcy number, Péclet

number and internal heat source coe�cient. The main observations from the obtained results

are:

• When the upward through�ow is strong enough (Pe = 5), the e�ect of through�ow domi-

nates the e�ect of internal heat source parameter (for Q = 1 to 7) at the onset of convection.

• In the absence of through�ow, the linear and nonlinear theories give the same result.

• Lower values of Darcy number have insigni�cant stabilization e�ect comparing to the values

of Darcy number greater than 0.1.
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