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ABSTRACT: Organic and printed electronics integration has the potential to revolutionise many technologies, including biomedical 

diagnostics. This work demonstrates the successful integration of multiple printed electronic functionalities into a single device ca-

pable of the measurement of hydrogen peroxide, and total cholesterol. The single-use device employed printed electrochemical sen-

sors for hydrogen peroxide electroreduction integrated with printed electrochromic display and battery. The system was driven by a 

conventional electronic circuit designed to illustrate the complete integration of silicon ICs via pick and place, or using organic 

electronic circuits. The device was capable of measuring 8 µL samples of both hydrogen peroxide (0 to 5 mM, 2.72×10-6 A.mM-1) 

and total cholesterol in serum from 0 to 9 mM (1.34×10-8 A.mM-1, r2=0.99, RSD <10%, n=3) which was output on a semi-quantitative 

linear bar display. The device could operate for 10 minutes via a printed battery and display the result for many hours or days. A 

mobile phone ‘app’ was also capable of reading the test result and transmitting this to a remote health care provider. Such a technology 

could allow improved management of conditions such as hypercholesterolemia. 

Printed electronics is being hailed as a technological revolu-

tion, equal in importance to the emergence of microelectronics 

over 50 years ago. The combined qualities of print-processable 

organic, inorganic and hybrid (semi)conductive materials 

which can be deposited onto flexible polymeric substrates using 

a range of additive, high throughput printing methodologies of-

fer the prospect of low cost  mass production capability and the 

potential for unprecedented levels of technological integra-

tion.1-3 This potent combination is transformational in the ways 

in which we use electronic technologies, and further embed 

them into our daily lives. Such technologies are already being 

integrated into many everyday appliances such as organic light 

emitting diode (OLED) displays on TVs, tablets and phones, 

integrated lighting on product packaging, vehicles and in the 

built environment, printed RFID tags for object tracking and 

many more besides.1, 4, 5 

One area that has great potential for its integration with or-

ganic and printed electronics is that of sensors and diagnostics. 

In fact, sensors – electrochemical sensors at least – could be 

regarded as far ahead of their time in the development of printed 

electronics. Printed electrochemical sensor strips have been 

with us for some 20 years now for application in blood glucose 

monitoring and have featured the use of conductive inks printed 

onto planar substrates to form printed electrodes as the basis of 

miniaturized electrochemical cells.6,7 Other reagents such as en-

zymes and mediators have also been effectively integrated and 

deposited using screen printing techniques. However, to per-

form the rest of the measurement, the printed sensor has always 

been dependent on a number of traditional elements which in-

clude displays, batteries and silicon circuitry external to the sen-

sor in the form of a meter. In addition, the cost and complexity 

of the meter components dictates that they are used repeatedly 

and require maintenance and calibration.  

The next stage of technological evolution is to fully integrate 

all of these components into a single monolithic device through 

the medium of organic and printed electronics. However, to 

achieve this, several technological hurdles have to be overcome. 

Most of these relate to the types and range of materials that must 

be amenable to integrated fabrication processing methods. This 

means having the appropriate functionality, print processability 

and compatibility with other materials and other processes used 

during manufacturing. This results in a significant complexity 

challenge to effectively combine all these functionalities into 

operational devices. 

In this work, we demonstrate the fabrication and integration of 

printed electrochemical sensors, electrochromic display and 

battery onto a single polymeric substrate. The integrated sensor 

system (SIMS) combines various organic, flexible and printed 

electronics (OFPE) technologies with potential for application 

in diagnostics and other areas. In addition, we demonstrate its 

interfacing with simplified conventional electronic circuits as a 

prelude for future full integration of pick and place silicon chips 

or organic electronic circuits.



 

 

Figure 1. Complete layer stack of the SIMS device. A printed card device cover with display window, QR code, printed cholesterol level 

and color coding. Transparent polymer substrate layer based on polyethylene naphthalate foil for high dimensional stability during pro-

cessing. Common silver layer for interconnects for sensor, display and battery. Display, battery and sensor layer stacks are shown in detail 

in Figs. 2, 3 and 5. 

EXPERIMENTAL SECTION 

Devices were fabricated on polyethylene napthalate (PEN) sub-

strates of 100 mm × 80 mm (Teonex Q65FA) (Teijin Dupont 

Films), modified with indium-doped tin oxide (ITO). Q65FA 

was chosen for its excellent characteristics of process compati-

bility and dimensional stability. The ITO display current collec-

tor was patterned by etching. Silver tracks were deposited using 

screen printing of Electrodag PF-410 (Henkel) on a DEK 248 

screen printer (DEK, UK). All display components were depos-

ited using screen printing of the electrochromic ink set (Na-

noChromics™ Print Trial Kit TKG-3.1) developed by NTera 

(Dublin, Ireland). Dual three electrode electrochemical cells 

were fabricated using screen printing. Silver (PF-410) was used 

as the conductor and working electrodes, while Ag/AgCl Elec-

trodag 6037 SS and carbon Electrodag 6017 SS (Henkel) were 

used as reference and common counter electrodes, respectively. 

Working electrode area was 3 mm × 3 mm. 

Batteries were fabricated using a combination of screen print-

ing, gluing and lamination. The current collectors were fabri-

cated using screen printing of PF-407C (Henkel). Anodes and 

cathodes employed manganese dioxide and zinc-based inks, re-

spectively. The anode and cathode were laminated together em-

ploying double-sided glue tape with polymer separator layer 

and ZnCl2 gel electrolyte. 

For the demonstration of the measurement of H2O2, elec-

trodes were modified with the inkjet-printed deposition of Tri-

ton X-100 (0.25% v/v) in PBS as electrocatalyst using a Di-

matix DMP 2831 inkjet printer, with an estimated total volume 

of 952 nL. For the measurement of TC, four inkjet-printed lay-

ers of cholesterol esterase (ChEs) (1.04 kU/mL) and cholesterol 

oxidase (ChOx) (0.39 kU/mL) in 0.25% (v/v) Triton X-100, and 

stabilisers 0.2% (w/v) polyvinylpyrrolidone and poly(dial-

lyldimethylammonium chloride) in PBS were deposited to a to-

tal volume of 1.5 mL and allowed to dry under ambient condi-

tions. Cholesteryl acetate stock solution (500 mg/dL) was pre-

pared in PBS/10% (v/v) Triton X-100. Delipidated serum was 

spiked with cholesteryl acetate stock to achieve concentrations 

of 0.5, 1, 3, 5, 7 and 9 mM total cholesterol (TC). 

For method development, sensors were operated at -100 mV 

vs Ag/AgCl pseudo-reference electrode using an Autolab 

PGSTAT128N with NOVA 1.6 software (Metrohm, UK) in 

time-based amperometric mode. Measurement involved an in-

cubation period of 200 s, followed by amperometric measure-

ment for 240 s. The concentration of cholesteryl acetate was 

correlated against the current at 240 s. For operation of the 

SIMS device, incubation and amperometric measurement were 

combined into a single interval of 400 s. 

RESULTS AND DISCUSSION 

Fig. 1 illustrates the complete twenty-two layer stack of the 

SIMS device. The development of the integrated sensor system 

involved the combination of multiple heterogeneous fabrication 

processes and associated materials including screen printing of 

metallic and non-metallic conductors, inkjet printing of func-

tional electrocatalysts, enzymes and stabilizers, photolithogra-

phy and lamination, to combine printed sensor, display and bat-

tery onto a single polyethylene naphthalate (PEN) substrate. 

The following sections detail the individual component charac-

teristics and the operation of the integrated device in the meas-

urement of H2O2 and total cholesterol (TC). 

Printed electrochromic display. The display is a critical com-

ponent of any diagnostic device as it represents the interface 

between the device and the user and must give clear and unam-

biguous information. Several types of printed display technolo-

gies have been developed including organic light emitting di-

odes (OLEDs), electroluminescence (EL) and electrochromics 

(EC).8,9 While OLEDs offer excellent performance for high 

quality, active matrix displays, their power requirements, lack 

of bistability and their need for organic thin film transistor back 

planes makes them unnecessarily complex and costly for this 

application. EL also requires the continuous application of 



 

 
Figure 2. The printed electrochromic display. (a) Scheme of the 

seven layer display stack. (b) Layout of the electrochromic dis-

play showing upper bar display and lower power, hour glass and 

book icons to show operation, activity and reading of test result. 

power to remain illuminated. EC displays, however, undergo a 

(semi)permanent change in their redox characteristics due to the 

application of a potential. Viologens are bypyridyl derivatives 

which undergo a color change upon the application of an appro-

priate reduction potential.10,11 

This change can be rendered bitable, requiring power only to 

switch on the display. This characteristic is particularly useful 

in single use applications such as diagnostic devices, with 

which the test result can be observed many hours or days after 

the test is performed. In this work, an EC display was developed 

using a fully screen-printed seven layer stack (Fig. 2a) onto a 

transparent ITO conductive substrate. First, the passivation 

layer was printed on the ITO substrate, followed by the silver 

conductor, segment electrode and separator as the next layers. 

The last three prints consisted of the common electrode, carbon 

electrode and electrolyte.   

A non-numeric display was selected and designed which 

would indicate the level of the analyte being measured by acti-

vating an appropriate number of display bars (Fig. 2b). This 

semi-quantitative display approach was deemed to be the most 

effective way to allow interpretation by untrained lay users, 

while also greatly simplifying the design of the display driver 

aspect of the circuit. The display was also designed with addi-

tional functions including a power icon to indicate that the de-

vice was switched on and operational, an hour glass icon to in-

dicate that the device was performing an operation and a book 

icon to indicate the reading of the result. Display elements with 

a size of 5 mm (14 point) were employed to facilitate clear and 

comfortable viewing by the user, allowing for a wide range of 

age and ability.12 Display icons were tested for the optimum 

drive voltage, current consumption and time to reach full inten-

sity. It was found that display icons could be driven using a sim-

ple ac drive methodology with a nominal voltage of 1.1 V and 

a current consumption of 25 µA, reaching full intensity after 20 

s. 

Figure 3. The printed battery. (a) Schematic of a two cell battery; 

(b) Photo of the three cell 4.5 Vnom battery. (c) Discharge curve at 

1 mA. 

Printed battery. The printed battery employed in this system 

was primary cell based on zinc/manganese dioxide chemistry, 

designed for one-time (non-rechargeable) use. The nominal 

voltage of this chemical system for a single cell is 1.5 V. These 

batteries can be manufactured by screen printing technology 

and can accommodate a range of operational voltages, currents 

and energy capacities by tailoring the geometries, numbers and 

configurations of cells employed. This battery concept and 

some applications have already been described.13-19 

The battery was developed on a PEN foil substrate. A 

stacked, as opposed to a lateral battery configuration was se-

lected as having greatest energy capacity, while also reducing 

cell footprint. This required electrodes to be printed on top of 

one another, with separators and electrolyte, with each half cell 

printed on a separate substrate, forming a sandwich and further 

sealed within a final PEN layer (Fig. 3a). The energy content of 

this chemical system is dependent on the amount of material 

within the battery cell. Screen printing was used to deposit lay-

ers of the required thickness in the range of 10 to 80 µm to max-

imize energy capacity, while also maintaining a planar config-

uration. 

One of the significant advantages of the screen printing pro-

cess is that a series connection of batteries can be designed and 

easily manufactured. In the current setup, a series connection of 

three single cells was designed to deliver a voltage of 4.5 Vnom 

to drive conventional silicon circuitry (see Device operation) 

(Fig. 3b). The battery requirement for the system was defined 

as >3V with a current flow of 1 mA for up to 600 s. The result-

ing battery was able to supply >3.5 V for 1,000 s at a 1 mA 

discharge rate (Fig. 3c). The blue trace illustrates the typical 

performance of cells manufactured in this way, while the red 

trace illustrates batteries which occasionally fail early. How-

ever, they were still capable of driving the appropriate voltage 

for the duration of the assay. 

Circuit design. The advent of the glucose monitor created a 

new paradigm of a two component system which was composed 

of a disposable printed sensor strip and a separate reusable elec-

tronic instrument incorporating battery, display and operational 



 

functions. However, with the advent of low cost, highly inte-

grated silicon electronics using pick and place technology, and 

with rapid advances in organic electronics, the potential now 

exists to fully integrate the electronic circuit instrumentation 

with the rest of the device, giving rise to a new technological 

paradigm. However, silicon circuits must be produced in large 

volumes to achieve cost scaling and silicon costs can be reduced 

by increasing the numbers of devices on a wafer and by reduc-

ing their size and complexity. While there has also been signif-

icant progress in the development of organic circuit electronics, 

the potential for this technology to perform more complex pro-

cessing tasks is still challenging. Thus, with the aim of facilitat-

ing the future integration of both silicon and organic electronics 

into a fully integrated diagnostic platform, a circuit design was 

proposed which was both simple but also fully capable of oper-

ating the proposed diagnostic device. 

The organic circuit was designed with three amplifiers with a 

six-stage voltage converter, connected to the six-bit display el-

ement (Fig. 4a). The difference in resistance of the two electro-

chemical sensors is fed into the amplifiers and subsequently an 

output voltage is obtained. This voltage corresponds to the level 

of H2O2 or cholesterol in the sample based on the determination 

of a calibration slope. The voltage is subsequently fed into the 

voltage converter, which drives respective display elements. 

Table 1 indicates the levels TC and the respective sensor cur-

rents and drive voltages with the corresponding display ele-

ment. 

 

 

Figure 4. a) Block diagram of the organic circuit. Resistance meas-

urements at the test (RT) and control (RC) sensors are amplified in 

a differential logic circuit and subtracted to yield a single amplified 

output voltage from the subtracting circuit. The voltage converter 

then drives the appropriate number of display bars. b) Block dia-

gram of the equivalent silicon circuit. Sensors are driven via a dig-

ital to analogue converter (DAC). Outputs from the Test and Con-

trol sensors are amplified and a peripheral interface controller (PIC) 

performs subtraction and voltage conversion to output to the dis-

play driver. The display driver is composed of a bank of MOSFET 

switches. Display elements were driven at 1.2 V. 

 

Table 1. Relationships between cholesterol concentration, 

sensor currents, resistance ratios and display driver volt-

ages for display illumination. 

Display 

bit 

 Concentration 

(mM) 

Current  

(10-7 A) 

Voltage 

(V) 

RT/RC
* 

0  >0 <1.708 -3.19 <1 

1  >2 <1.838 -5.16 <0.535 

2  >4 <2.110 -7.19 <0.361 

3  >5 <2.244 -8.2 <0.311 

4  >6 <2.378 -9.21 <0.273 

5  >7 <2.512 -10.19 <0.244 

*RT/RC: Resistance ratio of test and control electrodes. 

A silicon circuit conforming to this simplified operational prin-

ciple was fabricated using a conventional printed circuit board, 

and a conventional silicon integrated circuit (IC) was developed 

to facilitate testing of the printed sensor, display and battery. 

The integrated printed substrate was connected via a flexible 

parallel connector to the measurement board. The measurement 

circuit utilized a simple potentiostat configuration.20,21 The 

working electrode (WE) of the sensor was kept at the ground 

potential. The potential of the counter electrode (CE) was con-

trolled by an operational amplifier so that the potential of the 

reference electrode (RE) in a steady state very closely follows 

the cell voltage (Vcell). The cell voltage (-100 mV in these meas-

urements) was set by a digital-to-analog converter (DAC). The 

current flowing to the working electrode was converted to volt-

age by the transimpedance amplifier and digitized. A microcon-

troller unit (MCU) controlled the measurement process and out-

put the responses to the printed display. Additional manual 

switching (on/off and measurement timing) were also included. 

Printed electrochemical sensors. Electrochemical sensors 

are particularly suited to integration with organic electronics as 

they are, themselves electrical devices, do not require more 

costly or complex components such as is often the case in opto-

electronics and they can also be easily manufactured in a two-

dimensional, planar configuration using print fabrication. 

For the device demonstrated here, an amperometric sensor 

based on a novel electrocatalytic phenomenon which results in 

the enhanced electrocatalysis of H2O2 at a silver paste, screen 

printed electrode was employed.22 The novel electrocatalytic 

mechanism was based on the formation of liquid crystal lyo-

tropic phases of surfactant which form on the surface of the sil-

ver and bring about an enhancement in the reduction of H2O2 at 

moderate reduction potentials (approx. -100 mV) to avoid inter-

ferences. H2O2 is a very important molecule as it is a by-product 

of many chemical and biochemical reactions and so represents 

an important target for industrial and environmental monitoring 

and diagnostic device development.23-25 Previous work has 

demonstrated that a combination of dodecyl benzenesulfonic 

acid and KCl could bring about an up to 80-fold increase in the 

reduction of H2O2 at silver-paste electrodes. It has also been 

demonstrated that this phenomenon occurred with other combi-

nations of surfactant and salt, including Triton X-100 and 

NaCl.26 and that they could be deposited using inkjet printing.27 



 

Recently it was demonstrated that Triton X-100 can also be 

used to effectively solubilize lipoprotein-bound cholesterol and 

cholesterol esters in combination with this enhanced electroca-

talysis to bring about the measurement of total cholesterol 

(TC).28  Here, we further demonstrate the full printed integration 

of a TC sensor with printed display and battery.  

 
Figure 5. (a) Scheme of the electrochemical sensor. The sensor 

comprised a dual working electrode configuration with com-

mon counter and individual reference electrodes. A spacer and 

lid formed a microfluidic sample chamber of approx. 8 µL. The 

working electrodes were composed of screen-printed silver and 

modified with Triton X-100/PBS as catalyst. Total cholesterol 

measurement was achieved with the inkjet-printed deposition of 

cholesterol esterase, cholesterol oxidase and stabilizers. (b) 

Measurement of H2O2 in 0.5% Triton X-100, -0.1 V vs. 

Ag/AgCl, at 420 s. Sensitivity 3.02×10-5 A.mM-1.cm-2 (c) Meas-

urement of total cholesterol in serum. 1.34×10-8 A.mM-1, 

r2=0.99, RSD<10% (n=3). 

The sensor electrodes (silver WE, silver/silver chloride RE 

and silver/carbon CE) were fabricated using screen printing A 

dual electrode configuration was adopted, with one electrode 

providing measurement of background and the other measuring 

the reduction of H2O2 (Fig. 5a). This configuration was chosen 

to reduce the complexity of the circuit electronics and the cali-

bration required in compensating for local device and environ-

mental variations. Following inkjet printing of electrocatalyst 

and assay reagents, the sensor was encapsulated to form a thin 

layer microfluidic sample chamber requiring a sample volume 

of approx. 8 µL, to make it applicable to fingerstick blood draw 

measurements.29 

The measurement of H2O2 using electrodes modified with the 

inkjet-printed Triton X-100 (0.5% v/v) in PBS is shown in Fig. 

5b. The fully printed sensor was tested for the measurement of 

H2O2 in the range of 0 to 5 mM. Catalysis was significantly en-

hanced in the presence of Triton X-100, while in its absence, 

little catalysis was observed, being 1.2×10-5 A at 5 mM H2O2, 

in Triton (3.02×10-5 A.mM-1.cm-2), compared with 5.91×10-7 A 

in PBS alone; some 20-fold enhancement. This was comparable 

to the sensitivity of 4.9×10-5 A.mM-1.cm-2 previously achieved 

using inkjet-printed DBSA/KCl.27 Recently, H2O2 sensors based 

on inkjet-printed Prussian blue nanoparticles have achieved 

sensitivities of 7.62×10-5 A.mM-1.cm-2.30   

For the measurement of TC, both ChEs and ChOx were de-

posited using inkjet printing, along with Triton X-100, and en-

zyme stabilizers. Measurement of cholesteryl ester in the range 

of 0 to 9 mM was selected to demonstrate direct (undiluted) 

measurement of cholesterol in the clinically relevant range.30,31 

The majority of cholesterol is transported by lipoproteins in the 

form of cholesteryl esters. These can be transformed to choles-

terol by ChEs and to cholest-4-en-3-one and H2O2 by ChOx. 

Triton X-100 between 0.2 and 0.5% has been shown to be opti-

mal for full release of cholesterol esters from both HDL and 

LDL, which is a pre-requisite for TC measurement. Other com-

binations of surfactant and protecting agents have been shown 

to result in selectivity to either LDL-C or HDL-C.28  

The measurement of TC in the fully printed sensor device 

demonstrated good linearity in the range from 0 to 9 mM with 

a slope of 1.34×10-8 A.mM-1, r2=0.99, RSD<10% (n=3) (Fig. 

5c). Replicate measurements were made with different sensors 

with the same stock of TC standard. Levels of TC below 5.2 

mM are considered desirable and of low risk while 5.2 to 6.2 

mM is considered borderline high risk. Values greater than 6.2 

mM are considered high risk. This was reflected in display col-

our coding of green (0 to 4 mM), yellow (4 to 5 mM), orange (5 

to 6 mM), light red (6 to 7 mM) and dark red (>7 mM). The 

resulting sensor was capable of measuring TC from 0 to 9 mM 

at moderate (-100 mV) potentials to minimize potential redox 

interferences. The presence of surfactant may also assist in re-

ducing interference due to biofouling. The generation of sub-

microampere currents, resulting in nW levels of power con-

sumption is an important feature in minimizing power require-

ments (battery size). 

Fabrication integration. Organic and printed electronics 

presents an exciting, but also a challenging opportunity to mass 

manufacture novel and advanced devices. The physical integra-

tion of multiple functionalities creates an exponential complex-

ity problem due to the numbers of different functional materials, 

their particular process requirements and their compatibility 

with other materials and other processes. As a result, achieving 

true integration of such heterogeneous devices has remained 

challenging. Various approaches have been taken to address 

this problem. Some have used multiple substrates on which to 

fabricate various system elements33, while others have used pre-

fabricated sub-components such as separate sensor strips and 



 

battery components to achieve instrument-free glucose meas-

urement.33 However, the approach taken here was to demon-

strate integration of heterogeneous subsystems on a single sub-

strate, for which all processes must be made fully inter-compat-

ible at the process level. Several integration principles were ap-

plied here to achieve integration. Redundancy was removed 

from the various components, where possible. Processes were 

also sequenced to ensure that materials with least sensitivity, or 

more rigorous process requirements were performed prior to 

those with greater sensitivity. The design layout was also opti-

mized to eliminate any potential impact of one subsystem on 

another. The integrated printed sensor, battery and display is il-

lustrated in Fig. 6. As the display is printed ‘face down’ to the 

substrate and the sensor is fabricated ‘face up’ from the sub-

strate, a simple microfluidic was incorporated to allow sample 

application on the same side as the display. Sensor and display 

were fabricated together on a single substrate and the battery 

was prepared on a separate substrate and subsequently inte-

grated onto the common substrate. Final addition of sensor 

modification layers was then performed via inkjet printing, re-

sulting in a layer stack of 22 processing steps. Although only 24 

fully integrated devices were fabricated, operational yields of 

100% were achieved by having good design tolerances in all 

print process steps.  

Device operation. The integrated prototype device is shown 

in Fig. 7a. The device was activated by operating a manual 

on/off touch switch which activates the circuit and illuminates 

the power on icon. The sample chamber was composed of a hy-

drophilic polymer bonded with a PSA. Filling was by capillary 

action, with air escape through two vias in the lid of the sample 

chamber. Upon addition of sample (8 µL of H2O2 or cholesterol 

in serum), the second switch is activated to begin the measure-

ment timing of the device. A potential of -100 mV is applied to 

the sensor working electrodes of both the control and test cells. 

For measurement of TC, the assay employed a 400 s incubation 

between cholesterol and cholesterol oxidase to allow full con-

version to cholest-4-en-3-one and hydrogen peroxide. During 

this period, the hour glass icon is illuminated. After 400 s, the 

difference in current between the two sensors is subtracted and 

applied to the stored calibration constant of the device and illu-

minates the appropriate number of display bars. 

 
Figure 6. Integrated printed system components. Sensor (bottom 

right), display (bottom left) and battery (top) were effectively inte-

grated onto a single substrate using a combination of screen print-

ing, inkjet printing, bonding and lamination processes into a mon-

olithic 22 layer stack. 

Fig. 7b shows the test set up of separate display and sensor to 

allow reuse of the displays during laboratory testing. To the 

right of Fig. 7b shows the illumination of one display bar for 1 

mM H2O2, three bars for 3 mM and five bars for 5 mM. In ad-

dition, the ‘book’ icon is displayed indicating that it is time for 

the device reading. A video of the operation of the device can 

be viewed in Supporting Information. 

 
Figure 7. Operation of the integrated sensor system. (a) The assem-

bled prototype showing printed cover with QR code, cholesterol 

concentration values and sample application zone. Below is the 

electronic control board. (b) Testing of the device using separate 

displays and sensors (displays could be reused during laboratory 

testing). On the right shows the results of the addition of 1, 3 and 5 

mM H2O2, resulting in the activation of an equivalent number of 

display blocks. 

Communications interface. As well as being readable visu-

ally, a communications interface was also developed in associ-

ation with the device which allows remote transmission of the 

test result via a mobile phone (Fig. 8). This interface was sup-

ported with additional printed features around the display (Fig. 

7a). These include a color-coded bar to indicate to the user 



 

whether the measured level of analyte (in this instance choles-

terol) was normal or too high. In addition, the device was de-

signed with QR coding. This coding contains specific device 

identification that can be used in several ways including device 

authentication, supply chain management and quality control 

monitoring.32   

In addition, the QR also allows the location and orientation 

of the display to be detected. Result detection and interpretation 

is performed using an Android smartphone application. The 

‘app’ is designed to provide patient identification and authenti-

cation. The app employed the phone’s camera to take a picture 

of the display. Using the QR code, the app identifies the device, 

locates the device display, detects the location and number of 

display blocks activated, and can record the date, time and lo-

cation of the test. A picture of the display, along with test result 

and associated metadata can be automatically sent via SMS to 

a remote, healthcare management site to monitor health status, 

treatment efficacy and testing compliance. The issue as to 

whether or not the test result should be interpreted locally by 

the phone has implications for the type of medical device regu-

latory approval required of the mobile phone. Operation of the 

mobile phone communications app can be seen in the accompa-

nying video (Supporting Information). 

 

 
Figure 8. The communications interface mobile phone application. 

The app allows an image of the SIMS device to be captured by the 

phone’s camera. Image processing algorithms automatically locate 

the chip and the QR features. The reading on the chip is automati-

cally recorded (small grey squares) and the QR codes are used to 

identify the test and track the results. 

Cholesterol testing is currently used to manage hypercholes-

terolemia which is a major risk factor in atherosclerosis. Treat-

ment is typically by way of lifestyle management (diet and ex-

ercise), as well as administration of statins. Point of care devices 

employing strips and meters are available and strips typically 

retail for between US$2 and US$3 per strip. This requires the 

more challenging acceptance and integration of such technol-

ogy into the lifestyle of often elderly patients. Pharmacy-based 

testing is also available at over US$12 per test. The prototype 

production cost of the SIMS device was approximately US$5, 

which could be significantly reduced during production scale 

up and mass manufacture to approximately US$1.50 or less, 

with a target sale price of US$5. It also offers users greater sim-

plicity of self-testing, as well as connectivity with health care 

providers. Current test time is approximately seven minutes 

which has the potential to be reduced to less than two or three 

minutes and which would be acceptable to most users. While 

the measurement of TC has been demonstrated here, the addi-

tion of a sensor for the measurement of high density lipoprotein 

cholesterol (HDL-C) would facilitate subtractive measurement 

of non-HDL-C (low density lipoprotein or LDL and very low 

density lipoprotein or VLDL cholesterol) using the Friedwald 

equation.35 Non-HDL-C is considered to be atherogenic and so 

is better than the separate measurement of LDL-C.36 

CONCLUSIONS 

Printed electronics was successfully used to achieve the fabri-

cation of a sensor, display and battery into a fully integrated 

diagnostic device. The sensors were shown to be capable of the 

quantitative measurement of H2O2 and total cholesterol, while 

the display, battery and circuit all demonstrated component 

functionality. The final integrated device was also able to 

demonstrate the measurement of H2O2. The device was also ca-

pable of remote result transmission via mobile phone. Such a 

device could form the basis of a new approach to diagnostic de-

vice fabrication and enhance the management of disorders such 

as hypercholesterolemia. 
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