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Abstract

This paper develops a new observer-based sliding mode control (SMC) scheme

for a general class of Itô stochastic delay systems (SDS). The key merit of the

presented scheme lies in its simplicity and integrity in design process of the tra-

ditional sliding mode observer (SMO) strategy, i.e., the state observer and sliding

surface design as well as the associated sliding mode controller synthesis. For

guaranteeing to use the scheme, a new LMIs-based criterion is established to en-

sure the exponential stability of the underlying sliding mode dynamics (SMDs)

in mean-square sense with H∞ performance. A bench test example is provided to

∗Corresponding author
Email addresses: zhenliuzz@hotmail.com (Zhen Liu), quan.zhu@uwe.ac.uk (Quanmin

Zhu), zhaolin1585@163.com (Lin Zhao), yjp1109@hotmail.com (Jinpeng Yu),
ccgao@ouc.edu.cn (Cunchen Gao)

Preprint submitted to Journal of The Franklin Institute July 3, 2017



numerically demonstrate the efficacy of the scheme and illustrate the application

procedure for potential readers/users with interest in their ad hoc applications and

methodology expansion.

Keywords: Stochastic systems; state estimation; H∞ performance; sliding mode

control; time-delay

1. Introduction

It has been widely witnessed that control of stochastic systems has increasing-

ly received much attention as one of the most practically meaningful systems in

both academic research and application fields [1]. It is worthwhile pointing out

that, in recent years, the study of stochastic delay systems (SDS) has inspired a

new wave of research under a very crucial factor that time-delay may frequently

occur during the whole operation process, such as chemical processes, networked

control systems, etc. Accordingly, a great deal of work has been devoted to the

stability and stabilization of Itô SDS [2, 3]. Meanwhile, the associated control de-

sign problems have been explored for the systems in parallel with the development

of system control theory, e.g., H∞ control and filtering [4-6].

Due to its various attractive features such as quick response, good transient

performance, particularly, the invariance against matched uncertainties, and wide

applications to various complex systems [7-17], sliding mode control (SMC) [18,
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19] has been well known as an effective robust control strategy for uncertain and

incompletely modelled systems. It is noted that a growing interest has been de-

voted to the extension of SMC to accommodate the SDS. Also, it is a fact that

uncertain nonlinearity may occur through the system control channels (i.e., the

matched uncertainty in SMC theory [18]), due to the variation of the control com-

ponents and the structural parameters as well as the existence of the inevitably

external disturbance, and this will also affect the systems performance directly

or indirectly, and even leads to instability. Some representative results regarding

the SMC of SDS include SMC of uncertain SDS [14], SMC for uncertain SDS

with H∞ performance index [15] to deal with a limitation (i.e., there exist a matrix

G with appropriate dimension satisfying Gg(t, x(t), x(t − d)) = 0 for all t ≥ 0);

further, robust SMC of uncertain SDS has been considered where such restrictive

condition to the most existing results is removed in [16].

It should be noted that most existing results for the SDS are obtained upon the

premise that the system states are accessible, despite the efficacy of SMC. In many

cases, consider that the state variables may not be totally acquired or even knot-

ty to be estimated via output measurement, the observer-based SMC, also called

sliding mode observer (SMO) strategy [20], has been developed and excellently

implemented in various cases [21-29]. In particular, by using the SMO approach,
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a class of Markovian jump systems against actuator faults with quantized mea-

surements and unknown actuator faults was concerned in [21]. In view of a new

observer-based SMC design, a class of nonlinear delay systems was investigated

in [25], and recently in [26] robust H∞ control for uncertain singular time-delay

systems was studied via a novel SMO synthesis. It is noted that designs of the

new sliding surface and/or new-form observers were developed in those works,

which may not be extended to stochastic control systems for certain technical rea-

sons directly. To the best of the authors’ knowledge, vast majority of the existing

routes for the SMO are that: state observer is designed to generate the original

state with assistance of the control input and/or its compensator to restrain the

uncertainties and nonlinearity of the system and make the closed-loop systems

operate stably. In detail, the design principle leads to that the estimation error

system does not contain the control input in general, and then the closed-loop sys-

tems can maintain the desirable characteristics on the predesigned sliding surface

through the observer and its error system when the associated sliding mode con-

troller is employed. As a result, the achievements using this SMO-idea have been

widely applied for SDS [28, 29]. By following along the lines of [25, 26], a new

SMO-based scheme is presented in this paper, which may be a worthy addition of

the SMO approach for the SDS. The key novelty covers the following:
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(a) A particular state observer is designed without any control terms compared

with the existing results on SDS;

(b) A novel integral sliding surface design is established on the basis of the

new observer and the outputs in such a way that specific sliding mode dynamics

(SMDs) of the closed-loop systems is reconstructed;

(c) A sufficient criterion for expected performance of the underlying SMDs is

proposed with an easy-to-test LMI framework;

(d) A novel associated reaching motion controller is then synthesized to adap-

tively ensure the sliding mode phase so as to accommodate the desirable effects

of the control strategy.

As such, the proposed scheme is feasible for analysing the stability of the

unmeasured system state through the original system itself and its error system. In

the other words, an improved procedure is created from the fact that if the stability

of the original system and its error system can be ensured, then the observer state

can also tend to be stable as it is. All these features distinguish the present scheme

from the existing literatures.

The rest of the paper is organized as follows. Section 2 describes the re-

search problems and preliminaries. Section 3 presents the main results of the new

scheme. Section 4 selects a bench test example to demonstrate the results with
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computational experiments. Section 5 draws brief summary of the study and po-

tential research expansion.

Notations: Throughout the paper and unless specified, let (Ω,F , {Ft}t≥0,P) be a

completed probability space with a natural filtration {Ft}t≥0, where Ω is a sample

space, F is the σ-algebra of subset of the sample space, and P is the probabili-

ty measure on F . E{·} is the expectation operator with respect to the probability

measure P. If A is a vector or matrix, its transpose is denoted by AT, and the

symmetric elements of the matrix is denoted by “ * ”. X > Y means that the

matrix X − Y is positive definite. sym{X} is denoted as sym{X} = X + XT. If M

is a matrix, its operator norm is denoted by ∥M∥ = sup{∥Mx∥ : ∥x∥ = 1}, λmax(M)

and λmin(M) represent its maximum and minimum eigenvalues, respectively. Tr{·}

denotes the trace of a matrix. diag{·} represents a block-diagonal matrix. L2[0,∞)

stands for the space of square integral vector functions over [0,∞). Let d > 0 and

C([−d, 0];Rn) denote the family of all continuous Rn-valued functions on [−d, 0].

Let Cb
F0

([−d, 0];Rn) be the family of all F0-measurable bounded C([−d, 0];Rn)-

valued random variables, and L2([a, b];Rn) be the family of all Rn-valued Ft-

adapted process {Ft}a≤t≤b such that
∫ b

a
∥ f (t)∥2dt < ∞ a.s. Let M2([a, b];Rn) be

the family of processes {Ft}a≤t≤b in L2([a, b];Rn) such that E{
∫ b

a
∥ f (t)∥2dt} < ∞.
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2. System description and preliminaries

Consider the following uncertain Itô-type stochastic delay systems (SDS) [15,

16] described by

dx(t) = {(A + ∆A(t))x(t) + (Ad + ∆Ad(t))x(t − d)

+ B[u(t) + f (t, x(t), x(t − d))] + Dv(t)}dt

+ g(t, x(t), x(t − d))dω(t),

y(t) = Cx(t),

x(θ) = ϕ(θ), θ ∈ [−d, 0]

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input, y(t) ∈ Rp is the

system output, and v(t) ∈ Rq represents exogenous disturbance which belongs to

L2[0,∞). d > 0 is the time-delay, and ω(t) is a standard scalar Brownian motion

defined on a completed probability space (Ω,F , {Ft}t≥0,P) with a natural filtration

{Ft}t≥0, and satisfies E{dω(t)} = 0, E{dω2(t)} = dt. ϕ(t) ∈ Cb
F0

([−d, 0];Rn) is the

initial condition. A, Ad, B, C and D are known real matrices, B is of full column

rank. ∆A(t) and ∆Ad(t) are norm bounded, i.e., [∆A(t) ∆Ad(t)] = MF(t)[N Nd],

where M, N and Nd are constant matrices, and F(t) is unknown matrix function

satisfying FT(t)F(t) ≤ I for all t ≥ 0.

For simplicity, denote the functions f (t, x(t), x(t−d)) = f (t, xt) and g(t, x(t), x(t−

d)) = g(t, xt), respectively.
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Assumption 1. f (t, xt) is unknown nonlinearity which represents the lumped per-

turbation of a physical plant through the control channel satisfying ∥ f (t, xt)∥ ≤

α∥y(t)∥, where α > 0 is an unknown scalar [27].

Assumption 2. The diffusion gain function g(t, xt) may be unknown but there

exist a matrix F to satisfy Tr{gT(t, xt)g(t, xt)} ≤ ∥Fy(t)∥2.

In the position, it is easy to verify that the SDS in (1) with u(t) = 0 and v(t) = 0,

has a unique solution [1, 2]. The main objective of the study can be twofold:

develop a new SMO scheme in such a way that a) reachability of the designed

sliding surface for the closed-loop systems can be ensured within finite-time al-

most surely, and b) given a scalar γ > 0, the dynamics of the closed-loop systems

during sliding mode phase are mean-square exponentially stable with v(t) = 0,

and the inequality E
{
sup0,v(t)∈L2[0,∞) ∥y(t)∥2/∥v(t)∥2

}
< γ, is held under zero initial

condition.

3. Main results

This section presents the main results of the SMO enhanced adaptive control

of SDS, which includes step by step details of the major analytical development.

And the novelty of the developed scheme with comparison of relevant literatures

is presented in the following Remarks 1-3, respectively.
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3.1. Design of the observer

The following observer is introduced to estimate the state of the original sys-

tem (1) 

dx̂(t) = [Ax̂(t) + Ad x̂(t − d) + L(y(t) −Cx̂(t))]dt,

ŷ(t) = Cx̂(t),

x̂(θ) = ϕ̂(θ), θ ∈ [−d, 0]

(2)

where x̂(t) ∈ Rn represents the estimation of x(t), ŷ(t) is the output of the observer.

L ∈ Rn×p is the observer gain to be designed later.

Let e(t) = x(t) − x̂(t) be the error viriable. Thus, by subtracting (2) from (1), it

gives the following estimation error system

de(t) = {(A − LC)e(t) + Ade(t − d) + ∆A(t)x(t) + ∆Ad(t)x(t − d)

+B[u(t) + f (t, xt)] + Dv(t)}dt + g(t, xt)dω(t). (3)

Remark 1. The first advantage of the work is the simplicity in both observer and

controller design of the SDS. Different from the current representative observer

designs [23, 28, 29], the present observer does not involve any control terms (e.g.,

the control input or controller compensator), namely, only the observer gain L is

to be determined in the paper. In other words, the controller is only used for the

original system control without directly adjusting the observer.
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3.2. Design of the integral-type sliding surface

Here, a new integral-type sliding surface function is defined as follows

σ(t) = G[e(t) − e(0)] +G[x̂(t) − x̂(0)] −
∫ t

0
G(A + BK)x̂(τ)dτ, (4)

where the gain matrix K ∈ Rm×n such that A+BK is Hurwitz stable, and G ∈ Rm×n

satisfies that GB is nonsingular and G = UC, where the matrix U is to be solved.

Then, in accordance with the equality condition, it follows that

σ(t) = U[y(t) − y(0)] −
∫ t

0
G(A + BK)x̂(τ)dτ.

Therefore, the design of the sliding surface can be feasible and only requires the

current information. At this point, an optimization algorithm will be given to solve

the matrix U in practical applications, please see Remark 5.

3.3. Establishment of sliding mode dynamics

To achieve the sliding motion, an equivalent controller [15, 16, 19] is to be

adopted, i.e., Eσ(t) = 0 and d(Eσ(t))
dt = 0. Thus, Lσ(t) = 0 should be guaran-

teed from the condition E{dω(t)} = 0. In detail, σ(t) is an Itô stochastic process

satisfying the following request

dσ(t) = Gde(t) +Gdx̂(t) −G(A + BK)x̂(t)dt = Lσ(t)dt +Gg(t, xt)dω(t) (5)
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where

Lσ(t)=GAe(t) +GAd x(t − d) +G∆A(t)x(t) +G∆Ad(t)x(t − d)

+GB[u(t) + f (t, xt)] +GDv(t) −GBKx̂(t).

Hence, the so-called equivalent controller can be determined as

ueq(t)=Kx̂(t) − f (t, xt) − (GB)−1[GAe(t) +GAd x(t − d)

+G∆A(t)x(t) +G∆Ad(t)x(t − d) +GDv(t)]. (6)

Substituting (6) into (1), one can get the dynamic equation of the original system

(1) during the sliding mode as

dx(t)= {[A + BK + BG∆A(t)]x(t) + BG[Ad + ∆Ad(t)]x(t − d)

−(BK + BA)e(t) +GBv(t)}dt + g(t, xt)dω(t) (7)

where BG = I − B(GB)−1G, BA = B(GB)−1GA, GB = BGD. Similarly, combining

(6) and (3), the dynamic equation of the error system (3) during the sliding mode

can be expressed as

de(t)= {(AB − LC − BK)e(t) + Ade(t − d) + [BK + BG∆A(t)]x(t)

+[BG∆Ad(t) − Bd]x(t − d) +GBv(t)}dt + g(t, xt)dω(t) (8)

where AB = A − BA, Bd = B(GB)−1GAd.
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From the above discussions, both (7) and (8) can be recognised as the sliding

mode dynamics (SMDs) of the closed-loop systems. Thus, stability of the system

will be analysed through the SMDs via adaptive SMC.

Remark 2. Note that the system is in its sliding mode at the initial time. Different

from those representative forms [14-16, 23, 28, 29], the error term e(t) is intro-

duced into the sliding surface function (4), i.e., σ(t) = G[x(t) − x(0)] −
∫ t

0
G(A +

BK)x̂(τ)dτ, which results in additional items to suppress the impact of the un-

certainty through the control channel (i.e., f (t, xt)), with reference to Eq. (1), as

can be seen from the derivative of the SMDs (7)-(8). Also, the design may exert

its benefit to highlight the attractive feature of SMC that SMDs can be insensi-

tive to all matched uncertainties. At this point, the sliding surface design may be

regarded as the second merit in the paper.

3.4. Stability analysis of sliding motion with H∞ performance

Denote

z1(t) , [A+BK+BG∆A(t)]x(t)+BG[Ad+∆Ad(t)]x(t−d)− (BK+BA)e(t)+GBv(t),

and

z2(t) , [AB−LC−BK]e(t)+Ade(t−d)+[BK+BG∆A(t)]x(t)+[BG∆Ad(t)−Bd]x(t−

d) +GBv(t), g(t, xt) , g(t).
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Hence, the SMDs of the closed-loop systems are expressed by the concise

form of 
dx(t) = z1(t)dt + g(t)dω(t), (9a)

de(t) = z2(t)dt + g(t)dω(t). (9b)

Lemma 1. If x(t) and e(t) are the solution of systems (9), Υi (i = 1, 2) are any
compatible dimension matrices, then E

{
xT(t − d)Υ1

[∫ t

t−d
g(s)dω(s)

]}
= 0, and

E
{
eT(t − d)Υ2

[∫ t

t−d
g(s)dω(s)

]}
= 0, t ≥ d.

Proof. The idea of the proof is the same as that of [3], with the details as it is.

In the following concern, a new delay-dependent sufficient criterion for the

mean-square exponential stability of the SMDs with H∞ disturbance attenuation

level is derived by means of the linear matrix inequality (LMI) technique and the

stochastic stability theory.

Theorem 1. Given a scalar γ > 0, the SMDs in (9) on the sliding surface σ(t) =
0 is mean-square exponentially stable with H∞ disturbance attenuation level γ
provided that the following LMIs (10)− (12) can be satisfied with some symmetric
definite matrices P, Q1, Q2, R1 and R2, matrix X, positive scalars µ, κi (i = 1, 2)
and ε j ( j = 1, 2):

P < µI, (10)
dRi < κiI, (11)

Σ11 Σ12 R1 Σ14 0 0 PGB Π1

∗ Σ22 0 −(PBd)T 0 0 0 0
∗ ∗ −R1 0 0 0 0 0
∗ ∗ ∗ Σ44 PAd R2 PGB Π2

∗ ∗ ∗ ∗ −Q2 + R2 0 0 0
∗ ∗ ∗ ∗ ∗ −R2 0 0
∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Π3


< 0, (12)

13



where Σ11 = sym{PA+PBK}+Q1−R1+(2µ+κ1+κ2)CTFTFC+(ε1+ε2)NTN+CTC,
Σ12 = PBGAd+(ε1+ε2)NTNd, Σ14 = −PBK−PBA+(PBK)T, Σ22 = −Q1+R1+(ε1+

ε2)NT
d Nd, Σ44 = sym{PAB−XC−PBK}+Q2−R2,Π1 = [PBGM 0],Π2 = [0 PBGM],

Π3 = diag{−ε1I,−ε2I}. Moreover, the observer gain matrix is given by L = P−1X.

Proof. To begin with, in the light of Eq. (9), its integral form can be interpreted
as 

x(t) = x(0) +
∫ t

0
z1(s)ds +

∫ t

0
g(s)dω(s), (13a)

e(t) = e(0) +
∫ t

0
z2(s)ds +

∫ t

0
g(s)dω(s), t ≥ 0. (13b)

In the position, from the above equations, it is followed that
x(t) = x(t − d) +

∫ t

t−d
z1(s)ds +

∫ t

t−d
g(s)dω(s), (14a)

e(t) = e(t − d) +
∫ t

t−d
z2(s)ds +

∫ t

t−d
g(s)dω(s), t ≥ d. (14b)

Step 1. Let us consider the stability of the SMDs (9) with v(t) = 0. Choose the
following Lyapunov-Krasovskii functional

V(xt, et, t) = xT(t)Px(t) +
∫ t

t−d
xT(s)Q1x(s)ds +

∫ 0

−d

∫ t

t+s
gT(θ)R1g(θ)dθds

+eT(t)Pe(t) +
∫ t

t−d
eT(s)Q2e(s)ds +

∫ 0

−d

∫ t

t+s
gT(θ)R2g(θ)dθds

for all t ≥ d. By Itô formula [1], one has the stochastic differential as follows

dV(xt, et, t) = LV(xt, et, t)dt + 2[x(t) + e(t)]TPg(t)dω(t)

where

LV(xt, et, t) = 2xT(t)Pz1(t) + xT(t)Q1x(t) − xT(t − d)Q1x(t − d)

+dgT(t)R1g(t) + 2Tr{gT(t)Pg(t)} −
∫ t

t−d
gT(s)R1g(s)ds

+2eT(t)Pz2(t) + eT(t)Q2e(t) − eT(t − d)Q2e(t − d)

+dgT(t)R2g(t) −
∫ t

t−d
gT(s)R2g(s)ds.
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In view of Proposition 1(c) in Appendix, Lemma 1 and the similar technical chan-
nel in [3], it follows that

E
{∫ t

t−d
gT(s)R1g(s)ds

}
= E


(
x(t) −

∫ t

t−d
z1(s)ds

)T

R1

(
x(t) −

∫ t

t−d
z1(s)ds

)
−E

{
xT(t − d)R1x(t − d)

}
, (15)

and

E
{∫ t

t−d
gT(s)R2g(s)ds

}
= E


(
e(t) −

∫ t

t−d
z2(s)ds

)T

R2

(
e(t) −

∫ t

t−d
z2(s)ds

)
−E

{
eT(t − d)R2e(t − d)

}
. (16)

Then, one can get from (15) and (16)

E {dV(xt, et, t)} = E {LV(xt, et, t)}
=E

{
2xT(t)P[(A + BK)x(t) − BGAd x(t − d) − (BK + BA)e(t)]

}
+E

{
xT(t)Q1x(t) − xT(t − d)Q1x(t − d)

}
−E


(
x(t) −

∫ t

t−d
z1(s)ds

)T

R1

(
x(t) −

∫ t

t−d
z1(s)ds

)
− xT(t − d)R1x(t − d)


+E

{
2eT(t)P[(AB − LC − BK)e(t) + Ade(t − d) + BKx(t) − Bd x(t − d)]

}
+E

{
eT(t)Q2e(t) − eT(t − d)Q2e(t − d)

}
−E


(
e(t) −

∫ t

t−d
z2(s)ds

)T

R2

(
e(t) −

∫ t

t−d
z2(s)ds

)
− eT(t − d)R2e(t − d)


+E

{
2xT(t)P[BG∆A(t)x(t) + BG∆Ad(t)x(t − d)]

}
+E

{
2eT(t)P[BG∆A(t)x(t) + BG∆Ad(t)x(t − d)]

}
+E

{
dgT(t)R1g(t) + dgT(t)R2g(t) + 2Tr{gT(t)Pg(t)}

}
. (17)

Furthermore, the following inequalities are easily obtained

2xT(t)PBG[∆A(t)x(t) + ∆Ad(t)x(t − d)]
= 2xT(t)PBG MF(t)[Nx(t) + Nd x(t − d)]
≤ ε−1

1 xT(t)PBG MMTBT
GPx(t) + ε1[Nx(t) + Nd x(t − d)]T

·[Nx(t) + Nd x(t − d)], (18)

15



and

2eT(t)PBG[∆A(t)x(t) + ∆Ad(t)x(t − d)]
≤ ε−2

1 eT(t)PBG MMTBT
GPe(t) + ε2[Nx(t) + Nd x(t − d)]T

·[Nx(t) + Nd x(t − d)]. (19)

Moreover, by (10) (11) and Lemma 2 in the Appendix, the following inequalities
are held

Tr{gT(t)Pg(t)} ≤ λmax(P)∥Fy(t)∥2 ≤ µxT(t)CTFTFCx(t), (20)
dgT(t)Rig(t) ≤ κi∥Fy(t)∥2 = κixT(t)CTFTFCx(t), (i = 1, 2). (21)

Substituting (18)-(21) into (17) results in

E {LV(xt, et, t)} ≤ E
{
ζT(t)Θζ(t)

}
where ζT(t) = [xT(t) xT(t − d)

(∫ t

t−d
z1(s)ds

)T
eT(t) eT(t − d)

(∫ t

t−d
z2(s)ds

)T
],

Θ =



Θ11 Θ12 R1 Θ14 0 0
∗ Θ22 0 −(PBd)T 0 0
∗ ∗ −R1 0 0 0
∗ ∗ ∗ Θ44 PAd R2

∗ ∗ ∗ ∗ −Q2 + R2 0
∗ ∗ ∗ ∗ ∗ −R2


with Θ11 = sym{PA+PBK}+Q1−R1+ (2µ+κ1+κ2)CTFTFC+ε−1

1 PBGMMTBT
GP+

(ε1+ε2)NTN, Θ12 = PBGAd+ (ε1+ε2)NTNd, Θ14 = −P(BK+BA)+ (PBK)T, Θ22 =

−Q1+R1+(ε1+ε2)NT
d Nd,Θ44 = sym{P(AB−LC−BK)}+Q2−R2+ε

−1
2 PBGMMTBT

GP.
Denote X = PL, and it is observed that (12) implies Θ < 0 by the Schur com-
plement lemma. Hence, it is tenable that there exists a positive scalar η such
that E {LV(xt, et, t)} ≤ −η(∥x(t)∥2 + ∥e(t)∥2). Now, an auxiliary function is intro-
duced: J(t) = eλtV(xt, et, t) with its infinitesimal operator L given by LJ(t) =
λeλtV(xt, et, t) + eλtLV(xt, et, t). With the method similar to [3] and Ch. 4 of [1],
one can verify that the SMDs is mean-square exponentially stable by Definition 1.
Step 2. Under zero initial condition, the inequality E

{
sup0,v(t)∈L2[0,∞) ∥y(t)∥2/∥v(t)∥2

}
< γ, will be verified further. Based on the similar procedure above, it follows

E
{
LV(xt, et, t) + yT(t)y(t) − γ2vT(t)v(t)

}
≤ E

{
ξT(t)Ξξ(t)

}
, (22)
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where ξT(t) = [xT(t) xT(t−d)
(∫ t

t−d
z1(s)ds

)T
eT(t) eT(t−d)

(∫ t

t−d
z2(s)ds

)T
vT(t)],

Ξ =



Ξ11 Ξ12 R1 Ξ14 0 0 PGB

∗ Ξ22 0 −(PBd)T 0 0 0
∗ ∗ −R1 0 0 0 0
∗ ∗ ∗ Ξ44 PAd R2 PGB

∗ ∗ ∗ ∗ −Q2 + R2 0 0
∗ ∗ ∗ ∗ ∗ −R2 0
∗ ∗ ∗ ∗ ∗ ∗ −γ2I


with

Ξ11 = sym{PA+PBK}+Q1−R1+ε
−1
1 PBGMMTBT

GP+ (2µ+κ1+κ2)CTFTFC+ (ε1+

ε2)NTN+CTC, Ξ12 = PBGAd+(ε1+ε2)NTNd, Ξ14 = −PBK−PBA+(PBK)T, Ξ22 =

−Q1+R1+(ε1+ε2)NT
d Nd, Ξ44 = sym{PAB−XC−PBK}+Q2−R2+ε

−1
2 PBGMMTBT

GP.
At this point, using the Schur complement lemma again, one can obtain that (12)
is equivalent to Ξ < 0. In other words, according to the LMIs (10)-(12), it leads to

E {LV(xt, et, t)} ≤ E
{
−yT(t)y(t) + γ2vT(t)v(t)

}
. (23)

To this end, integrating both sides of (23) with respect to t from 0 to∞ turns out

0 < E {V(∞)} = E
{∫ ∞

0
LV(xt, et, t)

}
≤ E

{∫ ∞

0
−yT(t)y(t)dt

}
+

∫ ∞

0
γ2vT(t)v(t)dt, (24)

thereby completing the proof.

Remark 3. On the basis of Lemma 1, a new delay-dependent criterion for the

mean-square exponential stability of the SMDs is presented. The third highlight

of the result is the new technical procedure of stability analysis of the closed-

loop systems: a) with the application of the observer (2), it is clearly found that

the control input u(t) is embedded onto the system (3), which could be seen as

virtual controller for the error system; b) stability of the original system (1) can
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be achieved from that of the closed-loop systems constituted by the system (1) and

error system (3) during the sliding mode via the SMO scheme, while the system

performance of the existing works is completed via the observer and error system.

In other words, the perspective of systematic analysis distinguishes from those

existing SMO schemes of the SDS [23, 28, 29].

Remark 4. It is worth mentioning that, the SMC approaches applied to SDS have

been reported in [14-16], where the sliding surface and controller design both rely

on the availability of the system state. Nevertheless, there may be the general case

of the unmeasured states in practical plants. Moreover, SMO methods have been

properly employed to investigate various stochastic systems, e.g., [28, 29]. Yet,

the key problem that the nonlinearity and/or perturbation may appear through the

control channel has not been fully probed due to some difficulties. In this paper,

the matched uncertainty (i.e., f (t, xt)) of the system is involved.

Remark 5. In the position, a general optimization algorithm is proposed for de-

termining the equality constraint G = UC and the LMIs in (10)-(12). In detail,

similar to the algorithm in [27], the following optimal minimization problem is

shown to solve the undetermined parameters in Theorem 1 and the matrix U:

min β, subject to


−βI (G − UC)T

∗ −I

 < 0 and (10) − (12).
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The verbatim argument is omitted here for brevity.

3.5. Adaptive SMC law synthesis

In this section, the focus is devoted to an adaptive SMC law synthesis so that

the systems can start its sliding motion with specific performance as expected and

maintain it on the predesigned sliding surface almost surely. In our controller de-

sign, the potential technical difficulty lies in unmeasured information of the state

and the relevant error information as well as the unknown perturbation entering

the control channel of the system. In details, the following discussions are made

step by step so as to provide a clearer route for the controller design:

(1) The following assumption is first proposed to facilitate the design.

Assumption 3. [8] There exists an unknown positive scalar q satisfying the in-

equality ∥x(t − d)∥ ≤ q∥x(t)∥.

(2) Since the system states x(t) are not completely available, it follows that its error

term e(t) may not be precisely estimated as well. With the relationships among

the system states x(t), the error e(t), the outputs y(t) and ŷ(t), we may assume that

there exist unknown scalars υi > 0 (i = 1, 2, 3) satisfying ∥x(t)∥ ≤ υ1∥y(t)∥ and

∥e(t)∥ ≤ υ2∥y(t)∥ + υ3∥ŷ(t)∥. Then, the esitimation as follows can be presented

with Assumption 1 and 3, reasonably, i.e., unknown scalars ci > 0 (i = 1, 2) can
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be found to satisfy that:

Z = ∥GA∥∥e(t)∥ + ∥GAd∥∥x(t − d)∥ + ∥G∆A(t)∥∥x(t)∥

+∥G∆Ad(t)∥∥x(t − d)∥ + ∥GB∥∥ f (t, xt)∥

≤ c1∥y(t)∥ + c2∥ŷ(t)∥, t ≥ 0.

(3) Consider that the estimate bounds c1 and c2 are not available in practical de-

sign. Let ĉi(t) be the estimates of ci with the errors being c̃i(t) = ĉi(t)−ci (i = 1, 2).

Based upon the above statement, the following gives a pertinent result of the

controller design.

Theorem 2. Suppose that the integral sliding surface function is designed by (4).
The finite-time reachability of the sliding mode can be guaranteed almost surely,
if the adaptive SMC law in (25) is employed

u(t) = Kx̂(t) − (GB)−1[ĉ1(t)∥y(t)∥ + ĉ2(t)∥ŷ(t)∥ + ∥GD∥µ(t) + ρ
+λmax(GTG)∥Fy(t)∥2/∥σ(t)∥]sgn(σ(t)), (25)

where the updating laws are designed by ˙̂c1(t) = λ1∥y(t)∥, ˙̂c2(t) = λ2∥ŷ(t)∥ and
λi > 0 (i = 1, 2) are constants as the adaptive gains chosen by the designer, ρ is a
positive constant, and µ(t) is the uniform bound of v(t).

Proof. Choose a Lyapunov function candidate as follows

Ṽ(t, σ(t)) = (σT(t)σ(t))
1
2 + 0.5[λ−1

1 c̃2
1(t) + λ−1

2 c̃2
2(t)].

By the Itô formula and operational rules of the derivatives, it follows that

dṼ(t, σ(t)) = LṼ(t, σ(t))dt +
σT(t)
∥σ(t)∥Gg(t)dω(t)

20



where

LṼ(t, σ(t)) =
σT(t)
∥σ(t)∥{GAe(t) +GAd x(t − d) +G∆Ax(t) +G∆Ad(t)

·x(t − d) +GB[u(t) + f (t, xt)] +GDv(t) −GBKx̂(t)}

+
1
2

gT(t)GT
{

Im

∥σ(t)∥ −
σ(t)σT(t)
∥σ(t)∥3

}
Gg(t)

+λ−1
1 c̃1(t)˙̃c1(t) + λ−1

2 c̃2(t)˙̃c2(t). (26)

Substituting (25) into (26) and employing some inequality techniques yields

LṼ(t, σ(t)) ≤ 1
∥σ(t)∥∥σ(t)∥{∥GA∥∥e(t)∥ + ∥GAd∥∥x(t − d)∥

+∥G∆A(t)∥∥x(t)∥ + ∥G∆Ad(t)∥∥x(t − d)∥

+∥GB∥∥ f (t, xt)∥ + ∥GDv(t)∥} − 1
∥σ(t)∥[ĉ1(t)∥y(t)∥

+ĉ2(t)∥ŷ(t)∥ + ∥GD∥µ(t) + ρ + λmax(GTG)

·∥Fy(t)∥2/∥σ(t)∥]σT(t)sgn(σ(t)) +
1
∥σ(t)∥

·∥gT(t)GTGg(t)∥ + λ−1
1 c̃1(t)˙̃c1(t) + λ−1

2 c̃2(t)˙̃c2(t)
≤ c1∥y(t)∥ + c2∥ŷ(t)∥ − {ĉ1(t)∥y(t)∥ + ĉ2(t)∥ŷ(t)∥ + ρ

+λmax(GTG)∥Fy(t)∥2/∥σ(t)∥} + 1
∥σ(t)∥∥g

T(t)GTGg(t)∥

+λ−1
1 c̃1(t)˙̃c1(t) + λ−1

2 c̃2(t)˙̃c2(t).

Then, in view of Lemma 2 and the updating laws, it is obtained that

LṼ(t, σ(t)) ≤ c1∥y(t)∥ + c2∥ŷ(t)∥ − ĉ1(t)∥y(t)∥ − ĉ2(t)∥ŷ(t)∥
−ρ − λmax(GTG)∥Fy(t)∥2/∥σ(t)∥ + λmax(GTG)

· 1
∥σ(t)∥∥g

T(t)g(t)∥ + λ−1
1 c̃1(t)˙̃c1(t) + λ−1

2 c̃2(t)˙̃c2(t)

≤ −ρ. (27)

Thus, by integrating (27) from 0 to t and taking expectation for both sides, one
can test that

E ∥σ(t)∥ ≤ E Ṽ(t, σ(t)) ≤ E Ṽ(0, σ(0)) − ρt,

which implies E ∥σ(t)∥ = 0 for all t ≥ t f =
E Ṽ(0, σ(0))

ρ
, i.e., ∥σ(t)∥ = 0 a.s. [15, 16].

The proof is completed.
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Remark 6. The novel adaptive sliding mode controller in (25) is developed for

the system, which not only resolves the problems discussed by the existing litera-

tures [14-16, 28], but also provides a new adaptive memory-less controller design

(i.e., controller does not rely on the information of the delayed state) upon the

premise of unmeasured states, whereas the designs in [14-16, 29] are all memory

controllers. Moreover, novel adaptive laws are introduced for the controller design

based on the information among x(t), e(t), y(t) and ŷ(t), by which the unknown

bounds c1 and c2 could be well tracked, respectively. It is worth mentioning that

the controller design can be satisfied from theoretical aspect, and note that there

may be singularity when σ(t) = 0, thus a sufficient small positive scalar ε could

be introduced for avoiding the case (i.e., ∥σ(t)∥+ ε) in such a way that the method

can be exhibited in practical examples. To this end, the adaptive controller can

maintain desirable system performance via a test example in the sequel.

Remark 7. As is seen, a novel SMO-based robust H∞ control scheme is shown

for uncertain SDS in (1) via Theorem 1 and 2. The detailed design procedure is

summarized for practical applications below:

Step 1. Get the gain matrix K such that A + BK is Hurwitz stable.

Step 2. Solve the gain matrix L of the LMIs in (10)-(12), then the observer is

given by (2).
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Step 3. Obtain the parametric matrix U such that G = UC. Then the sliding

surface is designed by (4) with the gain matrix K.

Step 4. Select positive constants λ1, λ2 and ρ such that the SMC law is synthesized

in (25).

4. Illustrative example

In this section, a specific bench test example is provided to further demonstrate

the performance of the developed scheme in terms of computational experiments.

Example 1

Consider the mathematical model of a water-quality dynamic systems [15, 16]

subject to environmental noises and external disturbance with the form in (1),

where x(t) = [x1(t) x2(t)]T ∈ R2, x1(t) and x2(t) stand for the concentrations of

two main types of pollutant sources, namely algae and ammonia products, respec-

tively; u(t) is the implemented control action. The aim is to apply the SMO design

to the stochastic model described by the following data

A =


−2 1

−2 −2

 , Ad =


0 0.5

0.5 1

 , B =


0.5

1

 ,C =


1

2


T

,D =


0

0.3

 , F = 0.8

M =


0.6 0

0 0.5

 ,N =


0 0.4

0.2 0.2

 ,Nd =


0 0.4

0.2 0.2

 , F(t) =


0.5sin(2t) 0

0 sint

 .
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To facilitate the design, we choose matrices K =
[
−2.4634 −5.5172

]
, and

G =
[

1 2

]
such that U = 1. The diffusion function g(t), external disturbance

v(t) and uncertain function f (t, xt) are chosen by

g(t) =


0.25 0.5

0.1 −0.2

 x(t), v(t) = −sin(2t)e−0.5t,

f (t, xt) = −
√

2sint · x1(t) + (1 −
√

3cos2(t))x2(t).

For γ = 1, d = 0.5, the LMIs (10)-(12) yield the following feasible solutions:

P =


8.4009 0.4687

0.4687 8.2699

 ,Q1 =


13.4765 2.2890

2.2890 13.9975

 ,Q2 =


11.0357 2.3376

2.3376 15.1893

 ,

R1 =


4.7061 0.0149

0.0149 3.5801

 ,R2 =


4.3336 0.1114

0.1114 4.4980

 , X =


25.1464

32.8143

 ,
µ = 11.1142, ε1 = 8.4671, ε2 = 8.6035, κ1 = 6.4494, κ2 = 6.5501.

It is also worth pointing out that the associated minimum H∞ performance index

is computed as γmin = 0.0544, which is an important paremeter for H∞ control

design. To this end, the integral sliding surface function can be designed as

σ(t) = y(t) − y(0) +
∫ t

0

[
12.1585 16.7930

]
x̂(s)ds.

At this point, Consider that variable structural control system has its nonlinear

characteristics, chattering phenomenon may always exist due to the sign func-
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tion in the SMC law. Then, the methods [30 − 32], such as using hyperbol-

ic tangent function, terminal sliding mode control strategy and boundary layer

method may be employed to attenuate or present the chattering. In particular, we

use the boundary layer method to reduce chattering in the simulation, i.e., the

sign function sgn(σ(t)) in controller is replaced by a continuous approximation as

σ(t)/(∥σ(t)∥ + θ) where θ > 0 is a small constant. Thus, the associated controller

is given as

u(t) =
[
−2.4634 −5.5172

]
x̂(t) − 0.4[ĉ1(t)∥y(t)∥ + ĉ2(t)∥ŷ(t)∥

+0.6∥v(t)∥ + 2.75 + 5∥Fy(t)∥2/(∥σ(t)∥ + 10−4)]σ(t)/(∥σ(t)∥ + 10−3)

with the updating laws given by ˙̂c1(t) = 2.0∥y(t)∥, ˙̂c2(t) = 2.0∥ŷ(t)∥. Herein, a

further comparison of stability results is performed between the work of [28] and

the present paper, see Table 1. To this end, given the initial conditions x(θ) =[
1 −1.5

]T

, and x̂(θ) =
[
−1 −1

]T

, θ ∈ [−0.5, 0], simulation results are

shown in Figures 1-5. Among them, Figures 1 and 2 denote the responses of

the system states and the observer. The evolutions of designed sliding surface

function and control input are given by Figures 3 and 4 with the case that y-

axis takes from −10 to 10 in Figure 4, and the adaptive values are provided by

Figure 5, respectively. It is noted that the uncertainty (i.e., f (t, xt)) appears through

the control channel in this model, whereas the counterpart of [28] may not work
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Figure 1: Curve of the system states

under some harsh conditions. The result implies that the optimization and control

problem can be achieved when the system states are unmeasured or incompletely

available via the proposed scheme, which is in accordance with the analysis in the

paper.

Table 1: Comparison of the stability results by different methods.

Methods Theorem 1 Theorem 4 in [28]

Gain L
[

2.7807 3.8103

]T

Infeasible

5. Conclusions

The problems of SMO design for uncertain SDS with unmeasured states, non-

linearity and external disturbance have been studied in this paper. The key fea-
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tures of the scheme lie in the design of a particular state observer, integral-type

sliding surface and the associated adaptive SMC law for the SDS. By Lemma 1,

the easy-to-check LMIs condition has been established to ensure the mean-square

exponential stability of the SMDs enforced on the sliding surface. If a non-affine

model, e.g., nonlinear rational model or called total nonlinear model [33] with

time-delay is concerned, how to deal with uncertainties may be a hot topic to

be further studied, while combining some novel approaches, e.g., U-model-based

control system design [34].
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Appendix.

Definition 1. [1, 15] The system (1) with u(t) = 0 and v(t) = 0 is said to be

exponentially stable in mean-square, if there exist a scalar λ > 0 such that

lim
t→∞

sup
1
t
logE{∥x(t, ϕ)∥2} ≤ −λ
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for all admissible uncertainties.

Proposition 1. [3] Let {h(t)}t0≤t≤T ∈ M2([t0,T ]), then

(a) {
∫ t

t0
h(s)dω(s) : t0 ≤ t ≤ T } is a martingale with respect to {Ft}t0≤t≤T ;

(b)
∫ t

t0
h(s)dω(s) is Ft-measurable, t0 ≤ t ≤ T ;

(c) E{∥
∫ T

t0
g(t)dω(t)∥2} = E{

∫ T

t0
∥g(t)∥2dt}, where {g(t)}t0≤t≤T ∈ M2([t0, T ];Rn).

Lemma 2. [15] For a pair of constant matrices G ∈ Rp×p and M ∈ Rp×q, if G ≥ 0,
then Tr(MTGM) ≤ λmax(G)Tr(MTM).
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