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ABSTRACT 

 

Purpose –The purpose of this paper is to use dynamic meshing to perform CFD analyses of a NACA 0012 airfoil fitted with 

a morphing trailing-edge (TE) flap when it undergoes static and time dependent morphing. The steady CFD predictions of 

the original and morphing airfoils are validated against published data. The study also investigates an airfoil with a hinged 

trailing edge flap for aerodynamic performance comparison. The study further extends to an unsteady CFD analysis of a 

dynamically morphing trailing edge flap for proof-of-concept and also to realise its potential for future applications. 

 

Design/methodology/approach –An existing parametrization method was modified and implemented  in a user-defined 

function (UDF) to perform dynamic meshing which is essential for morphing airfoil unsteady simulations. The results from 

the deformed mesh were verified to ensure the validity of the adopted mesh deformation method. ANSYS Fluent software 

was used to perform steady and unsteady analysis and the results were compared with computational predictions. 

 

Findings –Steady computational results are in good agreement with those from OpenFOAM for a non-morphing airfoil, and 

for a morphed airfoil with a maximum TE deflection equal to 5% of the chord.  The results obtained by ANSYS Fluent show 

that an average of 6.5% increase in lift-to-drag ratio is achieved, compared with a hinged flap airfoil with the same TE 

deflection. By using dynamic meshing, unsteady transient simulations reveal that the local flow field is influenced by the 

morphing motion. 

 

Originality/value –An airfoil parametrization method was modified to introduce time dependent morphing and used to 

drive dynamic meshing through an in-house developed UDF.  The morphed airfoil’s superior aerodynamic performance was 

demonstrated in comparison with traditional hinged trailing edge flap. A methodology was developed to perform unsteady 

transient analysis of a morphing airfoil at high angles of attack beyond stall, and to compare with published data. Unsteady 

predictions have shown signs of rich flow features, paving the way for further research into the effects of a dynamic flap on 

the flow physics. 

 

Keywords Morphing airfoil, Hinged flap, Dynamic meshing, Computational Fluid Dynamics, Dynamic morphing, Steady 

and Unsteady Flow Analysis. 

 

Paper type Research paper 
 

 

1. Introduction 

Morphing wing is a bio-inspired concept that offers the aircraft the capability to change its aerodynamic characteristics 

during its flight mission. Compared with a fixed (rigid) wing configuration that is normally optimised for a particular 

                                                           

 

 
1 PhD student.  
2 Professor.  
3 Senior lecturer.  
4 Senior lecturer.  



2 

 

design point and hence, optimised for a fixed set of parameters (e.g. altitude, Mach number, weight), morphing concepts 

can be continuously deflected in-flight to produce optimal performance throughout the entire flight envelope. Barbarino 

et al. (2011) provided a thorough review  of the progress made in morphing concepts and the possible benefits that can 

be gained using this technology. It was noted that if a 1% drag reduction could be obtained with morphing concepts, $140 

million/year could be saved on fuel necessary to operate the US aircraft fleet. However, the paper also pointed out that 

the added complexity and weight issue must be addressed in order for this technology to mature and be flight-ready. 

Morphing technology can contribute to the increase in the aerodynamic efficiency due to the optimised lift-to-drag ratio 

(see e.g. the works of Hilbig and Wagner, 1984; Urnes and Nguyen, 2013), which would lead to an extended cruise range 

and reduction of specific fuel consumption. A decrease in aerodynamic noise is also possible using morphing technologies 

as  demonstrated by Ai et al. (2016b) who showed that a NACA 63-418 airfoil fitted with a morphing trailing edge flap 

can offer a noise reduction of up to 3 dB. A more drastic approach for noise reduction surveyed by Dobrzynski, (2010) is 

filling the gaps formed by traditional discrete surfaces to effectively eliminate the flaps side-edges. This way, an aircraft 

can have smoother structural surfaces when using a morphing device such as a trailing edge flap, which conforms to the 

wing surface. An example of this approach is the elastically lofted transition concept aiming at filling the gaps produced 

by a morphing flap as presented by Woods et al. (2016). Furthermore, morphing concepts are not confined only to rigid 

aircraft wings; recent years have seen an increasing trend in morphing concepts applied to rotary wing configurations. 

For instance, in the review by Lachenal et al. (2013) it was noted that morphing helicopter blades were proven to be key 

for load alleviation, and that for wind turbine blades, morphing trailing edge flaps can offer higher efficiency.        

Nevertheless, morphing structures introduce their own challenges to the design and analysis process. First, new 

adaptive materials need to be integrated for morphing application in order to counter balance the added weight for 

actuations. Second, advanced control and optimization algorithms should be developed to provide the most advantageous 

improvements from a morphing configuration. Last but not least, there is a need for accurate predictions of the unsteady 

forces (lift, drag) and moments acting on dynamic morphing configurations in order to estimate the possible efficiency 

improvements, or declines, due to a morphing concept. The latter point will be addressed in this paper. 

In the past, various numerical methods were used to analyse morphing wing performance. For example, the use of 

steady and unsteady vortex-lattice methods (VLM) was popular for morphing configurations since they offered better 

accuracy than analytical methods or strip line theory, while still consuming less CPU time than the full Navier-Stokes 

simulations. For instance, VLM was used to model a morphing Gull wing (Obradovic and Subbarao, 2012), to predict 

and optimise the lift-to-drag ratio of a variable camber morphing wing (Urnes and Nguyen, 2013), and to compare the 

performance of various morphing wing concepts that have optimised camber and span (Molinari et al., 2011). Later, a 

doublet-lattice method (DLM) corrected by high accuracy CFD data was developed and used to model a morphing wing 

tip concept (Chekkal et al., 2015). Most recent aerodynamic optimization problems have typically used an aerodynamic 

model based on the Reynolds Averaged Navier-Stokes (RANS) equations coupled with turbulence models. For instance, 

such technique was applied to model both a morphing trailing edge (TE) and a full morphing wing (Lyu and Martins, 

2014), where it was found that a drag reduction of 1-5% was possible, depending on flight phase and conditions.  

 

Furthermore, the use of morphing trailing edge flaps to improve the aerodynamic performance of airfoils has recently 

been investigated.  Wolff et al. (2014) used steady and unsteady RANS to analyse the performance of a thin wind turbine 

airfoil fitted with actively morphing trailing edges. The dynamic trailing edge deflections were simulated with the help 

of structured multi-block deformable meshes within the code FLOWer (Kroll and Fassbender, 2002). The authors 

discovered that such morphing trailing edge sections can have a significant impact on the lift coefficient and stall 

behaviour of the wind turbine.  However, it is necessary to extend dynamic morphing in CFD for typical wing sections 

beyond thin airfoils used for wind turbines. A steady flow analysis of a morphing airfoil concept was presented in the 

work of Woods et al., (2014a) where the RANS based solver OpenFOAM  (Jasak et al., 2007) was used to simulate the 

flow around various deflected configurations, in addition to a comparative study with the panel code XFOIL (Drela, 

1989). It was found that the two codes produced good agreement up to 8° angle of attack (AoA), and it was observed that 

the closer the starting morphing location was to the leading edge, the more drag reduction that could be achieved. Ai et 

al. (2016a) studied, both experimentally and numerically, the aerodynamic performance of the NACA 0012 airfoil when 

fitted with morphing trailing edges.  It was established that the improvement in aerodynamic performance was dependent 

on the amount of camber introduced on the trailing edge. The amount of camber also controlled the level of flow 

separation delay near the trailing edge at high angles of attack. However, the numerical simulations (using OpenFOAM 

with Spalart–Allmaras turbulence model) were limited to AoA before stall and only steady state RANS were used to 

validate their experimental work on static deflections.   

 

The focus of this paper will be on the use of dynamic meshing to model two morphing cases for the NACA 0012 

airfoil. The first case is a steady flow analysis of a trailing edge section when it is statically deflected. The second case 

deals with an unsteady flow analysis when the trailing edge is morphed continuously (in time) from its baseline geometry 
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to a maximum deflection position, hereby called unsteady or dynamic morphing.  A mathematical model based on a 

modified version of the method developed by Woods et al. (2013) will be adopted to parametrize the geometry and its 

deformations. The parametrization technique will be subsequently implemented in a user-defined function (UDF) used to 

control the dynamic meshing schemes available in the commercial solver ANSYS Fluent. A numerical validation of the 

steady state findings against published results will be performed and the aerodynamic efficiency of the morphing concept 

will be compared to an airfoil with a hinged trailing-edge flap. In order to complement the steady state analysis, a method 

of performing unsteady flow analysis of airfoils with a dynamic morphing trailing edge will be developed to demonstrate 

its capability of simulating a deformable geometry, and to analyse the resulting flow behaviour.  

 

 

2. Methodology 

2.1. Unsteady geometry parameterization  

Most morphing airfoil studies often parametrize the deformation only in a steady, static manner. However, in order to 

perform simulations during a dynamic geometry deformation process, it is essential to introduce time into the 

parametrization process to allow an unsteady CFD analysis to produce results closer to real life morphing. In this paper, 

the parametrization of geometry will be based on the Fish Bone Active Camber (FishBAC) concept (Woods et al., 2014b) 

which is then modified for unsteady morphing.  In its original implementation, the method adopted a relatively simple 

approach to model a NACA 0012 wing undergoing trailing edge deflections, starting at different chord stations and for 

various maximum deflections. The baseline airfoil was morphed by modifying the camber definition of the targeted 

morphing region of the chord, followed by reconstruction of a new airfoil shape using some control parameters. The 

morphing starts with the definition of a parameter xs and the airfoil shape is built up by the accumulation of the baseline 

NACA 0012 thickness distribution and a parametrically defined camber line. The NACA four series thickness distribution 

is defined in Eq. 1 (Jacobs et al., 1933): 
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  is the non-dimensional distance along the chord c, and 

th is the maximum thickness as a fraction of the chord (e.g. th = 0.12 for a NACA 0012 section).   

 

A third-order polynomial function (Eq. 2) was used to define the camber line (yc) of the morphing part of the airfoil, 

and was parametrized to have a direct control over the trailing edge maximum deflection: 
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where wte is the value of maximum deflection at the trailing edge, and xs is the start location for the morphing. The 

thickness distribution (Eq. 1) is then added to the camber distribution (Eq. 2) to get the upper and lower surface coordinates 

of the morphed airfoil. In the present work, this static parametrization has been extended to include a time dependency, 

which makes it possible to introduce unsteady dynamic morphing motion as seen in Eq. 3: 
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where t is time and T is the complete period of the airfoil’s trailing-edge motion. The description in Eq. 3 is specifically 

modified so that the trailing edge can be deflected from the baseline geometry (starting t = 0 s) to one with the maximum 

deflection wte in a morphing time interval  
4

morph

T
t  , giving direct control over the speed of the trailing-edge deflection. 

At  
4

morph

T
t   the morphing stops and the geometry is fixed at the maximum deflection wte therefore for our application 

only the motion achieved in a quarter of a period T is simulated. It is worth mentioning that this formulation will be 

implemented in a UDF to drive the dynamic meshing scheme available in ANSYS Fluent.   

2.2. Dynamic meshing and CFD solver 

Flow simulation around a morphing wing configuration involves moving boundaries. In order to get an accurate 

solution of the unsteady flow computation, reliable methods for moving the computational grids are necessary since mesh 

re-generation would be time consuming and computationally expensive. To this end, various dynamic meshing techniques 

had previously been developed such as the Transfinite Interpolation for structured mesh (Wang, 1994), and connectivity 

based methods for unstructured mesh (Rausch et al., 1989).  An example of commercial software that takes advantage of 

these dynamic meshing capabilities is ANSYS Fluent which is used in this paper.  The main advantage about Fluent 

dynamic meshing is that the user only needs to create a single mesh which does not need to be re-generated when dynamic 

motion sets in; it simply follows the deformation. A different approach was used in the study of Wolff et al. (2014) where 

the authors used a deformable mesh in their FLOWer code using a fully structured mesh, but several meshes had to be 

created for various deflections. Linear interpolation was used each time a new mesh was read into the solver, which is 

quite cumbersome and time consuming compared to simple mesh deformation in Fluent. In the present study, the results 

obtained from Fluent will also be compared to those obtained by XFOIL and OpenFOAM. XFOIL is a high-order panel 

method code which uses a linear-vorticity stream function formulation to solve for the flow field. In order to account for 

the viscous effects, a viscous boundary layer component is included for calculating skin friction drag and flow separation. 

OpenFOAM is a set of open source CFD tools used for high fidelity simulations, having a variety of components. The 

results used for comparison in this study were obtained using the simpleFOAM solver which utilises the SIMPLE 

algorithm to solve the incompressible RANS, 2nd order schemes for spatial gradients limited by Sweby flux limiter for 

stability (Woods et al., 2014a). 

 

Dynamic meshing in ANSYS Fluent is controlled by the bias of the development of a UDF which makes use of 

available macros. For example, the DEFINE_GRID_MOTION macro (Fluent Inc., 2011) was used to control each 

boundary node separately to enable the relative movement between adjacent nodes.  Consequently, this allows the 

modelling of deforming, non-rigid bodies. The modified parametrization technique was implemented in a UDF to enable 

the use of the dynamic meshing in ANSYS Fluent for flow analysis. For deformation problems such as morphing wings, 

the smoothing and remeshing methods are of interest but the remeshing technique is only available for tetrahedral mesh 

cells; therefore, the mesh used in the present simulations was generated to take advantage of this remeshing technique in 

a local region around the trailing-edge, while retaining high quality structured mesh for most of the domain. Fluent’s 

smoothing function enables mesh adjustment in those zones where deformation occurs. It permits the interior nodes to 

‘absorb’ the deformation without any change in the number of nodes or their connectivity (i.e. topology is preserved). 

While diffusion-based smoothing is computationally more expensive, it tends to produce a better quality mesh particularly 

near the boundaries of a deforming body (ANSYS Inc., 2015) by causing the far field nodes to absorb the deformation. 
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Therefore, this smoothing method was chosen for this morphing airfoil application along with local cell remeshing 

techniques.   

 

3. Problem definition and numerical setup 

The physical problem studied in this paper is based the FishBAC configuration as used by Woods et al. (2014a) and 

which is capable of performing large-scale camber deformations. In order to study this morphing concept in an unsteady 

fashion, robust mesh deformation schemes are needed. Therefore, before performing the unsteady analysis, a steady CFD 

analysis was conducted to verify that the deformed mesh gives similar results to a mesh generated at the same deflection 

angle. The FishBAC morphing concept with a maximum deflection value of wte = 0.05 or 5% of the chord was analysed 

in two different ways. First, the deformed mesh case, i.e. the airfoil was deformed from the baseline NACA 0012 to the 

maximum deflection wte (Fig. 1a) then a steady simulation was run with the resulting mesh. Second, the re-generated 

mesh case, i.e. a good quality mesh was re-generated around the already deflected geometry after which the steady CFD 

analysis was performed. 

 

The discrepancy between the two cases was found to be less than 1% (Figure not shown) for all angles of attack, 

which clearly demonstrates that the mesh quality is preserved during the deformation. This is further supported by Table 

1 which shows the minimum orthogonal quality for the deformed mesh to be 0.5 which is largely superior to the minimum 

requirement of 0.01 specified by the Fluent solver (Fluent Inc., 2011). Such preservation of the deformed mesh quality is 

mainly due to the fact that the highly skewed cells within the triangular patch around the airfoil’s TE are systematically 

remeshed until the skewness or size criteria are met. Therefore, the deformed mesh was used as the default for the 

remainder of the study. 

  

In addition, steady CFD analysis was performed around a hinged flap (Fig. 1b) and a morphed flap NACA 0012 airfoil 

configuration (Fig. 1a) to quantify the aerodynamic differences between the two. The results of the morphed case were 

also compared with those of Woods et al. (2014a).  

 

For the unsteady case, a UDF was used to continually deform the airfoil from the baseline NACA 0012 to a maximum 

deflection value of wte = 0.05, using the same time step of CFD simulation.  

The meshes that were generated around the airfoil were targeting a maximum near-wall first-layer grid resolution of 

y+ = 1, an expansion ratio of 1.1 , a total of 400 grid points around airfoil surface, and a spacing of 10-4 m at both the 

leading and trailing edges. In addition, a set of refined meshes up to 900,000 elements were investigated and the 

discrepancies obtained in the lift and drag coefficients were generally around 1%; therefore a mesh with about 58,000 

elements was used as seen in Table 1 which summarises the mesh characteristics. The O-grid type mesh (Fig. 2b) around 

the NACA 0012 was created with the deformation in mind. It was found that when the flap is morphed, the structured 

mesh near the trailing edge becomes highly skewed. To overcome this constraint, an unstructured patch around the trailing 

edge (a small region of about 0.05% of the chord) was generated using an unstructured, triangular mesh (Fig. 2a).  This 

way, the mesh retains its structured nature over the majority of the computational domain.  Table 2 sums up the parameters 

used for dynamic meshing. 

 

The k-ω SST turbulence model was used given its suitability for modelling flows with separated regions, the pressure 

based SIMPLE algorithm was used for pressure-velocity coupling in addition to a least-square cell based discretization 

scheme, and a second order upwind scheme was used for the momentum and turbulence equations discretization. A 

pressure far-field boundary condition was imposed on the domain outer boundaries, located about 100 chord lengths 

around the airfoil to ensure there are no reflecting influences from boundaries. The Reynolds number based on the chord 

length (chord = 1m) and freestream flow conditions was 6.75×105, and the Mach number was 0.1.  In the study by Woods 

et al. (2014a), the airfoil chord was 0.3m, so in order to ensure that the exact Reynolds number and Mach number are 

replicated in this study the constant dynamic viscosity was modified to 6.174×10-5 kg/m.s. This allowed the use of a 1m 

chord without further modifications to the parametrization method. Furthermore, to ensure that this change of dynamic 

Table 1. Mesh characteristics.  

 

Mesh Cells Orthogonal quality  Minimum Orthogonal Quality 

 

Baseline mesh  58424 0.987  0.377 

Deformed mesh  59120 0.973 0.500 

Regenerated mesh  58108 0.993 0.183  
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viscosity has no effect on the results, the mesh created was scaled down by a factor of 0.3 (obtaining an airfoil with a 

chord = 0.3m).  Using sea level standard conditions, both configurations gave similar results. The turbulence intensity 

was set to 1% with a turbulence length scale being the same as the airfoil chord. All simulations were run until both the 

lift and drag coefficients converged, and all residuals dropped below 1×10-6.   

 

 

 

 

 

 

 

4. Results and discussion 

 

4.1 Steady state analysis 

4.1.1 Comparison study 

Figure 3 presents current simulation results in comparison with those from OpenFOAM and XFOIL (Woods et al.,  

2014a) for the baseline NACA 0012, the 5% chord deflected morphed airfoil and flapped airfoil. For the baseline NACA 

0012, Fluent and OpenFOAM exhibit very good agreement for lift coefficient throughout the entire AoA range, whereas 

XFOIL tends to over-predict the lift. The drag coefficient values are also in good agreement between Fluent and 

OpenFOAM for angles of attack smaller than 10°.  However, the discrepancies grow steadily at higher angles. These 

discrepancies between the high fidelity solvers (Fluent and OpenFOAM) and XFOIL could be attributed to the lack of 

turbulence modelling in XFOIL where viscous effects are simply modelled by adding a boundary layer solver to the 

inviscid formulation.   

An interesting trend appears in the 5% chord morphed airfoil. For AoA lower than 8°, Fluent predicts an average of a 

6% higher lift compared with OpenFOAM, and a slightly lower value compared with XFOIL. At the same time, both 

Fluent and OpenFOAM gave a drag estimate higher than XFOIL for all angles of attack studied; again the differences 

could be due to the approximation used by XFOIL to account for separation and skin friction. It is worth noting that both 

Fluent and OpenFOAM simulations used the k-ω SST turbulence model, yet the implementation, constants and various 

options available in the solvers are likely to be different which may explain the differences observed (5% on average). In 

addition, the differences in the meshes used, and the fact that flux limiters were not used in the Fluent simulation can be 

added to the factors that may influence the results. Finally, Fluent lift coefficient results predicted that the maximum lift 

coefficient is reached at AoA = 13°, which was not clearly shown in the previous study (Woods et al., 2014a), possibly 

due to the 2° increments used in their simulations. 

4.1.2 Morphed vs hinged flap airfoil 

 

The performance of the NACA 0012 airfoil with a morphing flap was compared with the case when the airfoil was 

fitted with a hinged flap of similar size.  Figure 3a clearly shows a general increase in lift obtained by the morphed airfoil 

compared with the flapped one. However, this increase is accompanied by a drag penalty. A better indicator is the 

aerodynamic efficiency (i.e. lift-to-drag ratio, CL/CD) plotted in Figure 3c. It is clear that the morphed airfoil provides a 

significant increase in efficiency up to an angle of attack of 12° after which the morphed airfoil efficiency decreases 

steadily till 13°. The maximum efficiency increase of 13% was observed at 8° AoA. This trend continues up to an angle 

of attack of 13°, beyond which the flapped airfoil somehow exhibits an increasingly better performance in the aft-stall 

regime. On average, the morphed airfoil provides a 6.5% increase in the CL/CD efficiency.  

 

Table 2. Dynamic meshing parameters.  

 
Diffusion function Diffusion 

parameter 

Remeshing 

method 

Minimum 

length scale 

(m) 

Maximum 

cell 

skewness 

Size remeshing interval 

Boundary distance 1.5 Local cell 7.08 × 10-6 0.5 1 
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Figures 4a, 4b and 4c show a comparison between the pressure coefficients of both configurations at three angles of 

attack: 0°, 8° and 14°.  From these figures, it is shown that most of the differences are located around the modified area 

(morphed or hinged) even though there are more significant differences around the leading edge at 0°, presumably due to 

the flow being accelerated more by the morphed airfoil. The morphed airfoil exhibits a larger Cp area around the trailing 

edge with a distribution similar to supercritical airfoils (Harris, 1990) given the comparable Cp distribution between the 

two configurations. In Figures 4a-c, results show a sudden decrease in pressure coefficient at the location where the hinged 

flap starts. It is likely that this sudden decrease is related to the existence of the protruding hinge and subsequent 

impingement of the flow on it as this is the only difference between the two flaps.  The hinge would cause the flow to 

take a sharp turn following the flap deflection (as suggested by Ai et al., 2016a).  In comparison, however, the morphed 

flap seems to create an increase in pressure coefficient.  Similar observations were reported by Ai et al. (2016a). Figure 

4b illustrates the maximum differences between the two airfoils.  

 

At the AoA of 14°, there is a significant decrease in the Cp area of the morphed flap airfoil even though it is still larger 

than the flapped airfoil and this may explain why the morphed airfoil produces more lift. However, the drag penalty makes 

the morphed airfoil efficiency drop below that of the hinged flap. Further, it was also shown by Troldborg (2005) that the 

performance of a hinged flap was inferior to that of a morphing flap.  This behaviour is confirmed by the data produced 

from a wind tunnel experiment where the 3D FishBAC concept is compared with a 3D NACA 0012 hinged flap airfoil 

(Woods et al., 2014b). The Reynolds number of the experiment was around 400,000 (lower than the one used in the 

numerical simulations), despite that, the behaviour of both configurations is similar. The morphed airfoil showed better 

performance in the majority of angles of attack, with a steadily decreasing performance until both configurations gave 

similar efficiency at AoA of 13°. 

 

4.2 Unsteady morphing analysis  

 

Following validation of the steady CFD results, unsteady simulations are carried out next, where the airfoil trailing-

edge portion undergoes time-dependent morphing from its baseline position to a maximum deflection at TE, equal to 5% 

of the chord. The purpose is to demonstrate proof-of-concept of the methodology presented to analyse a dynamically 

morphed airfoil, reveal some trends and investigate some underlying flow physics. In particular, the dynamic evolution 

of the lift and drag coefficients are presented and the flow field is analysed. The unsteady morphing analysis is carried 

out at higher AoA (14° and16°) around the stall with the aims of: 1) investigating some rich dynamic flow features that 

have not been explored in previous studies, and 2) looking into the possible effects that morphing could exercise on the 

flow to possibly delay the stall. To the authors’ knowledge, this is the first time a continuous morphing trailing-edge 

airfoil is being simulated using dynamic meshing in ANSYS Fluent. 

 

For the unsteady analysis, simulations start from a converged steady state solution. Three time steps (Δt =10-3s, 10-4s, 

4×10-5s) were investigated in order to ensure time step independence while 20 sub-iterations per time step were used to 

ensure numerical stability. Instead of the SIMPLE algorithm used for the steady case, the Coupled algorithm was used 

for the unsteady calculations given its more efficient and robust implementation, using a courant number of 1. An overall 

flow time of 12 seconds was simulated to illustrate flow responses with respect to airfoil geometry change. For AoA=14°, 

all three time steps gave similar results, confirming that the study is time step independent. For a time step of Δt = 10-4, 

the time histories of lift and drag coefficients for two angles of attack are presented in Figure 5:  at 14° which is just at 

the start of stall, and at 16° which is beyond the stall point (but not deep stall).  The maximum deflection for the 

dynamically morphing flap is achieved after t = 1s.  For both cases, the dynamic lift rises with time as the flap is 

dynamically morphed, reaching maximum lift values shortly before the maximum flap deflection is reached.  Beyond 

maximum flap deflection, however, the lift coefficient behaviour is markedly different for the two angles of attack. 

   

At an AoA = 14°, it is observed that a recirculation zone, or separation bubble (figure not shown) resides on the upper 

surface of the airfoil near its trailing edge, and grows in size as the flap is dynamically morphed, reaching maximum size 

at maximum deflection but without any vortex shedding.  The drag coefficient time history at AoA = 14° is similar to the 

lift coefficient’s time history. On the other hand, at AoA = 16° the lift coefficient drops sharply beyond maximum 

deflection. Afterward, the lift coefficient settles down into a regular, oscillating time history with two vortex shedding 

patterns: the first with a period and Strouhal number of 2.4s and 0.018 respectively, the second with a period of 0.05s and 

a Strouhal number of 0.58 respectively, all while exhibiting small scale oscillations observed at the peaks of each cycle. 

 

Figure 6 gives an in-depth visualisation of the flow evolution for the 16° AoA. During the dynamic morphing, the 

separation bubble present on the trailing edge slowly extends to cover most of the airfoil upper surface at t =1s then it 

undergoes small-scale oscillations without complete separation. However, a small separation bubble is also observed 
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around the trailing edge; this bubble grows steadily till it bursts, forming a vortex shedding pattern, which could explain 

the sudden drop in lift and surge in drag observed around t =1.5s. Nevertheless, the bubble forming at the trailing edge 

afterwards is smaller than the initial one, giving weaker shedding which, again, may explain the lower amplitude of the 

lift and drag oscillations after the initial transient period. The drag exhibits similar behaviour but notably the drag peak 

always coincides with minimum lift; this is synonymous with vortex shedding. Compared to the baseline NACA 0012, 

the dynamic trailing edge flap seems to destabilize the steady bubble residing on the airfoil upper surface, causing more 

unsteadiness in the flow. 

 

5. Conclusion 

 

Aerodynamic performance analysis of the NACA 0012 airfoil with a morphing trailing edge flap was performed using 

commercial CFD solver Fluent, by means of a modified parametrisation method implemented with a user defined function 

(UDF). The simulation of the morphing flap was facilitated with the use of dynamic meshing.  Steady CFD results for the 

deformed mesh were compared with a re-generated mesh to assess the accuracy of the dynamic meshing scheme, followed 

by a comparative study between a morphed and a flapped airfoil. Finally, an unsteady morphing airfoil investigation was 

carried out for a dynamic flap and results for two angles of attack near the stall were presented and discussed.  

 

    The following conclusions can be drawn: 

 The modified unsteady parametrisation method worked well as expected and the deformed mesh gave results 

similar to the re-generated mesh with small discrepancies of less than 1%, confirming the validity of the 

geometry and mesh deformation scheme. 

 Steady state CFD results obtained from Fluent gave an average of 6% higher lift and drag coefficients compared 

with OpenFOAM. Both Fluent and OpenFOAM over-predicted the drag coefficient compared with XFOIL. 

 For the same maximum deflection (5% chord), the morphing airfoil produced higher lift in comparison to a 

flapped airfoil, but at the expense of a drag penalty. An average increase in aerodynamic efficiency CL/CD of 

6.5% is observed. 

 The morphed airfoil reaches a peak aerodynamic efficiency at 8° angle of attack about 13% higher than the 

flapped one, after this angle the efficiency decreases till an angle of 13°. Beyond this angle, the flapped airfoil 

exhibits better aerodynamic performance, and this trend is qualitatively confirmed by 3D wind tunnel tests. 

 Unsteady analysis of a continuously morphing airfoil has been carried out successfully as proof of concept. 

Obtained results have shown that the lift and drag coefficient evolution in response to structure shape change is 

non-linear. Lift reaches a peak value by the time the morphing has stopped, and steadily approaches a 

‘converged’ status afterwards for an angle of 14°.  

 For AoA = 16°, increased unsteadiness caused by the dynamic morphing TE flap is observed in the flow, with 

two distinct low and high frequency vortex shedding patterns. This is an indication of the rich and complex flow 

physics associated with this process that needs to be investigated thoroughly.  

 

As further work, it will be important to study the effects of morphing frequency on aerodynamic forces in particular 

investigating if certain motions can delay or suspend unsteady vortex shedding.  Investigating the effects of the 

trailing edge flap length, flap size, the morphing angle and direction will be important. Finally, in order to resolve 

the unsteady flow physics observed for the dynamic morphing case, the use of higher fidelity CFD methods beyond 

RANS (e.g. LES) would be required. 
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Figure 1. NACA 0012 airfoil with a) morphed and b) hinged flap definitions. 

a) NACA 0012 Airfoil with a morphed trailing 

edge

b) NACA 0012 Airfoil with a hinged flap. 
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Figure 2a.   NACA 0012 mesh with a close up of the triangular patch around the morphing part for an un-deflected case. 
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Figure 2b.   O-grid type mesh used for the simulations with a close up of the deformed airfoil. 

     

   



12 

 

 

  

  

 
3a) Lift coefficient. 

 

 
 

3b) Drag coefficient.  
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3c) Aerodynamic efficiency CL/CD 

 

Figure 3. Validation results for baseline NACA 0012, morphed and flapped airfoil compared with OpenFOAM 

and XFOIL results of Woods et al. (2014a). 

 

 
4a) AoA= 0° 
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4b) AoA= 8° 

 
4c) AoA= 14° 

 

 

Figure 4. Pressure coefficient CP comparisons between the morphed and flapped airfoils at different angles of attack. 
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a) Lift coefficient  

 
b) Drag coefficient 

 

Figure 5. Time histories of unsteady a) lift coefficient and b) drag coefficient at 14° and 16° AoA, Δt =10-4s. 

 

0.8

1

1.2

1.4

1.6

1.8

2

0 2 4 6 8 10 12 14

C
L

Time (s)

14° 16°

0.03

0.08

0.13

0.18

0.23

0.28

0.33

0.38

0.43

0 2 4 6 8 10 12 14

C
D

Time (s)

14° 16°



16 

 

Figure 6. Time history of TKE and flow streamlines around the NACA 0012 airfoil with a dynamic morphing flap, at AoA= 16°. 


