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Abstract

IoT (Internet of Things) devices generate huge amount of data which require

rich resources for data storage and processing. Cloud computing is one of the

most popular paradigms to accommodate such IoT data. However, the privacy

conflicts combined in the IoT data makes the data placement problem more

complicated, and the resource manager needs to take into account the resource

efficiency, the power consumption of cloud data centers, and the data access

time for the IoT applications while allocating the resources for the IoT data.

In view of this challenge, an IoT-oriented Data Placement method with privacy

preservation, named IDP, is designed in this paper. Technically, the resource

utilization, energy consumption and data access time in the cloud data cen-

ter with the fat-tree topology are analyzed first. Then a corresponding data

placement method, based on the Non-dominated Sorting Genetic Algorithm II
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(NSGA-II), is designed to achieve high resource usage, energy saving and effi-

cient data access, and meanwhile realize privacy preservation of the IoT data.

Finally, extensive experimental evaluations validate the efficiency and effective-

ness of our proposed method.

Keywords: IoT, data placement, privacy, energy consumption, cloud

1. Introduction

Nowadays, Internet of Things (IoT) has been used in many areas including

transportation, nursing, monitoring, etc., where smart devices equipped with

sensors are connected together via the Internet to efficiently collect data from

physical environment [1] [2] [3]. IoT devices produce large amount of real-time5

data, which is stored for analysis and processing to guarantee the service re-

quirements of IOT applications [4]. However, due to the storage limitation of

IoT devices, IoT data requires being placed on the remote data centers for fur-

ther processing. Generally, data placement is divided into random placement

and planned placement. In random placement, the sensors are scattered ran-10

domly, otherwise the sensors are deployed selectively for certain objectives in

planned placement [5].

Cloud computing provides elastic and on-demand resources for IoT-oriented

data placement. Compared to the IoT devices, cloud data centers (CDCs) have

much more physical resources including storage resources, computing resources15

and communication resources [6] [7] [8]. Deploying IoT data on CDCs alleviates

resource limitation of the IoT devices in a great deal. When allocating the cloud

resources to accommodate IoT data, the resources are provided in the form of

virtual machines (VMs). The resource managers monitor current cloud resource

usage and map the VMs to physical hosts [9]. From the perspective of resource20

management, the resource utilization needs to be taken into consideration to

avoid the overload or underload of CDCs.

However, with the cloud computing widespread used to support the IoT ap-

plications, it is a popular trend to deploy the IoT data on the cloud, which makes
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the energy consumption of CDCs greatly increased. Moreover, the expenditure25

of electricity in CDCs has a serious impact on the emission of carbon diox-

ide which plays an important part in ecological balance. Therefore, to reduce

carbon emission and realize sustainable development of cloud computing, it is

of great importance to layout the IoT data on the cloud in an energy-efficient

manner.30

On the other hand, the collected IoT data stored on the cloud is in need

of security [10] [11] [12]. If the IoT data contains private information such as

healthcare, finance, etc., when placing the data with privacy conflicts combined

on the same CDC, the data owners’ privacy is easy to be invaded [13] [14] [15].

Data encryption is the straightforward way to deal with it, but it may cost35

much more time and energy without a legitimate placement method [16] [17].

Hence, it is necessary to satisfy the privacy constraints for IoT-oriented data

placement.

Energy-efficient network architecture has been investigated for IoT appli-

cations [18], but it neglects the resource utilization of CDCs, access time and40

privacy for IoT data placement. With the observation above, it is still a chal-

lenge to realize IoT data placement to optimize the resource utilization, energy

consumption and access time, while satisfying the privacy constraints. In view

of this challenge, an IoT-oriented data placement method with privacy preser-

vation in cloud environment is proposed this paper.45

The main contributions of this paper include the following:

(1) Analyze the resource utilization, energy consumption and access time of

CDCs and build a corresponding systematic model while satisfying the privacy

constraints of IoT data.

(2) Employ Non-dominated Sorting Genetic Algorithm II (NSGA-II) to im-50

prove the average resource utilization of CDCs and reduce the energy consump-

tion of CDCs while considering the privacy preservation in cloud environment.

(3) Conduct adequate experimental evaluation and comparison analysis to

validate the efficiency and effectiveness of our proposed method.

The rest of this paper is organized as follows. In Section 2, formalized55
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concepts, a systematic model of privacy in data placement, resource utilization,

energy consumption and access time of CDCs is presented. Section 3 elaborates

the proposed data placement method. Section 4 illustrates the comparison

analysis and performance evaluation. Section 5 summarizes the related work,

and Section 6 concludes the paper and presents the future work.60

2. Preliminary Knowledge

Table 1: Key Notations and Descriptions

Notation Description

D The dataset collection obtained from IoT devices

N The number of datasets

A The IoT application collection

Q The number of IoT applications

M The number of pods in fat tree

P The pod collection

H The physical host collection

W The number of physical hosts

X The data placement policy collection for D

Y The deployment policy collection for A

In this section, we present a system model that closely approximates the

storage environment for the datasets collected from the IoT devices in fat-tree

constructed CDC. Some key notations and descriptions used in the paper are

listed in Table 1.65

2.1. System Model

We focus on the IoT-oriented data placement in the cloud environment that

is a cloud platform providing elastic resources for storing the datasets from the

IoT devices. Suppose there are N datasets collected from IoT devices, denoted
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Figure 1: Fat-tree topology in CDCs.

as D = {d1, d2, . . . , dN}, that need to be deployed in the CDC. And there70

are Q IoT applications, denoted as A = {a1, a2, . . . , aQ}, running in the data

center which requires multiple datasets from D for processing support. The

CDC employs the fat-tree topology to organize the physical hosts and switches,

as illustrated in Fig. 1. Through fat-tree topology, the CDC achieves timely

processing of loads, avoids network hotspots by multiple links at the core layer,75

and eliminates overload by reasonably diverting traffic within pods.

In the fat-tree topology, the switches are classified as three layers, including

the core, aggregation and the edge. The switches in the aggregation and edge

layer are divided to several pods, denoted as P = {p1, p2, . . . , pM}. According

to the rules of fat-tree topology, the number of the aggregation switches is80

equal to the number of the edge switches in each pod, and they are both set

to
(
M
2

)2
. Besides, the number of core switches is set to M

2 , and the number

of ports of each switch is set to M
2 . The physical hosts are connected to the

edge servers and suppose the CDC consists of W physical hosts, denoted as

H = {h1, h2, . . . , hW }.85

Let X = {x1, x2, . . . , xN} be the placement policy for the datasets in D,

where xn ∈ H (n = {1, 2, . . . , N}) is the host which the dataset dn is placed

on. Let Y = {y1, y2, . . . , yQ} be the deployment policy for the application set
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A, where yq ∈ H (q = {1, 2, . . . , Q}) is the host which the application aq is

deployed on.90

2.2. Resource Utilization Model

In the CDC, the applications and datasets are hosted by VMs. In a cloud

platform, there are multiple VM instances created for resource provisioning.

The resource requirements of the datasets and the capacity of the hosts both

could be quantified by the number of VM instances. Let cw be the capacity of95

the w-th host hw and λn be the requirements of the dataset dn.

The resource utilization is a key metric for the resource managers to manage

the CDCs. According to the data placement policy in X, the resource utiliza-

tion of each host could be detected by detecting the resource usage of the VM

instances. Let uw(X) be the resource utilization with X, which is calculated by

uw(X) =
1

cw

N∑
n=1

θn · In,w(X), (1)

where θn is the requested amount of VM instances for dn, and f = In,w is a

binary variable to judge whether dn is placed on hw, which is measured by

In,w(X) =

 1, if w = xn,

0, Otherwise.
(2)

Then the overall resource utilization of the CDC refers to the resource usage

status of all the occupied hosts. The amount of occupied hosts, denoted as

λ (X), is calculated by

λ(X) =

W∑
w=1

Fw(X), (3)

where Fw (X) is a binary flag to judge whether hw is occupied which is calculated

by

lq,n =

 1, if aq needs to access dn,

0,Otherwise
(4)

Then the average resource utilization of the CDC is calculated by

U(X) =
1

λ(X)

W∑
w=1

uw(X). (5)

6



2.3. Data Access Model

The IoT applications need to access and analyze the stored IoT data deployed

in the cloud platforms. Generally, the IoT applications are also deployed in the

cloud, thus while considering data placement for the IoT datasets, the access100

time for the IoT applications to obtain the datasets should be taken into account.

Let lq,n be the flag to judge whether aq needs to access dn, which is measured

by

lq,n =

 1, if aq needs to access dn,

0,Otherwise,
(6)

where lq,n = 1 means aq needs to access dn, while lm,n = 0 means aq need not

to access dn.

Denote gq,n as the access frequency for aq to get dn during the execution

period, and then the total access time in this period is calculated by

K =

Q∑
q=1

N∑
n=1

lq,n · gq,n. (7)

In the fat-tree topology, the access time of the datasets for the IoT appli-

cations is closely relevant to the distributed locations among the datasets and

the IoT applications. Let ES(h) be the edge switch which a physical host h

connect to. Let Pod(h) be the pod where ES(h) locates. The data access time

in the fat tree could be classified as four conditions: 1) the application aq and

the dataset dn are deployed in the same host, i.e., xn = yq. 2) the hosts for

accommodating aq and dn are different and they both connect to the same edge

switch, i.e., xn 6= yq, and ES(xn) = ES(yq). 3) the hosts for accommodating aq

and dn are connected to different edge switches, but they are in the same pod,

i.e., ES (xn) 6= ES (yq). and P (xn) = P (yq). 4) the hosts for accommodating

aq and dn are not in the same pod, i.e., Pod (xn) 6= Pod (yq). Based on the

above analysis and the fat-tree topology, the data access time tq,n (X) for aq to
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access dn is calculated as

tq,n(X) =



0, if xn = yq,

2 ρn
bSE
· lq,n, if xn 6= yq, ES(xn) = ES(yq),

(2 ρn
bSE

+ 2 ρn
bEA

) · lq,n, if ES(xn) 6= ES(yq), P (xn) = P (yq),

(2 ρn
bSE

+ 2 ρn
bEA

+ 2 ρn
bAC

) · lq,n, if P (xn) 6= P (yq),

(8)

where ρn is the data size of dn, bSE is the bandwidth between hosts and edge

switches, bEA is the bandwidth between edge switches and aggregation switches,105

and bAC be the bandwidth between aggregation switches and core switches.

Then the average data access time T (X) can be calculated by

T (X) =
1

K

N∑
n=1

Q∑
q=1

tq,n(X) · gq,n. (9)

2.4. Energy Consumption Model

In this paper, we mainly focus on the energy consumption for data placement

and access generated by the physical hosts, the VMs and the switches.

All the running hosts consume the baseline energy during the tracked execu-

tion period R in the CDC. Such baseline energy consumption for H is denoted

as BEHost, calculated by

BEHost(X) =

W∑
w=1

R · αw · Fw(X), (10)

where αw is the baseline energy consumption rate of hw.110

The running VMs also consumes energy consumption, denoted as AEVM

which is calculated by

AEVM (X) =

W∑
w=1

N∑
n=1

θn · In,w(X) ·R · η, (11)

where η is the power rate for the running VM instances.

The energy consumption produced by the unused resource units, i.e., VM

instances, also generate a certain amount of energy consumption, which is cal-

culated by

SEVM (X) =
W∑
w=1

(cw −
N∑
n=1

θn · In,w(X)) ·R · τ. (12)
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Then the total energy consumption for all the VM instances in the CDC is

calculated by

EVM = SEVM (X) +AEVM (X). (13)

In fat-tree topology, the total amount of switches in the topology is 5
4 M

2

and from the access time model, the number of switches each dataset passes

while invoking the IoT data from the cloud could be detected. The number of

switches for aq accessing dn is calculated by

δq,n(X) =



0, if xn = yq,

1, if xn 6= yq, ES(xn) = ES(yq),

3, if ES(xn) 6= ES(yq), P (xn) = P (yq),

5, if P (xn) 6= P (yq).

(14)

In this way, the energy consumption produced by switches, denoted as

Eswitch, is calculated by

Eswitch =
5

4
k2 ·R · β +

Q∑
q=1

N∑
n=1

lq,n · gq,n(X) · tq,n(X) · δq,n(X) · γ, (15)

where β is the baseline power rate for each switch and γ is the power rate of

each port.

Hence, the total energy consumption, denoted as E(X), is calculated by

E(X) = BEHost + EV E + ESwitch. (16)

2.5. Data privacy Model

There are several attributes in each IoT dataset. And some attributes of115

different datasets have privacy conflicts as once these attributes are stored in

the same physical host, the combined privacy in these datasets will be leaked

with meaningful probability.

We model the privacy conflicts of the datasets by a graph G = (D,E),

where D is the set of datasets, E represents the conflicting relations between120

two datasets in D and (dn, dn′) ∈ E represents there is a privacy conflict between

dn and dn′ .
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Then the conflicting datasets of dn is obtained by

cdn = {dn′ |(dn, dn′) ∈ E,n′ = {1, 2, ..., N}}. (17)

In this paper, to realize privacy preservation for the IoT datasets in cloud,

the privacy-conflict datasets in CDn could not be deployed with dn in the same

host. For thus we can obtain the conflicting location set of xn, which is measured

by

cln = {xj |xj ∈ cdn, j = {1, 2, ..., |cdn|}}. (18)

2.6. Problem Definition

In this paper, we focus on the data placement problem for IoT datasets in

cloud environment, with fixed deployment policy for the IoT applications, to125

improve the resource utilization, reduce energy consumption and optimize the

data access time while taking into account the data privacy constraints.

Then, the formalized problem is be defined as:

maxU(X),minT (X),minE(X). (19)

s. t. xn = {1, 2, ...,W}, (20)

N∑
n=1

θn · fn,w ≤ cw, (21)

xn /∈ cln. (22)

3. An IoT-Oriented Data Placement Method with Privacy Preserva-

tion

An IoT-oriented data placement method with privacy preservation is pro-130

posed in this section. NSGA-II can find the global optimal solution in the

feasible solution quickly and accurately compared with the traditional genetic

algorithm. Thus, NSGA-II is adopted to solve the multi-objective optimiza-

tion problem in this paper. First, the placement strategies for IoT datasets are

encoded and fitness functions are given for the optimization problem. Second,135
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the fast non-dominated sorting approach and the crowded-comparison operation

are used in selection. Then, the crossover and mutation operation of traditional

genetic algorithm (GA) are adopted. Finally, the overview of our method is

described in detail.

3.1. Encoding140

In the GA, the gene represents the value of each decision variable. In this

paper, a gene reflects the data placement strategy for a IoT dataset. A group

of genes make up a chromosome which denotes a set of placement strategies of

IoT datasets collection D. There are various methods to encode genes in ge-

netic algorithms, including binary encoding, Gray code encoding, real encoding,145

integer encoding, etc. We need to adaptively select different encoding methods

according to the actual situation in different application scenarios. In this pa-

per, as the strategy of data placement for each IoT dataset is an integer, the

integer coding method is used and data placement strategies for IoT datasets

are numbered as 0, 1, 2, . . . , etc.150

................................................

0 1 2 3 w

...

W

0 3 W ... 1

x1 x2 x3
... xN

...

Compute-optimized host Storage-optimized host

Figure 2: An encoding example of data placement for datasets.

As IoT applications need to access the placed IoT datasets in CDCs, two

types of VM instances which are the computation-intensive optimized VM in-

stances and the storage-optimized VM instances are employed in this paper. The

datasets can only be placed on storage-optimized VM instances. Fig. 2 shows an

example of data placement for IoT datasets. In Fig. 2, the blue shaded hosts rep-155

resent computation-intensive optimized VM instances and the unshaded hosts

represent storage-optimized VM instances. IoT applications have been placed

11



in computation-intensive optimized VM instances, and the IoT datasets have

been chosen to be placed in those storage-optimized VM instances according to

the encoding result of placement strategies.160

3.2. Fitness Functions

The fitness function is a criterion for judging the merits of solutions in GA,

each individual represents a solution of problems and all solutions form the

sets called population. The fitness functions in this paper are given by Eq.(5),

Eq.(9) and Eq.(16) which represent the average resources utilization, the average165

access time and the energy consumption. These fitness functions are indicators

to measure the performance of CDCs.

The average resource utilization of hosts used is a fitness function which is

calculated according to the coding result of data placement strategies for IoT

datasets. Algorithm 1 specifies the process of calculating the average resources170

utilization of hosts used. In this algorithm, the inputs are IoT datasets collec-

tion D, IoT applications collection A, and the coding result of data placement

strategies. We first calculate the resource utilization of each host used according

to the input data placement strategy (Lines 3 to 6), then the average resource

utilization of employed hosts is obtained (Line 12).175

The average access time of IoT applications is another fitness function which

is calculated according to the coding result of data placement strategies for IoT

datasets and fat-tree topology of the CDC. Algorithm 2 specifies the process of

calculating the average data access time of IoT applications. In this algorithm,

a fat-tree network topology is employed to construct the cloud data center ar-180

chitecture. IoT applications and datasets share the same type of switch based

on the assigned host seats. The access time of each application is calculated

(Lines 2 to 5), then we get the average data access time (Line 10).

The energy consumption is the last fitness function. This function is cal-

culated according to the coding result of data placement strategies for IoT185

datasets, as well as the number of hosts and switches employed. Algorithm 3

specifies the process of calculating the energy consumption. In this algorithm,
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Algorithm 1 Average resources utilization

Require: D, A, X, Y , H.

Ensure: Average resource utilization

1: u = 0

2: λ = 0

3: for w = 1 to W do

4: for n = 1 to N do

5: if xn == hw then

6: Calculate uw (X) by Eq.(1)

7: λ = λ+ 1

8: u = u+ uw (X)

9: end if

10: end for

11: end for

12: Calculate U(X) by Eq.(5)

13: return U(X)

the total energy consumption includes the basic energy consumption of hosts,

the energy consumption of the working VMs, and the energy consumption of

switches. We first calculate the basic energy consumption of hosts according190

to the coding result of data placement strategies (Lines 1 to 8). Secondly, the

energy consumption of the working VMs according to the resource requirements

of IoT datasets is calculated, then calculate the energy consumption of switches

(Lines 9 to 14). Finally, the total energy consumption is obtained (Line 15).

The constraints in this paper are considering the capacity of each host and195

privacy constraints between IoT datasets. The constraints are given in Eq.(20),

Eq.(21) and Eq.(22). Different datasets with privacy conflicts are stored in

the same physical host will be leaked with meaningful probability. Thus, the

selected strategies must be required to satisfy the privacy constraints. IoT

datasets should be placed separately if they are privacy conflicted.200

Fig. 3 shows an example of privacy-aware data placement. As shown in
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Algorithm 2 Average access time

Require: D, A, X, Y , H.

Ensure: Average access time T (X)

1: t = 0

2: for n = 1 to N do

3: for q = 1 to Q do

4: if xn == yq then

5: Calculate tq,n (X) by Eq.(8)

6: t = t + tq,n (X)

7: end if

8: end for

9: end for

10: Calculate T (X) by Eq.(9)

11: return T (X)

Fig. 3, the IoT application a1 needs to access four datasets, i.e., x1, x2, x3 and

x4. The IoT application a1 is placed on the host h4 and IoT datasets x1, x2 and

x3 are placed on the hosts h1, h2 and h3, respectively. Suppose x4 has privacy

conflicts with x1, x2 and x3, and consequently x4 must be placed on the host205

h5 to meet the privacy constraints.

a1

x1 x2 x3 x4

ed1

h1 h2 h3 h4 h5

Figure 3: An example of privacy-aware data placement.
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Algorithm 3 Energy consumption

Require: D, A, X, Y , H.

Ensure: Energy consumption E(X)

1: for w = 1 to W do

2: Calculate BEHost by Eq.(10)

3: for n = 1 to N do

4: if xn == hw then

5: Calculate EVM by Eq.(13)

6: end if

7: end for

8: end for

9: for n = 1 to N do

10: for q = 1 to Q do

11: Calculate δq,n (X) by Eq.(14)

12: Calculate Eswitch by Eq.(15)

13: end for

14: end for

15: Calculate E(X) by Eq.(16)

16: return E(X)

3.3. Genetic Operation

NSGA-II is a multi-objective genetic algorithm without finding a solution

that maximizes or minimizes each objective. Generally, there are multiple sets

of solutions in multi-objective optimization problems. Each group of solutions210

we called non-dominated solution, these non-dominated solutions are inferred

to as Pareto frontier. Every non-inferior solution is a chromosome composed of

genes. According to the data placement model presented in the section 2, our

goal is to find out the optimal solutions for data placement.
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3.3.1. Initialization215

In the initial stage of genetic operation, the parameters should be determined

in advance, including the size of population Zpop, the number of iterations Gen,

the crossover probability ξc and the mutation probability ξm. In this paper,

each chromosome consists of placement strategies for all of datasets, it is de-

noted by Xα = {x1, x2, ..., xN |1 ≤ α ≤ Zpop}, where Xα represents the α-th220

chromosome in the population and N represents the total number of datasets.

Two populations Sj and Oj of size Zpop are randomly generated and they are

mixed together to form a population Lj with a population size of 2Zpop.

3.3.2. Selection

The population Lj with a population size of 2Zpop in initialization generates225

the multiple non-dominated layers (Vi, i = 1, 2, . . .) using fast non-dominated

sorting approach.

At the same time, all individuals in the non-dominated layer are calculated

for the crowding-distance. The selection operation is to pick out some of the

chromosomes from the population, carry out crossover and mutation operations,

as well as generate a new population with better fitness. The selection method in

NSGA-II is based on the crowded-comparison operator. the crowding-distance

of data placement strategy is calculated by:

cdα = cdUα +cdTα+cdEα = |Uα+1−Uα−1|+|Tα+1−Tα−1|+|Eα+1−Eα−1|, (23)

where cdα represents the crowding-distance of α-th data placement strategy Sα,

cdUα , cd
T
α , cd

E
α represents the objective functions, respectively. Uα+1 represents

the value of (α+ 1)-th data placement strategy to the objective function U(X).230

According to the non-dominated rank and the crowding distance, we select

the best individuals to form the parent population. The data placement strate-

gies for IoT datasets selected meets the constraints of privacy preservation.

3.3.3. Crossover and Mutation

The crossover is to combine the two parental chromosomes in the population,235

trying to get better offspring chromosomes. Fig. 4 shows an example of crossover
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0 3 ... 5

x1 x2 ... xN

ci

2 4 ... 6

x1 x2 ... xN

cj

0

4

6

x1 x2 ... xN

cI

2

x22

3

5

x1 x2 ... xN

cJ

...

...

Figure 4: An example of crossover operation.

operation. As shown in Fig. 4, we firstly select a crossover point after x2 in the

chromosome and then swap genes of two parental chromosomes on both sides

of crossover point, then complete the crossover operation.

0 3 ... 5

x1 x2
... xN

ck

0 7 ... 6

x1 x2
... xN

cK

Figure 5: An example of mutation operation.

The mutation is to slightly modify some of the genes in a chromosome to240

produce a well-fitness individual as well as avoid early convergence. Fig. 5

shows an example of the standard mutation that each gene is changed with

equal probability, x2 and xN are mutated with the same mutation probability.

After crossover and mutation operation, the data placement strategy generated

still meets the constraints of privacy preservation.245

3.3.4. Method Overview of IDP

In this paper, the optimized goal is to improve the resource utilization, re-

duce energy consumption and optimize the data access time while taking the

data privacy constraints into account. The data placement problem is defined

as a multi-objective problem, and the NSGA-II is used to obtain the optimal250

data placement strategy. Firstly, the data placement strategies for datasets are

encoded as the number of the hosts, and fitness functions are given for the
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Algorithm 4 IoT-oriented Data Placement method

Require: D, A, X, Y , H.

Ensure: Optimal datasets placement strategy X*

1: G = 1

2: while G ≤ Gen do

3: Lj = Sj +Oj

4: V = Fast Non-dominated Sort (Lj)

5: Sj = Ø

6: i = 1

7: while sum(Sj) < Zpop do

8: crowded-comparison(Vi) by Eq.(23)

9: Sj+ = Vi

10: i = i + 1

11: end while

12: Oj = crossover and mutation operation(Sj)

13: G = G + 1

14: end while

15: return X*

data placement problems. Then, the fast non-dominated sorting approach is

used to generate multiple non-dominated layers for individuals and pretreat the

population to better distinguish the merits of individuals. Crowding distance255

computation is used to identify individuals with better fitness.

The overview of IDP we proposed is shown in Algorithm 4. The inputs of the

Algorithm 4 are IoT datasets collection D. The algorithm starts from the first

iteration (Line 1). Two populations Pj and Oj of size Zpop are randomly gener-

ated and form a population Lj with a population size of 2Zpop. The initialized260

population Lj is divided into multiple non-dominated layers (Lines 3 and 4).

The selection operation follows two rules. (1): The individual with higher level

of non-dominated layers is prioritized; (2): The individual with better crowding

distance is prioritized when individuals are in the same non-dominated level.
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The excellent individuals are selected to fill in a new population of size Zpop by265

crowding distance (Lines 7 to 10). Then the offspring population is generated

after the traditional crossover and mutation (Line 12). The offspring popula-

tion is merged with the parent population and iterated again until the algorithm

stops (Lines 2 to 14). Finally, the optimal placement strategies are output (Line

15).270

4. Experimental Evaluation

In this section, we conduct extensive simulations to evaluate the performance

optimization of the data placement method. Specifically, we first briefly intro-

duce our simulation setup including simulation dataset and comparative meth-

ods. Then, we evaluate the influence of the dataset scale on the performance275

of resources utilization and the energy consumption. Finally, we illustrate the

evaluation results on our proposed data placement method.

4.1. Simulation Setup

Table 2: Parameter Settings

Parameter Value

The number of tasks Q 40

The time of running period R 24h

The number of hosts W 3456

The baseline energy consumption rate of w-th host αw 342W

The active energy consumption rate for each VM η 23W

The number of pods involved in fat-tree topology M 288

The bandwidth between severs and edge switches bSE 50M

The bandwidth between switches in fat-tree topology bEA and bAC 100M

The idle energy consumption rate for each switch β 100W

The active energy consumption rate for each switch γ 120W
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In our simulation, the fat-tree topology is employed to create a CDC with

288 pods, including 144 core switches, 288 aggregations switches and 288 edge280

switches. Six scales of datasets are applied for experimenting the proposed IDP

method which are {200, 400, 600, 800, 1000, 1200}. The specified parameter

settings in this experiment are illustrated in Table 2.

To conduct the comparison analysis, we propose some other basic data place-

ment methods in addition to our IDP method. The data placement problem in285

this paper is similar to the packing problems. Traditional algorithms are mainly

used to solve the packing problems, including the First Fit Decreasing (FFD)

and Best Fit Decreasing (BFD) algorithms [19]. Hence, we will compare our

method with them .

Benchmark: In this method, the IoT datasets are placed in the order of the290

hosts. When the former host is full, the datasets left are placed on the next

host. When the datasets have privacy conflicts, they are not placed on the same

hosts. This process is repeated until all datasets have been placed.

First Fit Decreasing-Privacy Reservation (FFD-PR): The IoT datasets

are sorted in descending order according to the dataset requests first. Then the295

sorted datasets are placed on the hosts. If the left resources of current host are

insufficient for the resource requirement of a dataset, the dataset is placed on

the host with enough resource next to this host. Specially, when placing each

dataset, the privacy-preservation are considered. This process is repeated until

all datasets have been placed.300

Best Fit Decreasing- Privacy Reservation (BFD-PR): The IoT datasets

and the hosts are both sorted in descending order according to the dataset re-

quest and the space of hosts first. Then the sorted datasets are placed on the

sorted hosts. If the left resources of the host are insufficient for the resource re-

quirement of the dataset, the dataset is placed on the host with enough resource305

next to this host in optimal principle. Specially, when placing each dataset, the

privacy-preservation are considered. This process is repeated until all datasets

have been placed.

The methods are implemented under the simulation tools by the CloudSim
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on a PC machine with 2 Intel Core i5-6500U 3.20GHz processors and 8GB RAM.310

The corresponding evaluation results are detailedly depicted in the following

sections.

4.2. Performance evaluation on IDP

Our proposed method tends to achieve a trade-off between multiple objec-

tives, which are improving the average resources utilization of hosts, optimizing315

the average data access time and reducing the energy consumption. We con-

ducted 50 experiments in the case of convergence for each dataset scale and

get multiple sets of results. In order to pick out a relatively best solution, we

use Simple Additive Weighting (SAW) and Multiple Criteria Decision Making

(MCDM) to construct the utility function, which is measured by [19]:320

V
′
(ci) =

1

3
· U(ci)− Umin(X)

Umax(X)− Umin(X)
+

1

3
· Tmax(X)− T (ci)

Tmax(X)− Tmin(X)

+
1

3
· Emax(X)− E(ci)

Emax(X)− Emin(X)
,

(24)

where U (ci), T (ci) and E (ci) represent the fitness of three objective functions

with the data placement strategy ci, respectively. Umax (X) and Umin (X) rep-

resent the maximum and minimum fitness for the resource utilization, Tmax (X)

and Tmin (X) represent the maximum and minimum fitness for the access time,

Emax (X) and Emin (X) represent the maximum and minimum fitness for the325

energy consumption. If Umax (X) = Umin (X), let U(ci)−Umin(X)
Umax(X)−Umin(X) = 1. Anal-

ogously, if Tmax (X) = Tmin (X) and Emax (X) = Emin (X), we adopt the

same calculation manner.

It is intuitive from Fig. 6 that the multiple sets of solutions are generated

in each dataset scale, the solutions are calculated with SAW and MCDM re-330

spectively and we obtain a relatively goal solution. Fig. 6a shows that goal

solution is solution-1 when the dataset scale is 200. Fig. 6b illustrates that goal

solution is solution-3 when the dataset scale is 400. Based on Fig. 6c, the goal

solution is solution-2 when the dataset scale is 600. When the dataset scale

is 800, based on Fig. 6d, the goal solution is solution-1. Fig. 6e shows that335
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Figure 6: Comparison of utility value with different scales of datasets by the generated solu-

tions of IDP.

goal solution is solution-1 when dataset scale is 1000. Fig. 6f shows that goal

solution is solution-2 when dataset scale is 1200. The experiments prove that

utility function can obtain a relatively balanced solution for arbitrary scale of

IoT datasets.

4.3. Comparison analysis340

In this subsection, we focus on evaluating the performance of our method

and making comparison with multiple methods under the same configuration.

The resource utilization and the energy consumption are two main metrics of

the resource usage in CDCs. Furthermore, the number of employed hosts is

closely related to the resource utilization and the average data access time is345

relevant to the energy consumption. The corresponding results are shown in

Fig. 7, Fig. 8, Fig. 9 and Fig. 10.
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Figure 7: Comparison of the number of employed physical hosts with different dataset scale

by Benchmark, FFD-PR, BFD-PR and IDP.

4.3.1. Comparison of the number of employed hosts

In Fig. 7, we first compare the number of employed hosts of four data place-

ment methods. Based on Fig. 7, it is indicated that IDP employs fewer physical350

hosts than the other basic method. With the increase of dataset scale, the

number of employed hosts of IDP is increasing, but the increasing is in a more

gentler way than other methods.

4.3.2. Comparison of resource utilization

Then we compare the average resource utilization of four data placement355

methods in Fig. 8. We find that with the increase of dataset scale, our proposed

method IDP can achieve better average resource utilization and maintain the

utility at a high level. This confirms our intuition: The increase of datasets

means that one host can actually be placed with more datasets (less space

wasted). Therefore, the resource utilization can be improved.360

4.3.3. Comparison of average data access time

Then the average data access time is compared in Fig. 9. From Fig. 9, IDP

cost fewer average data access time than the comparison method. However, with

the increase of dataset scale, the average data access time of IDP is increasing.
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Figure 8: Comparison of average resource utilization with different dataset scale by Bench-

mark, FFD-PR, BFD-PR and IDP.

This may be because the hosts seem to be more fully utilized with the increase365

of datasets, which means that in reality we do not need to employ too datasets

in a limited host.

4.3.4. Comparison of energy consumption

From section 2, the energy consumption is composed with the VM energy

consumption, the host energy consumption and the switche energy consumption.370

In Fig. 10, we first compare this three-energy consumption with different dataset

scale. Based on Fig. 10a, we find that with the increase of dataset scale, all

these methods have the increase of baseline energy consumption of VMs but

in the approach level. Fig. 10b illustrates IDP has less energy consumption of

active hosts. This may be because IDP employed fewer physical hosts. Fig. 10c375

indicates IDP has less energy consumption of switches for the reason of less

average data access time IDP taking.

Then the comparison of total energy consumption is conducted in Fig. 11,

which is intuitive that IDP obtains a better performance on the energy con-

sumption. With the increasing of dataset scale, the difference between IDP380

and the other methods is enlarging. This is because the energy consumption is
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Figure 9: Comparison of average data access time with different dataset scale by Benchmark,

FFD-PR, BFD-PR and IDP.
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Figure 10: Comparison on specific energy consumption with different dataset scale by Bench-

mark, FFD-PR, BFD-PR and IDP.

affected by the amount of hosts and switches.

5. Related Work

In recent years, with the development of IoT, large volume of data streams

from billions of interconnected heterogeneous devices are emitted for the re-385

quirements of processing in real time [20] [21] [22] [23]. Cloud computing which

has comparative advantages for data processing is of great benefit to process

the data from IoT applications [24] [25] [26] [27].
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Figure 11: Comparison of total energy consumption with different dataset scale by Benchmark,

FFD-PR, BFD-PR and IDP.

Due to the direct impact of data placement in cloud environment on data

access and data storage, there are multiple methods to improve the utilization390

efficiency of cloud resources [28] [29] [30] [31] [32]. Hajisami et al. [28] proposed

a reconfigurable solution based on C-RAN, which can be dynamically and effec-

tively adapt to the fluctuation of user demand to reduce the waste of resources

and improve the efficiency of resource utilization. Guo et al. [29] simulated the

resource allocation problem as a Vector Bin Packing Problem (VBPP) and de-395

signed a resource allocation strategy that minimizes the number of servers used

to maximize resources utilization rate. Fan et al. [30] proposed a VM-container

hybrid hierarchical resource scheduling mechanism to alleviate resource utiliza-

tion efficiency issues, dividing tasks into different levels and formulating initial

scheduling strategies for different levels of tasks. Agarwal et al. [31] presented400

a system named Volley which can analyze the logs of datacenter requests and

output migration recommendations to address data placement problem. Yu et

al. [32] proposed the sketch-based data placement (SDP) to lower the overhead

and keep the benefits of the data placement.

Energy consumption which is generated by the management of resources in405

the cloud datacenter is a key factor to consider for data placement. Hajisami et
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al. [33] proposed an elastic resource deployment framework called Elastic-Net to

solve the user demand fluctuations while minimizing energy consumption in the

cloud. Aksanli et al. [34] introduced an online job migration algorithm between

data centers to reduce overall energy consumption based on assessments of the410

advantages of short-term green energy forecasting for data center scale. Access

time is another key factor. Jiao et al. [35] proposed an optimization approach by

leveraging graph cuts to optimize multi-objective data placement across clouds

for socially aware services.

More and more attentions have been paid on data security [36] [37]. Several415

works have been investigated for the privacy preservation in the cloud environ-

ment [38] [39]. Some were discussed about separating private data from public

data and placing them in trusted private cloud and untrusted public cloud

respectively [40] [41] [42] [43] [44] [45]. Zhou et al. [41] presented a set of tech-

niques for privacy-aware data retrieval by splitting data and storing on hybrid420

cloud. Huang et al. [42] proposed a scheme to achieve image data privacy over

hybrid cloud efficiently and proposed a one-to-one mapping function for image

encryption. Wang et al. [43] described several methods about protecting data

security in hybrid cloud and discussed an authentication intercloud model. Abr-

ishami et al. [44] presented a scheduling algorithm to protect data privacy while425

minimizing the cost and satisfy the users limitation. Stout et al.[45] surveyed

the shortcomings and challenges of securing IoT devices and their interactions

with cloud and enterprise applications.

Currently, an energy efficient network architecture for IoT applications has

been proposed [18]. The method is robust, however, to the best of our knowl-430

edge, the existing work has not taken the privacy in data placement into consid-

eration. With the observations above, it is still a challenge to realize IoT data

placement to optimize the resource utilization, energy consumption and access-

ing time, while taking the data privacy into account. In view of this challenge,

an IoT data placement method with privacy preservation in cloud environment435

is proposed this paper.
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6. Conclusion and Future Work

The existing works of IoT data placement in cloud environment have not

taken privacy into account. In this paper, an IoT-oriented data placement

method with privacy preservation in cloud environment is proposed. We con-440

struct a systematic model of resource utilization, energy consumption and access

time of CDCs when deploying the IoT data of privacy conflict in the cloud envi-

ronment. The proposed method is designed to improve the average resource uti-

lization of CDCs and access performance while reduce the energy consumption

of CDCs based on the Non-dominated Sorting Genetic Algorithm II (NSGA-445

II). Through adequate experimental evaluation and comparison analysis, the

efficiency and effectiveness of our proposed method are validated.

For future work, we will adjust and extent our method to implement the

IoT data placement in exact physical environment. accodingly, the privacy

preservation strategy will be improved on the privacy constraints of the real-450

time IoT data.
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