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ABSTRACT
Conventional Neural Network (NN) control for robots use radial basis function
(RBF) and for n-link robot with online control, the number of nodes and weight-
ing matrix increases exponentially, which requires a number of calculations to be
performed within a very short duration of time. This consumes a large amount of
computational memory and may subsequently result in system failure. To avoid this
problem, this paper proposes an innovative NN robot control using a dimension
compressed RBF (DCRBF) for a class of n-degree of freedom (DOF) robot with
full-state constraints. The proposed DCRBF NN control scheme can compress the
nodes and weighting matrix greatly and provide an output that meets the prescribed
tracking performance. Additionally, adaption laws are designed to compensate for
the internal and external uncertainties. Finally, effectiveness of the proposed method
has been verified by simulations. The results indicate that the proposed method, in-
tegral Barrier Lyapunov Functions (iBLF) avoids the existing defects of Barrier
Lyapunov Functions (BLF) and prevents the constraint violations.

KEYWORDS
Neural network (NN); Radial basis function (RBF); Integral Barrier Lyapunov
Functions (iBLF); Prescribed trajectory tracking

1. Introduction

With the widely use of complex robot manipulators which are nonlinear systems in our
modern society and industry, research into robot technologies has attracted enormous
attention Alford and Belyeu (1984); Cheng, Hou, Tan, and Zhang (2012); Gueaieb,
Karray, and Al-Sharhan (2007); G.-W. Lee and Cheng (1996); T. Li, Duan, Liu, Wang,
and Huang (2016); Na, Mahyuddin, Herrmann, Ren, and Barber (2015); Namvar and
Aghili (2005)Alford and Belyeu (1984); Cheng et al. (2012); Gueaieb et al. (2007);
G.-W. Lee and Cheng (1996); T. Li et al. (2016); Na et al. (2015); Namvar and Aghili
(2005). Meanwhile, the control of robot system in the presence of uncertain parameters
and motion constraints were extensively studied (Z. Li, Ge, & Ming, 2007; Tang, Ge,

*Corresponding author: Chenguang Yang. Email: cyang@ieee.org



Tee, & He, 2016a). In recent decades, adaptive control of complex nonlinear systems
such as robot manipulators with full-state constraints and uncertainties has been de-
veloped to deal with theoretical challenges and practical needs (Cheng, Cheng, Yu,
Deng, & Hou, 2016; Y. Huang, Na, Wu, Liu, & Guo, 2015; T. Lee, Koh, & Loh, 1996;
G.-H. Yang & Ye, 2006). In the field of adaptive control, neural networks (NNs) are
always considered as an efficient way to handle the uncertain or poorly known dynam-
ics due to their universal approximation capabilities (Cheng, Liu, Hou, Yu, & Tan,
2015; Hou, 2001; Kennedy & Chua, 1988; Z. Li, Li, & Feng, 2016). It is very diffi-
cult to establish exact mathematical dynamics models with various uncertainties e.g.,
unknown payloads (Arefi & Jahed-Motlagh, 2013; Arefi, Jahed-Motlagh, & Karimi,
2015; G.-H. Yang & Wang, 2001; Zhang & Ge, 2009). However, by exploiting NN ap-
proximation, many complex and challenging models can be established easier but not
sacrificing many characteristics of accurate models (Chen & Ge, 2013; Dai, Wang, &
Wang, 2014; Gao & Selmic, 2006; T. H. Lee & Harris, 1998; Z. Li, Ge, Adams, & Wi-
jesoma, 2008). In (C. Yang, Wang, Cheng, & Ma, 2016), a direct adaptive NN scheme
is presented for a class of uncertain nonlinear strict-feedback systems. By utilizing
a special property of the affine term, the developed scheme can avoid the controller
singularity problem completely. The adaptive control of a strict feedback nonlinear
systems using multilayer neural network was studied in (Zhang, Ge, & Hang, 2000) so
as to guarantee the uniform ultimate boundedness of the closed-loop adaptive systems.
In (C. Yang, Jiang, Li, He, & Su, 2017), RBF NN based control for coordinated dual
arms robots have been proposed to settle the uncertainties. (He, Chen, & Yin, 2016)
utilized NN of the conventional RBF NN structure for n-link robot but with lots of
nodes. In this paper, an innovative DCRBF NN is proposed. The n −DOF input is
split into n 1−DOF inputs and built a conventional RBF NN for each 1−DOF input.
Subsequent mathematical manipulations provide the output of every node in each NN
(by adding two layers) and it ensures that the tracking performance of the controller
output does not deteriorate. In this way, we can compress the number of nodes and
the weights in an extreme degree with the performance similar to the traditional one,
which might be important for particular practical applications by saving time and en-
ergy. The approximation error between the output of DCRBF and conventional RBF
is proved to be bounded.

The stabilization of robot system is another important requirement of controller
design. In practical systems, violation of constraints may cause degeneration of the
control performance or even system failures (L. Huang, Ge, & Lee, 2006; Su, Leung,
& Zhou, 1992; Tee, Ren, & Ge, 2011). To handle with the constraint problem, many
methods have been proposed such as model predictive control (MPC), optimal control
and reference governors so on. It is always necessary to know the exact model which is
quiet complicated for complex robot when utilizing the method of MPC and optimal
control (Berkovitz, 2013; Luo, Wu, & Li, 2015; Mayne, Rawlings, Rao, & Scokaert,
2000; Rubio, 2012). However, in the situation of uncertainties or some sophisticated
model which cannot be calculated, these control methods can not be employed and it
is necessary to find some alternatively solutions.

To solve the problem of system control in the presence of constraints and uncertain-
ties, Barrier Lyapunov Functions (BLF) are popularly used, since they have the ability
to shape the control performance (Liu & Tong, 2017). For example, the tracking con-
trol problem is studied in (He et al., 2016) for an uncertain n-link robot with full-state
constraints and a BLF is designed to guarantee the uniform ultimate boundedness of
the closed-loop system. In (Tee et al., 2011), BLF is employed at the outset to pre-
vent the output from violating the time-varying constraint in strict feedback nonlinear
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systems. However, BLF-based controls have its limitations. One is that the feasibility
conditions have a tendency to be conservative when ensuring constraint satisfaction,
due to the original state are enforced indirectly by imposing transformed constraints
on the errors. In (He, Zhang, Ge, & Liu, 2014) iBLF based boundary controls was
proposed for a class of inhomogeneous Timoshenko beam satisfying the needs of sup-
pressing the undesirable vibrations and preventing the constraint transgression. In
(Tang, Ge, Tee, & He, 2016b), iBLFs are constructed to handle the unknown affine
control gains with state constraints . In order to accomplish the prescribed tracking
performance considering transient and steady states, the iBLF technique is exploited
in this paper. The main contribution of this paper are as follows:

• An innovative DCRBF NN is proposed and it can be employed to avoid the
exponential growth of nodes and weights with an increase in the DOF. Addi-
tionally, it inherently takes care of the inevitable uncertainties in the dynamics
of the robot.
• The mathematical proof of the DCRBF NN is presented. A rigorous proof of

the new algorithm is presented and its effectiveness is verified in theory and
simulation.
• In order to avoid the violation of constraints while using BLF on n-link robots,

a novel iBLF is utilized to design the control strategy which incorporates the
output constraints and provides an enhanced system stability.

The rest of the paper is organized as follows. Section II gives the problem formula-
tion of the n-link robot manipulator and some useful preliminaries for deriving proof.
In Section III, The control design and the stability confirmation for the system are
proposed. Besides, a comparison between conventional RBF NN control and DCRBF
NN control is demonstrated and the mathematical proof of DCRBF NN is presented.
Simulation studies are carried out to testify the effectiveness of the designed control
and DCRBF NN in Section IV.

2. Problem Formulation and Preliminaries

2.1. System Description

The dynamics of an n-link rigid robotic system in the following Lagrange form (Craig,
2005):

M(q)q̈ + C(q, q̇) +G(q) = τ(t)− JT f(t). (1)

where q, q̇, q̈ ∈ Rn represent the position, velocity and acceleration respectively;
M(q) ∈ Rn×n denotes a symmetric positive definite inertia matrix; C(q, q̇) ∈ Rn×n
is the centripetal and Coriolis torques, which is hard to obtain; G(q) ∈ Rn×n is the
unknown gravitational force; JT is the Jacobian matrix for f(t); f(t) represents the
unknown internal and external disturbances such as friction and so on; τ ∈ Rn×n
represents the input torques.

Property 1. The matrix M(q) is symmetric and positive definite and there exist
positive constraints 0 < m1 < m2 so that M(q)satisfies m1I < M(q) < m2I.

Due to the known position and velocity of robot system , we can obtain the accel-
erations. Choosing x1 = q ∈ Rn, x2 = q̇ ∈ Rn, we have the description of the robot
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as {
ẋ1 = x2,
ẋ2 = M−1(x1)[τ − C(x1, x2)−G(x1)− JT (x1)f(t)],

(2)

According to property 1, there exist positive constants n1, n2, such that n1I <
M−1 < n2I. The desired trajectory of the position is xd(t) = [qd1(t), qd2(t), ..., qdn(t)]T

and the desired trajectory is α(t) = [α1(t), α2(t), · · · , αn(t)]. Assuming all signals
and state constraints are bounded, we have constants kc1, such that −kc1 ≤ x1(t) ≤
kc1, ∀t ≥ 0, where kc1 = [kc11, kc12, ..., kc1n]T are positive constant vectors.

2.2. Required Technology Lemmas and Definitions

Lemma 2.1 ((He et al., 2016)). If there existe a Lyapunov function V (x) ,which is
positive definite and continuous satisfying ξ1(||x||) ≤ V (x) ≤ ξ2(||x||) so that V̇ (x) ≤
−c1V (x)+c2, where c1, c2 are the positive constants and ξ1, ξ2 are the functions making
Rn → R, the parameters and states of the system will remain in a compact set and
eventually converge to a specific compact sets.

Lemma 2.2. For the adaptive law (50), there exists a compact set

Ωw = {Ŵk,γ |‖Ŵk,γ‖ ≤ nm2 s

θγ
} (3)

where for||S(Z)|| ≤ s, ||S′(Z)|| ≤ nm2s with s > 0, such that Ŵk,γ(t) ∈ Ωw, ∀t ≥ 0

provided that Ŵk,γ(0) ∈ Ωw.

Proof. For the conventional RBF NN, according to the nature of Gauss’s function,
it can be seen that there exists a positive constant s so that ||S(Z)|| ≤ s. According
to (39), the structure of our S′(Z), we know that for i = 1, 2, · · · , nm4, |S′(Z)i| ≤√
ns. Thus, for S′(Z) = [S′(z)1, S

′(z)2, · · · , S′(z)nm4 ], we have ||S′(Z)|| ≤ nm2s, The
according to (Craig, 2005), we can obtain (3).

Lemma 2.3 (Barbalat’s Lemma). Suppose f(t) ∈ C1(a,∞) and limt→∞f(t) = α
where α ≤ ∞. If ḟ(x) is uniformly continuous, then limt→∞ḟ(t) = α.

Lemma 2.4 (RBF approximation(Wang & Yang, 2017)). If there allow sufficient
nodes, under suitable width ∆ and node centers δ̄, RBF NN can approximate any
smooth function Fa(x) over a compact set x ∈ Ωx with convergent errors: Fa(x) =
W ∗S(x) + η(x) where W ∗ is the ideal weight matrix, η(x) is the convergent errors,
satisfying ||η(x)|| ≤ η̄, η̄ is the constant vector.

Lemma 2.5 (RBF and optimal weights). According to (Haykin, Haykin, Haykin, &
Haykin, 2009), without loss of generality, we can use least-square method and recursive
least-square method to solve the optimal wights and there is equivalence between two
methods in mathematical terms. For leat-square method, we have

W = φ(Z)†g(ni) (4)

where ni is the number of training sample and g(ni) is ni× 1 desired response.† is the
symbol for generalized inverse. φ(Z) = [S(Z1)T , S(Z2)T , · · · , S(Zni)

T ]T is a interpo-
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lating matrix. As for using recursive least-square method, we have

W (ni) =[φ(ni)
Tφ(ni)]

−1S(ni)d(ni)

+W (ni − 1) (5)

where φ(ni) = [S(Z1)T , S(Z2)T , · · · , S(Zni)
T ]T , S(ni) = S(Zni) and d(ni) is the de-

sired response of ni sample.

3. Control Design

3.1. Integral Barrier Lyapunov Functions Design

3.1.1. Integral Barrier Lyapunov Functions Design

Before proceeding to control design, we denote e = [e1, e2, · · · , en]T = x1 − xd, z =
[z1, z2, · · · , zn]T = x2 − α.

Assumption 1. For i = 1, 2, · · · , n, there exists kai = kc1i + xo and xo is a small
positive constant,such that x1 = [x11, x12, · · · , x1n] and the desired trajectory xd =
[xd1, xd2, · · · , xdn] satisfy

|x1i| ≤ kc1i < kai, |xdi| ≤ kc1i < kai (6)

for all i = 1, 2, · · · , n.

For the n− link robotic arm, consider an iBLF candidate

V1 =

n∑
i=1

∫ ei

0

σk2
ai

k2
ai − (σ + xdi)2

dσ (7)

where ei = x1i−xdi and xdi are continuously differentiable functions satisfying |xdi| <
kai for i = 1, 2, · · · , n. According to Property 3, we can see that V1 is positive definite.

Differentiating V1 with respect to time, we have

V̇1 =

n∑
i=1

k2
aiei(zi + αi)

k2
ai − x2

1i

−
n∑
i=1

ρieiẋdi (8)

where

ρi =

∫ 1

0

k2
ai

k2
ai − (βei + xdi)2

dβ (9)

=
kai
2ei

ln
(kai + ei + xdi)(kai − xdi)
(kai − ei − xdi)(kai + xdi)

(10)

Then, a virtual controller αi can be designed as

αi = (−k1iei +
(k2
ai − x2

1i)ẋdi
k2
ai

ρi), i = 1, 2, · · · , n (11)
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where k1i is a positive control gain for i = 1, 2, · · · , n, we obtain

V̇1 = −
n∑
i=1

k2
aik1ie

2
i

k2
ai − x2

1i

+

n∑
i=1

k2
aieizi

k2
ai − x2

1i

(12)

Then, we design a positive Lyapunov candidate function as

V2 = V1 +
1

2
zTMz (13)

Then differentiating V2 with respect to time leads to

V̇2 = V̇1 + zTMż

= −
n∑
i=1

k2
aik1ie

2
i

k2
ai − x2

1i

+

n∑
i=1

k2
aieizi

k2
ai − x2

1i

+ zT [τ − JT (x1)f

− C(x1, x2)x2 −G(x1)−M(x1)α̇] (14)

According to the expression of V̇2, we design the control law as τ = τ1 + τ2, where
according to lemma 2.4, τ1 uses adaptive dimension compressed RBF neural network
control described in subsection B and τ2 is designed as

τ2 = −(zT )†
n∑
i=1

k2
aieizi

k2
ai − x2

1i

− k2z (15)

where k2 is the control gain, and k2i, i = 1, 2, · · · , n are positive constants. Then

substituting τ into (14), according to Moore-Penrose inverse, V̇2 = −
∑n

i=1
k2
aik1ie2

i

k2
ai−x2

1i
,

when z = [0, 0, · · · , 0]T . According to the lemma 2.3, we can still draw the asymptotic
stability of the system. Otherwise, in the case of z 6= [0, 0, · · · , 0]T , we obtain

V̇2 = −
n∑
i=1

k2
aik1ie

2
i

k2
ai − x2

1i

− zTk2z + zT [τ1 − JT (x1)f − C(x1, x2)x2

−G(x1)−M(x1)α̇] (16)

3.1.2. Useful Property

Property 2. For any positive constant kai, the following inequality holds for any ei
and xdi, in the interval |xdi| < kai,|ei + xdi| = |x1i| < kai, for i = 1, 2, · · · , n:

V1 =

n∑
i=1

∫ ei

0

σk2
ai

k2
ai − (σ + xdi)2

dσ

≤
n∑
i=1

k2
aie

2
i

kai
2 − (ei + xdi)2

(17)
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Proof. Denote p(σ, xdi) = (σk2
ai)/(k

2
ai − (σ + xdi)

2). We can show that

n∑
i=1

∂p

∂σ
=

n∑
i=1

k2
ai + σ2 − x2

di

k2
ai − (σ + xdi)2

(18)

which is positive in the set |σ + xdi| < kai. Since p(0, xdi) = 0 for |xdi| < kai, and
p(σ, xdi) is monotonically increasing with the σ in the set |σ + xdi| < kai, we can
obviously see that

n∑
i=1

∫ ei

0

σk2
ai

k2
ai − (σ + xdi)2

dσ ≤
n∑
i=1

eip(ei, xdi) (19)

for |ei + xdi| < kai, which leads to the (17) after substituting for p.

Property 3. By Assumption1, the V1 is positive definite, continuously differentiable,
and satisfies the decrescent condition in the set |x1i| ≤ kc1i < kai, for i = 1, 2, · · · , n:

n∑
i=1

e2
i

2
≤ V1 ≤

n∑
i=1

e2
i

∫ 1

0

βk2
ai

k2
ai − (eiβ + sgn(ei)kc1i)2

dβ (20)

which is useful for establishing uniformly stability.

Property 4. Using L’Hôpital’s rule, it can be shown that

lim
ei→0

ρi = lim
ei→0

k2
ai

k2
ai − (ei + xdi)2

(21)

=
k2
ai

k2
ai − x2

di

(22)

Since |xdi| ≤ kc1i < kai, for i = 1, 2, · · · , n, by Assumption 1, ρi is bounded and
well-defined in a neighborhood of ei = 0.

3.2. NN Design

3.2.1. Dimension Split for Radial Basis Function

Figure 1 shows the architecture of the inputs space of an adaptive neural network
control with n−DOF arm. Z = [x1, x2, α, α̇]T are the inputs, which has 4n dimensions.
If each dimension has m types of centres, there will be m4n dots and nm4n weights in
neural network. Thus it can be seen that with the degree of freedom n increasing, the
dots and weights increase exponential.

Without loss of generality, for n− link arms (n−DOF ), let us express the conven-
tional RBF NN as the form below.

F (Z) = W TS(Z) (23)

where W = [W T
1 ,W

T
2 , · · · ,W T

n ] are the weights of the neural networks, S(Z) =
[S(Z)1, S(Z)2, · · · , S(Z)m4n ]T are the basis functions. Without loss of generality, we
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Figure 1. Conventional RBF NN

choose S(Z)i where i = 1, 2, · · · ,m4n, and expanse it. So we can obtain

S(Z)i = e−
‖Z−δ̄i‖

2

∆2

= e−

n∑
j=1

(ej−δi,j)2+
n∑
j=1

(zj−δi,n+j)2+
n∑
j=1

(αj−δi,2n+j)2+
n∑
j=1

(α̇j−δi,3n+j)2

∆2 (24)

where ∆ is the bandwidth and δ̄i = [δi,1, δi,2, · · · , δi,4n], i = 1, 2, · · · ,m4n is the ith
centre. It should be noted that the aforementioned expression of S(Z)i can be split by
each dimension and recombined as

S(Z)i = e−

n∑
j=1

((ej−δi,j)2+(zj−δi,n+j)2+(αj−δi,2n+j)2+(α̇j−δi,3n+j)2)

∆2

=

n∏
j=1

fkj (25)

where kj = 1, 2, · · · ,m4,for j = 1, 2, · · · , n,and

fkj = e−
(ej−δkj,j)2+(zj−δkj,n+j)2+(αj−δkj,2n+j)2+(α̇j−δkj,3n+j)2

∆2 (26)
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Then substituting (25) and (26) into (23), we can obtain the expression of RBF NN
after the dimension split. Choose a certain dimension γ of F (Z) to show it below,
γ = 1, 2, · · · , n.

F (Z)γ = W T
γ S(Z)

=

m4∑
k1=1

fk1

m4∑
k2=1

fk2

m4∑
k3=1

fk3
· · ·

m4∑
kn=1

ωk1,k2,··· ,kn,γfkn (27)

where

Wγ =



ωk1=k2=k3=···=kn=1,γ

ωk1=2,k2=k3=···=kn=1,γ
...

ωk1=m4,k2=k3=···=kn=1,γ

ωk1=1,k2=2,k3=k4=···=kn=1,γ

ωk1=2,k2=2,k3=k4=···=kn=1,γ
...

ωk1=m4,k2=2,k3=k4=···=kn=1,γ
...

ωk1=1,k2=m4,k3=k4=···=kn=1,γ

ωk1=2,k2=m4,k3=k4=···=kn=1,γ
...

ωk1=m4,k2=m4,k3=k4=···=kn=1,γ
...

ωk1=k2=k3=k4=···=kn=m4,γ



(28)

and

S(Z) =



fk1=1fk2=1fk3=1fk4=1 · · · fkn=1

fk1=2fk2=1fk3=1fk4=1 · · · fkn=1
...

fk1=m4fk2=1fk3=1fk4=1 · · · fkn=1

fk1=1fk2=2fk3=1fk4=1 · · · fkn=1

fk1=2fk2=2fk3=1fk4=1 · · · fkn=1
...

fk1=m4fk2=2fk3=1fk4=1 · · · fkn=1
...

fk1=1fk2=m4fk3=1fk4=1 · · · fkn=1

fk1=2fk2=m4fk3=1fk4=1 · · · fkn=1
...

fk1=m4fk2=m4fk3=1fk4=1 · · · fkn=1
...

fk1=m4fk2=m4 = · · · = fkn=m4



(29)
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3.2.2. Compression Matrix A

For the better illustration of DCRBF, let us introduce an operator matrix A(m4n ×
nm4)first, which could be used to compress the numbers of the weights. To construct
compression matrix A, a series of m4 × m4 submatrices ψi, for i = 1, 2, 3 · · · ,m4 is
built as

ψ1 =


1 0 · · · 0
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

 (30)

ψ2 =


0 1 · · · 0
0 1 · · · 0
...

...
. . .

...
0 1 · · · 0

 (31)

...

ψm4 =


0 0 · · · 1
0 0 · · · 1
...

...
. . .

...
0 0 · · · 1

 (32)

Then use ψi and unit matrix E to design the compression matrix A:

A =



E ψ1 ψ1 ψ1 · · · ψ1

E ψ2 ψ1 ψ1 · · · ψ1
...

...
...

...
. . .

...
E ψm4 ψ1 ψ1 · · · ψ1

E ψ1 ψ2 ψ1 · · · ψ1

E ψ2 ψ2 ψ1 · · · ψ1
...

...
...

...
. . .

...
E ψm4 ψ2 ψ1 · · · ψ1
...

...
...

...
. . .

...
E ψ1 ψm4 ψ1 · · · ψ1

E ψ2 Gm4 ψ1 · · · ψ1
...

...
...

...
. . .

...
E ψm4 ψm4 ψ1 · · · ψ1
...

...
...

...
. . .

...
E ψm4 ψm4 ψm4 · · · ψm4



(33)

3.2.3. DCRBF

Inspired by expression format of conventional RBF NN in (27), a dimension-split RBF
NN of n − DOF is built in Figure2, which only has nm4 dots and nm4 weights for
each degree of freedom of the outputs, which avoids the exponential growth with the
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Figure 2. Dimension compressed RBF NN

DOF. As Figure2 shown, in input layer, each DOF of x1, x2, α and α̇ are taken out
from the input Z, and reassembled as a new input vector ξi = [x1i, x2i, αi, α̇i], for i =
1, 2, · · · , n. For each new input vector ξi, in conventional RBF layer, we build a m4 −
dot conventional RBF NN. The mathematical manipulation layers consist of addition
layer and multiplication layer. In the output layer, there are m4 weights for each
conventional RBF NN. Thus, there are much less nodes and weights to be built and
updated (nm4 nodes and n2m4 weights). The number n denoting DOF is successfully
dropped from power side to multiplication side, which avoids the exponential increasing
of the number of nodes and weights with DOF.

Similar to (27), the output of DCRBF NN in γ dimension can be formulated as

W T
k,γS

′(Z) =

m4∑
k1=1

ωk1,γfk1
(

m4∑
k2=1

fk2

m4∑
k3=1

fk3
· · ·

m4∑
kn=1

fkn)

+

m4∑
k2=1

ωk2,γfk2
(

m4∑
k1=1

fk1

m4∑
k3=1

fk3
· · ·

m4∑
kn=1

fkn)

+ · · ·+
m4∑
kn=1

ωkn,γfkn(

m4∑
k1=1

fk1

m4∑
k2=1

fk2
· · ·

m4∑
kn−1=1

fkn−1
) (34)

where

Wk,γ =[ωk1=1,γ , ωk1=2,γ , · · · , ωk1=m4,γ , ωk2=1,γ , ωk2=2,γ , · · ·
, ωk2=m4,γ , · · · , ωkn=1,γ , ωkn=2,γ , · · · , ωkn=m4,γ ]T (35)
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and

S′(Z) =



fk1=1(
∑m4

k2=1 fk2

∑m4

k3=1 fk3
· · ·
∑m4

kn=1 fkn)

fk1=2(
∑m4

k2=1 fk2

∑m4

k3=1 fk3
· · ·
∑m4

kn=1 fkn)
...

fk1=m4(
∑m4

k2=1 fk2

∑m4

k3=1 fk3
· · ·
∑m4

kn=1 fkn)

fk2=1(
∑m4

k1=1 fk1

∑m4

k3=1 fk3
· · ·
∑m4

kn=1 fkn)

fk2=2(
∑m4

k1=1 fk1

∑m4

k3=1 fk3
· · ·
∑m4

kn=1 fkn)
...

fk2=m4(
∑m4

k1=1 fk1

∑m4

k3=1 fk3
· · ·
∑m4

kn=1 fkn)
...

fkn=1(
∑m4

k1=1 fk1

∑m4

k2=1 fk2
· · ·
∑m4

kn−1=1 fkn−1
)

fkn=2(
∑m4

k1=1 fk1

∑m4

k2=1 fk2
· · ·
∑m4

kn−1=1 fkn−1
)

...

fkn=m4(
∑m4

k1=1 fk1

∑m4

k2=1 fk2
· · ·
∑m4

kn−1=1 fkn−1
)



(36)

Comparing (36), (35) with (28), (29), using operator matrix A, for γ = 1, 2, · · · , n,
it can be seen that

AWk,γ = Wγ (37)

and for Wk = [W T
k,1,W

T
k,2, · · · ,W T

k,n],

AWk = W (38)

ATS(Z) = S′(Z) (39)

3.2.4. Solution of Wk and Approximation Error

Considering a training procedure for the weights, according to lemma 2.5, use a least-
square method to solve the weights W and we can obtain the optimal weights W ∗γ , for
γ = 1, 2, · · · , n.

W ∗γ = φ(Z)†gγ(ni) (40)

where ni is the number of training sample and gγ(ni) is ni × 1 desired response in
dimension γ of F (Z). φ(Z) = [S(Z1)T , S[(Z2)T , · · · , S(Zni)

T ]T is a ni ×m4n interpo-
lating matrix Considering an error constant m4n ×m4n matrix κ:

κ = E1 −AA† (41)

where E1 is a m4n × m4n unit matrix. Considering (37) and (39), the least-square
method solvation of Wk can be derived of

φAWk,γ = gγ(ni) (42)
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where A is the compress matrix derived above and φk(Z) = φA =
[S′(Z1), S′(Z2), · · · , S′(Zni)]T is a ni × nm4 interpolating matrix for S′(Z).The op-
timal solution of W ∗k,γ is

W ∗k,γ = A†φ†gγ(ni)

= A†W ∗γ (43)

The weights approaching error ε can be expressed as

εγ = W ∗γ −AW ∗k,γ
= κW ∗γ (44)

which is a constant for γ = 1, 2, · · · , n. Using the expression of εγ , and the output
approximation error µγ(Z) can be expressed as

µγ(Z) = W ∗γ
TS(Z)−W ∗k,γ

TS′(Z)

= W ∗γ
T (E1 −AA†)TS(Z)

= (κW ∗γ )TS(Z) (45)

According to lemma 2.2

|µγ(Z)| = |εTγ S(Z)| ≤ µ̄γ (46)

where µ̄γ =‖ εTγ ‖ s is a positive constant.
It can be seen that the DCRBF can obtain the similar desired response as con-

ventional RBF with much less weights and dots,and a transform from conventional
RBF to DCRBF with a bounded error µ̄γ for γ = 1, 2, · · · , n is accessible by using the
operator matrix A.

3.3. Stability Analysis

Considering the dynamics of robot in V̇2, applying DCRBF described in subsection B,
we see that over a compact set ΩZ

(Ŵ T
k − W̃ T

k )S′(Z) = W ∗k
TS′(Z) = W ∗TS(Z)− µ(Z)

= −JT (x1)f − C(x1, x2)x2 −G(x1)−M(x1)α̇− µ(Z)− η(Z) (47)

where W̃k = Ŵk − W ∗k and η(Z) is the NN approximation error satisfying
|η(Z)| ≤ η̄, with η̄ > 0 as an unknown constant. According to (46), µ(Z) =
[µ(Z)1, µ(Z)2, · · · , µ(Z)n] satisfy |µ(Z)| ≤ µ̄, where µ̄ = [µ̄1, µ̄2, · · · , µ̄n]. We pro-

pose τ1 = −ŴkS
′(Z), where ŴkS

′(Z) is used to approximate W ∗kS
′(Z). The adaptive

NN robot control law is designed as

τ = τ1 + τ2

= −(zT )†
n∑
i=1

k2
aieizi

k2
ai − x2

1i

− k2z − ŴkS
′(Z) (48)
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Considering the following Lyapunov candidate function:

V3 = V2 +
1

2

n∑
γ=1

W̃ T
k,γQ

−1
γ W̃k,γ (49)

for γ = 1, 2, · · · , n, where Qγ are positive definitive matrices. The adaptive law is given
as follow:

˙̂
Wk,γ = Qγ [S′(Z)zγ − θγŴk,γ ] (50)

where θγ > 0(γ = 1, 2, · · · , n) are gain constants. Differentiating V3 with respect to
time, yields

V̇3 = V̇2 +

n∑
γ=1

W̃ T
k,γQ

−1
γ

˙̃
W k,γ (51)

Substituting (48), (47) and (50) into (51), we obtain

V̇3 =−
n∑
i=1

k2
aik1ie

2
i

k2
ai − x2

1i

− zTk2z + zT (η(Z) + µ(Z)− W̃kS
′(Z))

+

n∑
i=1

k2
aieizi

k2
ai − x2

1i

− zT (zT )†
n∑
i=1

k2
aieizi

k2
ai − x2

1i

+

n∑
γ=1

W̃ T
k,γS

′(Z)zγ −
n∑
γ=1

W̃k,γθγŴk,γ (52)

when z = [0, 0, · · · , 0]T , V̇2 = −
∑n

i=1
k2
aik1ie2

i

k2
ai−x2

1i
. We can still draw the asymptotic sta-

bility of the system according to the lemma 2.3. In the case of z 6= [0, 0, · · · , 0]T , we
have

V̇3 ≤−
n∑
i=1

k2
aik1ie

2
i

k2
ai − x2

1i

− zTk2z + zT z +
1

2
(‖ µ̄ ‖2 + ‖ η̄ ‖2)

−
n∑
γ=1

W̃k,γθγŴk,γ

≤−
n∑
i=1

k2
aik1ie

2
i

k2
ai − x2

1i

− zT (k2 − I)z +
1

2
(‖ µ̄ ‖2 + ‖ η̄ ‖2)

−
n∑
γ=1

(θγ −
1

2
θ2
γ) ‖ W̃k,γ ‖2 +

1

2

n∑
γ=1

‖W ∗k,γ ‖2 (53)

Thus, considering Property 2 we can obtain

V̇3 ≤ −pV3 + C (54)
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where

p = min[k1i,
λmin(2(k2 − I))

λmax(M)
,
2(θγ − 1

2θ
2
γ)

λmax(Q−1
γ )

] (55)

C =
1

2
(‖ µ̄ ‖2 + ‖ η̄ ‖2) +

1

2

n∑
γ=1

‖W ∗k,γ ‖2 (56)

where λmin(•) and λmax(•) denote the minimum and maximum eigenvalues of matrix
•. To ensure p > 0, k2 and θγ must satisfy the following conditions

λmin(2(k2 − I)) > 0 (57)

0 < θγ <
√

2 (58)

If C can be zero, the system can be said to achieve the exponential stability. How-

ever, considering the approximation error of NN, for our controller, c = ‖µ̄‖2‖η̄‖2
2 which

is a positive constant. Thus, the system can only be obtained stable instead of expo-
nential stability.

Theorem 3.1. According to Property 2, we can know that x1i = ei + xdi < kai is
bounded. For the condition satisfies −kai < −kc1i ≤ x1i ≤ kc1i < kai, according to (6)
and (7), we have −(kai− kc1i) < ei < (kai− kc1i), which is bounded. Then considering
the definition of α in (11) and Property 4, α is bounded too. According to (54), lemma
2.1, Property 3 and in terms of (7), (13) and (49), we can safely conclude the e, z and

NN weight estimated error W̃k are bounded. In the term of the boundness of α and z,
according to x2 = z+α, x2 is bounded. Thus, we can safely say that the signals of the
closed-loop system are semiglobally uniformly bounded (SGUB). And the closed-loop
error signals e and z will remain within the compact sets Ωe, Ωz, respectively, defined
by

Ωe : = {e ∈ Rn | |ei| ≤
√

(kai − kc1i)2(1− e−D)} (59)

Ωz : = {z ∈ Rn | ||z|| ≤
√

D
λmax(M)} (60)

where i = 1, 2, · · · , n and D = 2(V3(0) + C/p), p and C are two positive constants.

Remark 1. The designed parameter kai in the controller can be chosen simply as
positive and the matrix k2 should satisfy the condition in (57). The gains in NN
adaptive law Qγ and θγ should be positive. According to (58), θγ should also be smaller

than
√

2. In terms of (55),(59),(60), if the parameters kai, k2 and θγ are chosen to be
relatively small, while Qγ chosen relatively large, then the amplitude of trucking error
could be made smaller.

15



Figure 3. Structure of the system

4. Simulation Studies

In order to test the validity of the control, we have done a simulation on 2-DOF robot
manipulator which have two revolute joints in the vertical plane. In the model which
is shown Figure 3, the manipulator material is uniform. We define mi, li, lki, Ii as the
mass, the length of link i, the center distance of link i and the inertia of link i, i = 1, 2.
q = [q1, q2]. Other simulation parameters are shown in Table. 1.

According to the method of (Craig, 2005), we can get the dynamics parameters of
the robot as follows:

G(q) =

[
(m1lk2 +m2l1)g cos q1

m2lk2g cos(q1 + q2)

]
(61)

M(q) =

m1l
2
k1 + I1 + I2 +m2(l21 + l2k2 + 2l1lk2 cos q2) m2(l2k2 + l1lk2 cos q2) + I2

m2(l2k2 + l1lk2 cos q2) + I2 m2l
2
k2 + I2

(62)

C(q, q̇) =

[
−m2l1lk2q̇2 sin q2 −m2l1lk2(q̇1 + q̇2) sin q2

m2l1lk2q̇1 sin q2 m2l1lk2q̇1 sin q2

]
(63)

J(q) =

[
−l1 sin q1 − l2 sin(q1 + q2) −l2 sin(q1 + q2)
l1 cos q1 + l2 cos(q1 + q2) l2 cos(q1 + q2)

]
(64)

We choose the desired trajectory as xd = [sin(0.5t), 2cos(0.5t)], where t ∈ [0, T ]
and T = 30s. To maintain the constraints |x1i| ≤ kc1i < kai, |xdi| ≤ kc1i < kai, we
design ka = [1.1, 2.1]T and f = [2 cos(t) + 0.5 + d(t), sin(t) + 1 + d(t)], where d(t) is a
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Table 1. Simulation Parameters.
Description Parameter Value Unit

Mass of Link 1 m1 2.5 kg
Mass of Link 2 m2 1.2 kg

Moment of inertia of Link 1 I1 351.56× 10−3 kgm2

Moment of inertia of Link 2 I2 60.75× 10−3 kgm2

Length of Link 1 l1 0.75 m
Length of Link 2 l2 0.45 m

white Gaussian noise. To satisfy condition (57), k2 is chosen as [65, 15]. k1 is chosen as
[35, 6]. We choose initial conditions are given as x1(0) = [0, 2]T and x2(0) = [0, 0]T . In
the simulation, we studied two different cases. The conventional RBF with 256 nodes
and the proposed DCRBF with 32 nodes. The approaching error between W and Wk

are examined with the calculated error εγ for γ = 1, 2, which consists of calculated
constant matrix κ. For the DCRBF, the centres are chosen in the area of [−1, 1] ×
[−1, 1]× [−1, 1]× [−1, 1] for each dimension, which constitute fk1=1, fk1=2, · · · , fk1=24

and fk2=1, fk2=2, · · · , fk2=24 all 32 nodes. For the conventional RBF, the centres are
chosen in the area of [−1, 1]×[−1, 1]×[−1, 1]×[−1, 1]×[−1, 1]×[−1, 1]×[−1, 1]×[−1, 1]
arraying like

S(Z) = [fk1=1fk2=1, fk1=2fk2=1, · · · , fk1=24fk2=1,

fk1=1fk2=2, fk1=2fk2=2, · · · , fk1=24fk2=2, · · · ,
fk1=1fk2=24 , fk1=2fk2=24 , · · · , fk1=24fk2=24 ]. (65)

Thus, the compression matrix A is designed as (33), where E is a 16×16 unit matrix
and ψi for i = 1, 2, · · · , n are 16× 16 submatrices.

The results of the simulation are shown in Figure 4-Figure 6. All the pictures in
Figure 4 represent the results of DCRBF with iBLF. Pictures in Figure 5 denote
the results of conventional RBF with iBLF and Figure 6 is graphed to display the
approximating error for weights between DCRBF and conventional RBF. Specially,
the small pictures inserted in Figure 4(c) and Figure 5(c) represent the magnified
position tracking errors from time 5s - 30s.

In these pictures, we know that the prescribed trajectory tracking performance
of proposed DCRBF with the implementation of iBLF is satisfactory from Figure
4(a) and Figure 4(b). The system errors shown from Figure 4(c) and Figure 4(d) are
converging to a small value which is close to zero. And comparing Figure 4(a)-Figure
4(e) with Figure 5(a)-Figure 5(e), we can conclude that the DCRBF can approximate
the system uncertainties as well as the conventional RBF.

According to Figure 4(f), Figure 5(f), Wk and W approach to be stable with the
test time going. So we assume that neural network approaches to the ideal model W ∗k ,
W ∗ when times comes to 30s. Then we graph Figure 6 to show the approaching error
between the weights of DCRBF and the conventional RBF, which is formulated as
∆Wγ = W ∗γ − AW ∗k,γ − εγ , for γ = 1, 2, where εγ = κW ∗γ and κ = E1 − AA†. The
results are very small values close to zero, which proves that the approaching error of
weights is definitely as what we calculate in (44). Then according to (45) and (46), we
know that the output approximation error W ∗S(Z) −W ∗S′(Z) is bounded. All the
arguments above show that in terms of fitting ability, DCRBF can obtain a similar
performance to conventional RBF with a bounded approximation error.
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(a) x1 and xd. (b) x2 and x2d.

(c) Tracking errors e1 and e2. (d) Tracking errors z1 and z2.

(e) τ1 and τ2. (f) ||Wk,1|| and ||Wk,2||

Figure 4. The results of DCRBF with IBLF.

5. Conclusion

This paper presents an innovative adaptive neural network control using DCRBF for
n-DOF robot system with full-state constraints and unknown dynamics. By utiliz-
ing DCRBF, the problem of superfluous number of nodes and weights in conventional
RBF is overcome without compromising the tracking performance. The rigorous math-
ematical proofs of the effectiveness of DCRBF have been denoted. And an adaptive
control for the system is formulated based on the methods of iBLF and backstepping
for tracking performance and stability of the system with constraints and unknown
disturbance. Finally, the effectiveness of the proposed method we proposed has been
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(a) x1 and xd. (b) x2 and x2d.

(c) Tracking errors e1 and e2. (d) Tracking errors z1 and z2.

(e) τ1 and τ2. (f) ||W1|| and ||W2||

Figure 5. The results of conventional RBF with IBLF.

demonstrated through the results presented in this paper.
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Figure 6. Weights approaching error between DCRBF and conventional RBF

References

Alford, C., & Belyeu, S. (1984). Coordinated control of two robot arms. In Robotics and
automation. proceedings. 1984 ieee international conference on (Vol. 1, pp. 468–473).

Arefi, M. M., & Jahed-Motlagh, M. R. (2013). Observer-based adaptive neural control of
uncertain mimo nonlinear systems with unknown control direction. International Journal
of Adaptive Control and Signal Processing , 27 (9), 741–754.

Arefi, M. M., Jahed-Motlagh, M. R., & Karimi, H. R. (2015). Adaptive neural stabilizing con-
troller for a class of mismatched uncertain nonlinear systems by state and output feedback.
IEEE transactions on cybernetics, 45 (8), 1587–1596.

Berkovitz, L. D. (2013). Optimal control theory (Vol. 12). Springer Science & Business Media.
Chen, M., & Ge, S. S. (2013). Direct adaptive neural control for a class of uncertain nonaffine

nonlinear systems based on disturbance observer. IEEE Transactions on Cybernetics, 43 (4),
1213–1225.

Cheng, L., Cheng, M., Yu, H., Deng, L., & Hou, Z.-G. (2016). Distributed tracking control
of uncertain multiple manipulators under switching topologies using neural networks. In
International symposium on neural networks (pp. 233–241).

Cheng, L., Hou, Z.-G., Tan, M., & Zhang, W.-J. (2012). Tracking control of a closed-chain five-
bar robot with two degrees of freedom by integration of an approximation-based approach
and mechanical design. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 42 (5), 1470–1479.

Cheng, L., Liu, W., Hou, Z.-G., Yu, J., & Tan, M. (2015). Neural-network-based nonlin-
ear model predictive control for piezoelectric actuators. IEEE Transactions on Industrial
Electronics, 62 (12), 7717–7727.

Craig, J. J. (2005). Introduction to robotics: mechanics and control (Vol. 3). Pearson Prentice
Hall Upper Saddle River.

Dai, S.-L., Wang, C., & Wang, M. (2014). Dynamic learning from adaptive neural network
control of a class of nonaffine nonlinear systems. IEEE Transactions on Neural Networks
and learning systems, 25 (1), 111–123.

Gao, W., & Selmic, R. R. (2006). Neural network control of a class of nonlinear systems with
actuator saturation. IEEE Transactions on Neural Networks, 17 (1), 147–156.

Gueaieb, W., Karray, F., & Al-Sharhan, S. (2007). A robust hybrid intelligent position/force
control scheme for cooperative manipulators. IEEE/ASME Transactions on Mechatronics,
12 (2), 109–125.

Haykin, S. S., Haykin, S. S., Haykin, S. S., & Haykin, S. S. (2009). Neural networks and
learning machines (Vol. 3). Pearson Upper Saddle River, NJ, USA:.

He, W., Chen, Y., & Yin, Z. (2016). Adaptive neural network control of an uncertain robot
with full-state constraints. IEEE Transactions on Cybernetics, 46 (3), 620–629.

20



He, W., Zhang, S., Ge, S. S., & Liu, C. (2014). Adaptive boundary control for a class
of inhomogeneous timoshenko beam equations with constraints. IET Control Theory &
Applications, 8 (14), 1285–1292.

Hou, Z.-G. (2001). A hierarchical optimization neural network for large-scale dynamic systems.
Automatica, 37 (12), 1931–1940.

Huang, L., Ge, S., & Lee, T. (2006). Position/force control of uncertain constrained flexible
joint robots. Mechatronics, 16 (2), 111–120.

Huang, Y., Na, J., Wu, X., Liu, X., & Guo, Y. (2015). Adaptive control of nonlinear uncertain
active suspension systems with prescribed performance. ISA transactions, 54 , 145–155.

Kennedy, M. P., & Chua, L. O. (1988). Neural networks for nonlinear programming. IEEE
Transactions on Circuits and Systems, 35 (5), 554–562.

Lee, G.-W., & Cheng, F.-T. (1996). Robust control of manipulators using the computed torque
plus h compensation method. IEE Proceedings-Control Theory and Applications, 143 (1),
64–72.

Lee, T., Koh, E., & Loh, M. (1996). Stable adaptive control of multivariable servomecha-
nisms, with application to a passive line-of-sight stabilization system. IEEE Transactions
on Industrial Electronics, 43 (1), 98–105.

Lee, T. H., & Harris, C. J. (1998). Adaptive neural network control of robotic manipulators
(Vol. 19). World Scientific.

Li, T., Duan, S., Liu, J., Wang, L., & Huang, T. (2016). A spintronic memristor-based neural
network with radial basis function for robotic manipulator control implementation. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 46 (4), 582–588.

Li, Z., Ge, S. S., Adams, M., & Wijesoma, W. S. (2008). Robust adaptive control of uncertain
force/motion constrained nonholonomic mobile manipulators. Automatica, 44 (3), 776–784.

Li, Z., Ge, S. S., & Ming, A. (2007). Adaptive robust motion/force control of holonomic-
constrained nonholonomic mobile manipulators. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 37 (3), 607–616.

Li, Z., Li, T., & Feng, G. (2016). Adaptive neural control for a class of stochastic nonlinear
time-delay systems with unknown dead zone using dynamic surface technique. International
Journal of Robust and Nonlinear Control , 26 (4), 759–781.

Liu, Y.-J., & Tong, S. (2017). Barrier lyapunov functions for nussbaum gain adaptive control
of full state constrained nonlinear systems. Automatica, 76 , 143–152.

Luo, B., Wu, H.-N., & Li, H.-X. (2015). Adaptive optimal control of highly dissipative nonlinear
spatially distributed processes with neuro-dynamic programming. IEEE transactions on
neural networks and learning systems, 26 (4), 684–696.

Mayne, D. Q., Rawlings, J. B., Rao, C. V., & Scokaert, P. O. (2000). Constrained model
predictive control: Stability and optimality. Automatica, 36 (6), 789–814.

Na, J., Mahyuddin, M. N., Herrmann, G., Ren, X., & Barber, P. (2015). Robust adaptive
finite-time parameter estimation and control for robotic systems. International Journal of
Robust and Nonlinear Control , 25 (16), 3045–3071.

Namvar, M., & Aghili, F. (2005). Adaptive force-motion control of coordinated robots inter-
acting with geometrically unknown environments. IEEE Transactions on Robotics, 21 (4),
678–694.

Rubio, J. (2012). Modified optimal control with a back propagation network for robotic arms.
IET Control Theory & Applications, 6 (14), 2216–2225.

Su, C.-Y., Leung, T.-P., & Zhou, Q.-J. (1992). Force/motion control of constrained robots
using sliding mode. IEEE Transactions on Automatic Control , 37 (5), 668–672.

Tang, Z.-L., Ge, S. S., Tee, K. P., & He, W. (2016a). Adaptive neural control for an uncertain
robotic manipulator with joint space constraints. International Journal of Control , 89 (7),
1428–1446.

Tang, Z.-L., Ge, S. S., Tee, K. P., & He, W. (2016b). Robust adaptive neural tracking
control for a class of perturbed uncertain nonlinear systems with state constraints. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 46 (12), 1618–1629.

Tee, K. P., Ren, B., & Ge, S. S. (2011). Control of nonlinear systems with time-varying output
constraints. Automatica, 47 (11), 2511–2516.

Wang, M., & Yang, A. (2017). Dynamic learning from adaptive neural control of robot manipu-

21



lators with prescribed performance. IEEE Transactions on Systems, Man, and Cybernetics:
Systems.

Yang, C., Jiang, Y., Li, Z., He, W., & Su, C.-Y. (2017). Neural control of bimanual robots
with guaranteed global stability and motion precision. IEEE Transactions on Industrial
Informatics.

Yang, C., Wang, X., Cheng, L., & Ma, H. (2016). Neural-learning-based telerobot control with
guaranteed performance. IEEE transactions on cybernetics.

Yang, G.-H., & Wang, J. L. (2001). Robust nonfragile kalman filtering for uncertain linear
systems with estimator gain uncertainty. IEEE Transactions on Automatic Control , 46 (2),
343–348.

Yang, G.-H., & Ye, D. (2006). Adaptive fault-tolerant h/spl sub/spl infin//control via state
feedback for linear systems against actuator faults. In Decision and control, 2006 45th ieee
conference on (pp. 3530–3535).

Zhang, T., & Ge, S. S. (2009). Adaptive neural network tracking control of mimo nonlinear
systems with unknown dead zones and control directions. IEEE Transactions on Neural
Networks, 20 (3), 483–497.

Zhang, T., Ge, S. S., & Hang, C. C. (2000). Adaptive neural network control for strict-feedback
nonlinear systems using backstepping design. Automatica, 36 (12), 1835–1846.

22


