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ABSTRACT

When capturing a scene for surveillance, the addition of rich 3D data can dramatically improve the accuracy of object

detection or face recognition. Traditional 3D techniques, such as geometric stereo, only provide a coarse grained

reconstruction of the scene and are ill-suited to fine analysis. Photometric stereo is a well established technique providing

dense, high-resolution, reconstructions, using active artificial illumination of an object from multiple directions to gather

surface information. It is typically used indoors, at short range (<1 m), under highly controlled lighting conditions, and so

has rarely found application in real-world, outdoor surveillance. One difficulty in such scenes is that the near infrared light

generally used to illuminate a scene is overwhelmed by ambient illumination from the sun, and so it is not possible to

reliably discriminate the artificial light from the ambient. This work aims to overcome this limitation and counteract the

effect of sunlight by exploiting atmospheric absorption at a particular wavelength, 940 nm, in combination with image

capture using state-of-the-art black silicon sensors. We first show that this combination, together with low-cost, focused

LED illuminators, allows us to reliably differentiate artificial illumination from ambient lighting. We then extend our

system to perform photometric stereo reconstruction at distances far beyond the current state of the art under direct

sunlight, with a possibility for extending the range to 100 m and beyond. Finally, we provide some example use cases for

the photometric stereo data in the form of detection of concealed objects and face recognition.

Keywords: covert object detection, infrared imaging, black silicon, machine vision, surveillance, 3D technology, surface

reconstruction, photometric stereo

1. INTRODUCTION

A common surveillance problem is the automatic detection of objects concealed under clothing, and the iden-
tification of those carrying them. As many 2D methods rely on colour and texture information, targets can
make use of patterned clothing to camouflage features that might otherwise provide clues to the shape of objects,
such as weapons, hidden beneath. By examining 3D features, it is possible to achieve more reliable detection of
hidden shapes;1,2 however the level of detail required is beyond that achieved with traditional stereo imaging or
structured light techniques. Photometric stereo (PS) is a well established method for dense surface reconstruction
using several images of an object, illuminated from two or more directions.3 It has seen use in applications
such as face reconstruction and recognition,1,4 surface inspection and defect detection,5,6 skin analysis7,8 and
anti-counterfeiting,9,10 among more exotic uses.11,12

A particular advantage of this technique is that it reliably separates textural elements, such as printed patterns,
from physical shapes.13 In combination with the extremely detailed, high-resolution surface information it
provides, this offers many possibilities for concealed object detection.2 PS can also run at high speed, with
capture, reconstruction and analysis occurring in real time.14

One of the major challenges in bringing photometric stereo to real world applications is effective lighting. In
outdoor conditions, ambient light can drown out a machine visions system’s artificial illumination and greatly
reduce its effectiveness. At night, or on overcast days, this can be mitigated using near-infrared (nIR) illumination
and an nIR sensitive camera, as most artificial ambient lighting is designed for peak output in the visible spectrum.
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For security or military applications, nIR light has obvious advantages in allowing covert surveillance. However,
on clear days even indirect sunlight overwhelms artificial illumination and saturates the capacity of camera sensor
photosites, leading to washed out and overexposed images. Because the sun emits radiation across a broad
spectrum that includes infrared light, simply switching to nIR wavelengths is not effective.

Sunlight reaching the Earth first passes through the atmosphere, where thick layers of gas, water vapour and
particulate matter absorb a portion of the sun’s energy.15 Atmospheric absorption of light is not uniform across
the spectrum, and a number of absorption peaks have been identified in the infrared, including at around 940 nm,
1150 nm and 1370 nm.16 At these peaks atmospheric water absorbs a significant portion (as much as 45–98%) of
the sun’s light, leading to much lower ambient illumination at ground level around these specific wavelengths.
The focus of this paper is to exploit these peaks using a camera with particular sensitivity at such a wavelength,
along with a narrow bandpass filter which cuts out the majority of other light.

Recent developments in sensor technology have produced “black silicon” CMOS sensors,17,18 which have very high
sensitivity both at visible and nIR wavelengths. The following section directly compares a leading near-infrared
camera using a traditional CMOS with a new-to-market camera equipped with black silicon technology. Section
3 goes on to describe, in detail, photometric stereo, assessing the advantages and disadvantages of various
formulations of the PS problem. Section 4 then explains how we can overcome the effect of ambient light on active
illumination at considerably longer distances than possible with traditional sensors by exploiting the sensitivity of
black silicon technology. We show that even in extremely challenging conditions, such as intense daylight, where
light-based reconstruction methods would typically be assumed to fail, our system can reliably reconstruct 3D
surfaces at range, far surpassing previous efforts. Finally, we exhibit some preliminary results in key application
areas where this long-range PS approach can be used in real-world security scenarios in Section 5.

2. COMPARING TRADITIONAL AND BLACK SILICON SENSORS

Before performing tests on 3D reconstruction quality, we first assessed the sensitivity of our black silicon sensors
campared with that of the traditional camera.

We obtained two monochrome, nIR sensitive machine vision cameras; one with a 4.1 MP, 1”, traditional CMOS
sensor, and the other equipped with a 1.3 MP, 1” black silicon CMOS. We matched the lens and settings of
the two cameras and disabled automatic exposure adjustment. Ideally, shutter speeds would also have been
matched; however it quickly became clear that this would not be possible as the sensitivities of the two cameras
were substantially different, resulting in overexposure in one or underexposure of the other. Shutter speeds were
instead set independently to achieve good exposure.

In order to assess the applicability of the cameras to our purpose, we examined both 850 nm and 940 nm
wavelengths at a range of illumination levels. To this end, we obtained matched LED clusters at these wavelengths
(45◦ divergence, 1 A typical operating current), which were (a) capable of brightness control via input current and
(b) similar in their ratio of input current to output power. The cameras were equipped with appropriate narrow
bandpass interference filters, and experiments took place in a darkroom to eliminate ambient illumination.

The illuminators and cameras were oriented towards a white balance reflectance target (12”, 99% UV-VIS-IR
reflective), providing uniform reflectance across the wavelengths of interest. Images of the calibration plate were
captured at a range of input currents between 0 and 1 A, with a light output of 0–257 mW measured at 850 nm
and 940 nm using an optical power meter with 10 mm aperture at a distance of 20 cm from the illuminator.

At each current level, images were taken using the traditional and black silicon sensor, under 850 nm and 940 nm
illumination. Shutter speeds for each condition remained constant throughout — 5 ms at 850 nm and 10 ms at
940 nm for the traditional sensor, and 0.6 ms at both wavelengths for the black silicon sensor.

From the captured images (see Figure 1) the mean intensity over the calibration plate was calculated. This value
was then normalised by the shutter speed, assuming a linear relationship between shutter speed and measured
pixel intensity. Finally, the pixel intensity values were normalised against the measured light output for each
current to obtain a measure of the camera sensitivities.

The resulting sensitivity profiles are given in Figure 2. We see that the black silicon sensor far outperforms the
traditional CMOS at both 850 nm and 940 nm, showing considerably higher sensitivity at both wavelengths as
well as a flatter sensitivity profile by wavelength.



Sensor Type Wavelength 0.15A 0.3A 0.6A 0.9A 1A

Traditional
(5 ms)
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Black Silicon
(0.6 ms)
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940nm
Figure 1. A subset of images captured to compare the sensitivities of black silicon and traditional sensors under 850 nm
and 940 nm illumination. Different exposure times were required for the two cameras to acquire images that were not
either completely black or blown out. The traditional camera images are shown with an effective exposure time of 5 ms
(940 nm images have been adjusted from 10 ms for comparison purposes), while the black silicon camera was set to 0.6 ms
at both wavelengths.
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Figure 2. A comparison of camera sensitivities at 840 nm and 950 nm, normalised for shutter speed and measured light
output. Black lines represent the black silicon camera, red lines the traditional camera. Dotted lines show sensitivity at
850 nm, solid lines at 940 nm. It can be seen that the black silicon camera has considerably better sensitivity at both
wavelengths, with relatively higher sensitivity in low light conditions.



3. PHOTOMETRIC STEREO

In this section, we explain in detail the technique of photometric stereo (PS), introduced in Section 1, used here
to gather 3D information from a single, monocular camera. In the seminal work on the method, Woodham19

introduces the underlying theory, which we summarise here.

In basic terms, we capture three or more images of a static object; in each of which the subject is artificially
illuminated from a different point source of known direction. The intensity at each pixel of each image then
provides a constraint on the shape of the surface under that pixel, described by a vector map of unit normals. In
the interest of simplicity, we assume an orthographic view of the object, or that prior calibration of the camera
with respect to the object has been performed to achieve the same.

The reflectance of the surface is also assumed to be Lambertian in nature, an assumption which is often breached
in its strictest sense, but which does not dramatically deteriorate reconstruction quality in most cases. A notable
exception is the presence of specular reflections, which strongly affect reconstruction. However, specularities are
readily detectable and can often be corrected using the two unaffected images by exploiting the integrability
constraint to resolve ambiguity.20

The intensity, I, at some point on a surface, given illumination of direction L = (lx, ly, lz)>, is related to
the orientation and reflectance of the surface at that point. These are described by the normal vector N =
(Nx, Ny, Nz)> and albedo constant, ρ respectively:

I = ρ (N · L) (1)

For a set of m images, I = (I1, I2, . . . Im), let us designate the set of lighting direction vectors L = (L1,L2, . . . ,Lm).
Denote the intensity of Ii at position (x, y) as Ii(x, y), where i ∈ (1, . . . ,m). For all (x, y), we seek to capture
the surface normal, N(x, y) and albedo, ρ(x, y). Following the above notation, we refer to the intensity of all
images in I at position (x, y) as I(x, y) = {I1(x, y), I2(x, y), . . . , Im(x, y)}. We can now describe the relationship
between the intensity of some pixel observed with illumination from each light source as follows:

I(x, y) = ρ(x, y) (N(x, y) · L) (2)

Define the vector g(x, y) as:

g(x, y) = ρ(x, y)N(x, y) (3)

As N(x, y) is, by definition, a unit vector and ρ(x, y) is scalar; we have a system with three degrees of freedom.
Therefore, given three ideal images with differing lighting we can calculate g(x, y) directly. As we are unlikely to
observe ideal images in the real-world (e.g. through shadowing or specular highlights), it is common practice to
capture additional images and calculate using a least-squares formulation:

g(x, y) = (L>L)−1L> · I (4)

As previously stated N(x, y) is unit and ρ(x, y) a scalar constant, to recapture the surface normal and albedo
from g(x, y) we simply take the L2-norm:

ρ(x, y) = ||g(x, y)|| (5)

N(x, y) =
g(x, y)

||g(x, y)||
(6)

It can be seen that the above calculations not only provide shape and shading information, but do so in such a
manner as to decouple them. This property is particularly useful in surveillance as it is capable of “seeing through”
camouflage print which may otherwise obscure underlying shape in images. A practical example of this property
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Figure 3. Three source photometric stereo — we capture three images using different, known lighting positions in each of
(a–c). Each image provides constraints on the surface orientation at that pixel allowing us to recapture the surface normal
vector field (d) and albedo (e). In (d), surface orientation is represented both as colour and a quiver plot. By integrating
over the normal field, we can obtain an estimate of volume (f).

is shown in Figure 3, where a camouflaged mask is virtually indistinguishable from the background under a single
source of illumination. Having captured three images of the mask under varying lighting, we can calculate a
fine-grained reconstruction of the mask’s shape as well as retaining the reflectance profile within the albedo.

By integrating over the surface normal field — for example using the method of Frankot and Chellappa21 — we
can obtain an estimate of the object’s volume.

3.1 Reducing the number of lights

In scenes with little or no motion, we can reliably use multiple light sources to capture the scene. However if an
object moves appreciably between frames, that motion will cause artefacts in the photometric stereo reconstruction.
This phenomenon is shown in Figure 4, where an image of the mask previously shown undergoes simulated lateral
motion of varying degrees. One can clearly see strong distortions in the surface normal field as a result of the
variation in the textural features observed under each pixel influencing the perceived shape.

It may be possible to reduce this effect by tracking the object of interest and preprocessing the input images
to centre them on the same position; however such a solution brings its own difficulties, such as inaccuracies in
tracking and non-rigid motion of objects. It can be seen from Figure 4(b) that even 1 pixel of motion between
captured frames produces noticeable artefacts in the resulting surface normals, so even slight tracker drift could
prevent reliable reconstruction.

Instead it is better to minimise the number of frames with different lighting required, reducing the effects of
inter-frame motion. This approach, in combination with the high framerates available from modern machine
vision cameras (in excess of 200 Hz), allows us to mitigate the effect of motion on reconstruction quality in most
cases.

As stated previously, the general photometric stereo method incorporates three unknowns and so requires a
minimum of three lights to fully constrain all degrees of freedom. Sun et al.13 show that by constraining the
positions of two light sources such that they lie on the camera’s x-axis, we can calculate the surface derivative in
that direction. While this does not, in itself, allow for a full 3D reconstruction, it encodes sufficient information
about the shape of the object to create a fine-grained reconstruction, as indicated in Figure 5.



(a) No movement (b) 1 px per frame (c) 10 px per frame
Figure 4. If the object being imaged moves between frames, the assumption of staticity is violated, causing artefacts in
the reconstructed normal field. This phenomenon is shown here, where the object of interest undergoes simulated lateral
motion of varying degree between input frames: (a) No movement between frames, (b) 1 px motion left–right and (c) 10 px
left–right. As seen, even small discrepancies can severely damage reconstruction.

(a)

(b) (c) (d)
Figure 5. Two source photometric stereo can be achieved using two light sources positioned along the x-axis of the camera
(a–b), in order to constrain the PS equations. While a full 3D reconstruction cannot be achieved directly using this method,
the so-called “2.5D” reconstruction encodes fine grained shape data within the x-gradient of the surface (c). The method
retains the advantage of separating colour and shape by isolating the surface albedo (d).

We position two lights on one of the camera’s axes — without loss of generality, here we focus on the x-axis (that
is, y = 0). Given a pair of images, I1 and I2, and the incident directions of the two light sources L1 = (lx1 , 0, l

z
1)

and L2 = (lx2 , 0, l
z
2), the photometric stereo equations from Equation (1) reduce to:

I1(x, y) = ρ(lx1Nx + lz1Nz) (7)

I2(x, y) = ρ(lx2Nx + lz2Nz) (8)

The surface gradient in the x-direction, the “x-gradient”, under a given pixel (x, y) is defined as:

Gx(x, y) =
Nx(x, y)

Nz(x, y)
(9)



By combining (7), (8) and (9), we calculate the x-gradient directly from the image intensity and the incident
directions of the light sources:

Gx(x, y) =
I2(x, y)lz1 − I1(x, y)lz2
I1(x, y)lx2 − I2(x, y)lx1

(10)

Having obtained the x-gradient, calculation of the surface albedo simply involves taking the L2-norm of the
estimated normal (using the simplifying assumption that Ny = 0):

ρ(x, y) =
√
N2

x +N2
z (11)

This operation is computationally efficient and has the added advantage of inter-pixel independence and is thus
highly parallelisable, enabling rapid calculation on a GPU.

3.2 Photometric stereo in the wild

The methods described thus far perform well under controlled conditions. We generally assume when using
photometric stereo that lighting and staticity of the subject can be reliably controlled. The previous section
discussed measures to allow loosened stacitity constraints, but lighting can be more difficult to control in a real
world setting. Especially in outdoor scenes, the sun provides a strong, broad-spectrum source of nuisance lighting.

Ambient illumination can be effectively removed in post-processing using an image captured without additional
artificial light, improving the contrast of the image. This approach adds an extra image into the capture sequence,
and can potentially provide a new source of error if there is movement within the scene. Nevertheless, we consider
the improved image quality worth the compromise and use this technique in the experiments that follow.

4. ACTIVE ILLUMINATION IN DAYLIGHT

The Earth’s atmosphere is not a uniform layer surrounding the globe, but is rather composed of a complex
mixture of gases, particles and liquids that varies considerably for a given location depending on factors such
as time of year, weather, temperature, altitude, latitude, vegetation and local industry and pollution. Many
components within the atmosphere absorb a portion of the sun’s light, but chief among these is atmospheric
water vapour.16 Figure 6(a) shows light transmittance through the atmosphere on sea level transmission paths,
based on US Navy Data. We modelled the effects of water vapour transmittance of light at various wavelengths
using the US National Energy Laboratory’s SMARTS (Simple Model of the Atmospheric Radiative Transfer of
Sunshine),22 with parameters set for Bristol, UK in summertime. We obtained qualitatively similar results to
those in Yates and Tayor (1960),16 as shown in Figure 6(b). From this can be seen a series of transmittance
minima (or equivalently, absorption peaks) in the infrared spectrum, at around 940 mn, 1150 nm and 1370 nm. At
these wavelengths, relatively little of the sun’s radiation passes through the atmosphere, meaning that ambient
illumination at ground level is greatly reduced. This work takes advantage of these absorption peaks for the
purposes of machine vision and photometric stereo. To achieve this, a bandpass filter is placed in front of an nIR
sensitive camera sensor to isolate an appropriate wavelength, and illuminators at this same wavelength used to
overpower ambient light. We here exploit the 940 nm absorption peak, choosing this wavelength as it is lies well
within the sensitivity ranges of commonly available nIR sensors.

4.1 Short range illumination discrimination (1–5m)

We first tested our ability to overcome ambient illumination in the nIR at short range, both at the commonly
used 850 nm wavelength, where no significant atmospheric absorption peak exists, and at 940 nm. We examined
the capabilities of both a traditional nIR camera and a newly developed black silicon camera, described as having
considerably higher sensitivity in the near infrared. A white balance reflectance target was first placed on a
tripod at distances between 1 m and 5 m at 1 m intervals. The target was illuminated using the same 850 nm and
940 nm LED clusters as in Section 2, and observed using our two cameras. The cameras were fitted with custom
made behind-the-lens bandpass filters, with peak transmittance at 850 nm (approx. 85%) and 940 nm (approx.
95%), FWHM approximately 10 nm and 15 nm respectively. Measurements were taken on a bright, sunny day,
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Figure 6. (a): Light transmittance in the atmosphere in the wavelength range 500–1600 nm over a distance of 0.3 km,
measured in April 1960 in Chesapeake Bay, USA. Reproduced from Yates and Taylor (1960).16 (b): Effects of water
vapour on light transmittance in the atmosphere in the range 500–1600 nm, modelled using SMARTS (Simple Model of the
Atmospheric Radiative Transfer of Sunshine),22 version 2.9.5. with location parameters set for summertime in Bristol, UK.
Note the large local minima at three points within the infrared spectrum.

with the reflectance target pointed away from the sun. At each distance and for each camera, pairs of images
were collected within a few seconds of each other with and without artificial illumination. A 50 mm f/2.8 lens
was used with the aperture fixed at nearly closed, and all camera exposure settings were set to manual and left
unchanged throughout the experiment. Using a lux meter, approximate ambient illumination at the reflectance
target was also obtained for each pair of measurements. These were in the range 5–10 klx. For each image the
area showing the reflectance target was isolated, the mean intensity of pixels (scaled for relative shutter speed) in
this area calculated and their standard deviation obtained. The results are shown in Figure 7. The intensities,
normalised by shutter speed, are shown in Figure 7. The difference in pixel intensity between lit and unlit images
was calculated, and these differences are shown in Figure 9.

The results show small but noticeable differences in mean pixel intensity between images with illumination on
and off — it is certainly possible to discriminate between artificial and ambient lighting. The difference between
illumination modes drops off sharply with increased distance, becoming almost indistinguishable by 5 m. This
indicates that the power and focus of the LED illuminators is insufficient for long range work. The LEDs have a
wide divergence angle, and so their irradiance is reduced rapidly at distance — more focused illuminators with
the same radiant flux would be more effective. Also note that the black silicon camera displays considerably
higher sensitivity than the traditional nIR camera at both wavelengths.

4.2 Long range illumination discrimination (5–15m)

The same experiments were repeated at greater distance using more powerful, focused LED illuminators (divergence
angle 6–10◦), custom built and provided to us by Aralia Systems Ltd. We used a 100 mm f/2.8 lens and collected
images between 5 m and 15 m at 2 m increments. Otherwise the procedure was the same as in Section 4.1, with
lux readings of 4–7 klx. Identical calculations to those above were carried out, and the results are shown in Figure
8. The overall pixel intensity is reduced due to the greater distance, but once again the black silicon camera
is shown to be far more sensitive than the traditional sensor at both wavelengths, and the effect is even more
pronounced at these distances. Illumination discrimination between artificial and ambient is apparently improved
over the short range results (see also Figure 9); this is likely due to a combination of more powerful, better focused
artificial illumination and a slightly less sunny day.

4.3 Extreme range (15m+)

We tested our ability to discriminate illumination at distance using a medium powered, visible light laser. The
device we used was a 532 nm green laser, <20 mW power, adjustable beam divergence (worst case <1 mrad), with
a 100 mm lens, two 2× teleconverters and a green bandpass filter (peak transmittance 96% at 550 nm, FWHM
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Figure 7. Plots showing camera response with white reflectance target at distances from 1–5 m from camera and LED
illuminators. Dotted bars indicate measurements taken with LED illumination, solid bars with ambient light only. Error
bars are standard deviation of measured pixel intensity.
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Figure 8. Plots showing camera response with white reflectance target at distances from 5–15 m from camera and LED
illuminators. Dotted bars indicate measurements taken with LED illumination, solid bars with ambient light only. Error
bars are standard deviation of measured pixel intensity.
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Figure 9. This plot shows the two cameras’ ability to discriminate between ambient and artificial illumination at distance.
Values represent the mean difference in pixel intensity between images taken with and without artificial illumination.
Red lines indicate the traditional camera, black lines the black silicon camera. The black silicon camera outperforms the
traditional sensor at both 850 nm and 940 nm, although the difference is more pronounced in the 940 nm range, supporting
the use of this wavelength with its higher atmospheric absoprtion of light for long range computer vision applications. The
apparent increase in discriminatory ability in the 5–15 m range (note the difference in the x and y scales between the
left and right plots) is due to the more powerful, more narrowly focused illuminators being used here, and lower ambient
illumination. Error bars are one standard deviation of normalised pixel intensity.

<100 nm) in front of the camera lens. We tested this configuration between 15 m and 100 m, and it was certainly
possible to detect its illumination at this range — see Figure 10 — and the beam divergence was low enough
to still adequately focus on the target. However at distances beyond about 50 m a pattern of concentric circles
became visible in the laser’s beam profile, rendering it unsuitable for dense reconstruction techniques such as
photometric stereo.

We also obtained a powerful 940 nm laser to further extend the distance at which we could perform photometric
stereo, but equipment failure led to these experiments being postponed beyond the time we had available in
preparing this paper. Though an unfortunate setback, we expect to be able to carry out experiments with the
nIR laser in the very near future and are confident that covert photometric stereo reconstructions at distances up
to 100 m will be possibe. While the laser and the technique are in principle capable of going further still, this
extreme range already tests the resolving power of our lens, and to go beyond it a longer lens would certainly be
required. Accurately aiming an invisible laser at a 30 cm target over 100 m is also expected to be a non-trivial
task.
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Figure 10. Plots showing camera response with white reflectance target at distances
from 15–100 m from camera and laser. Dotted bars indicate measurements taken
with LED illumination, solid bars with ambient light only. Error bars are standard
deviation of measured pixel intensity.

Figure 11. Example im-
age of the green laser
on the reflectance target
(shown at 35 m).

5. LONG-RANGE PHOTOMETRIC STEREO

5.1 Face recognition

2D face detection and recognition has been widely and thoroughly explored in the literature (see references23–28

for some important developments), but has the disadvantage that without additional countermeasures it can be
readily fooled by printouts or images of a face on an LCD screen.29 By capturing 3D information about a face
shape, the ability of a casual user to spoof the system becomes more limited — carrying a 3D model of a face is
rather less practical than a photo. Previous work has shown the abilities of a four source photometric stereo
system in capturing1 and recognising30 faces; however the system in question was limited to indoor use under
controlled lighting conditions.

To test whether long range photometric stereo produces images suitable for the challenging vision task of 3D face
recognition, we first captured two source PS data using the previously described long range setup at both 10 m
and 15 m. A conventional, short-range, indoor photometric stereo capture system was then used to capture a
number of training images of the two individuals. Following enrolment with the Photoface system,31 the surface
normals of the training images were calculated. The results were automatically cropped to a central portion of
the face and resized to an 80×80 pixel square and added to the Photoface database.31,32 The new, augmented
database was then processed to consist of only the x-gradients, ensuring compatibility with two source data. Our
long range test images were likewise cropped and resized. The x-gradients were calculated as previously discussed
and these were used as probes against the database. Following the recognition strategy of Hansen and Atkinson,30

we assessed the ability of the system to recognise enrolled subjects from the input data.

In our testing, the system was able to successfully recognise the subject from the long-range images at both 10 m
and 15 m, given a frontal view, examples of which are provided in Figure 12. Further work is required to assess
the robustness of this method in scenes with more challenging views of the subject; however we believe the ability
of our system to perform 3D face recognition at such distances, in daylight, shows substantial promise.

5.2 Object detection

Photometric stereo lends itself well to the task of object detection, having the aformentioned advantage of
separating albedo and shape. This allows us to essentially “see through” traditional camouflage patterns and
expose concealed objects. In this section we outline preliminary results for automated detection of concealed
objects, which could provide rich 2.5D and 3D information to warn a human operator of potential weapon risks.

Two source PS is more practical than three or more light systems in the real world, as the lighting configuration
is relatively simple. As such, we adopt this approach here and obtain images at long range, in direct sunlight,
using the black silicon sensor. Images, illuminated using Aralia Systems Ltd.’s focused LED arrays, were taken at



(a) (b) (c)
Figure 12. A number of close-range, two source PS training images were used to augment a modified version of the
Photoface database,31 a representative selection of which are shown in (a). We then test the usability of long-range 3D
data to recognise known faces, using the recognition strategy of Hansen and Atkinson30 and input data garnered from
images taken at 10 m (b) and 15 m (c). In both cases, the system was able to successfully identify the subject from the
long-range images.

(a)

(b) (c) (d)

Figure 13. We capture high-fidelity shape information using the two source PS technique. (a) and (b) show images
illuminated from left and right respectively, brightened here for illustrative purposes. We use a third, unlit image (not
shown) to allow us to account for ambient illumination. The ambient removal tends to produce high levels of salt-and-pepper
noise in background regions, as evidenced in (c), which is readily isolated using methods from the literature,33 providing
the result shown in (d). Note the fine-grained of wrinkles in the clothing. The point at which a concealed object presses
against the fabric is highlighted.

a range of between 10 and 15 metres, which we believe to be far beyond what has previously been shown possible
using photometric stereo.

We began by capturing three images: two PS images, I1,2 and a further unlit image Ia to allow us to correct for
ambient light. The ambient image was subtracted from the illuminated ones to provide a corrected view.

We used the two corrected images to reliably calculate the surface x-gradient (as per Section 3.1). An unfortunate
side-effect of ambient light removal is that salt-and-pepper image noise is emphasised in the background after
calculation of the surface gradients, as shown in Figure 13. Such noise can be readily isolated and masked using
the method of Deivalakshmi et al.,33 or similar.

We assume hereafter that a region of interest (RoI) around a human can be identified, for instance by using pose
estimation, motion information, or by detecting a face and extracting the connected foreground region. From
the x-gradient image of the person alone, we can readily see shape detail that was not discernible from the 2D
images. The prominence of the end of the concealed baton in the example of Figure 13 is clearly visible; however
automated detection requires further investigation.

Objects concealed under clothing tend to cause ripples in the fabric where they touch, which provide us with shape
indicators we can exploit to identify potential targets. We observe that the manner in which these ripples form
about a contact point on the concealing fabric causes high responses in the x-gradient’s first-order derivatives,



(a) (b) (c) (d) (e)
Figure 14. Using two artificially illuminated images (a), we calculate the x-gradient of the surface (b) — a manual RoI is
shown for clarity of display. To detect concealed objects using the x-gradient, we examine its first order derivatives (c).
Where both components are high, one would expect to see a point on the surface, corresponding to a concealed object
distorting the fabric. High frequency noise is removed using a Gaussian blur (d) and the result thresholded at the mean
plus one standard deviation to provide a labelled response (e). The position of the concealed baton used in this example is
indicated in red in (a) and (e).

(a) (b) (c) (d)

(e)

(f)

Figure 15. By enforcing integrability across the reconstructed surface, we can estimate its surface orientations using only
two images.20 An example of such an image, brightened here for easier viewing, is shown in (a). We can then use the
surface normal information (b) calculated through this technique to examine shape in a more complex manner, using the
“Shape Index” and “Curvedness” measurements proposed by Koenderink and Van Doorn,34 shown in (c) and (d). By
performing line detection on a RoI of the edge representation of the curvedness, (e), we can highlight creases in fabric
caused by concealed objects, (f).

δ2z/δx2 and δ2z/(δxδy). By filtering the derivative images by a small Gaussian kernel (in this case 5× 5, σ = 3),
then thresholding at the mean plus one standard deviation, we can detect and highlight areas of interest, as
demonstrated in Figure 14.

Within this work, we have also examined the prospect of using full 3D information to encapsulate shape. Although
we cannot directly calculate the full 3D reconstruction — or surface normal field — from two images, we can
infer it by exploiting an assumption of integrability across the surface.20 The resulting reconstruction is not as
reliable, nor as precise, as a three or more source PS approach, but we still obtain useful indicators as to surface
shape, which can be used to indicate the presence of concealed objects.

Having calculated a surface normal field using this technique, we can examine the shape profile in terms of the
“Shape Index” and “Curvedness” measures proposed by Koenderink and Van Doorn.34 The former allows us to
look for given shapes (e.g. cylindrical objects) by examining their principal curvatures, whilst the latter serves to
indicate places where fabric displacement is high, relative to the surrounding area. Figure 15 shows one such set
of results for an image containing two concealed objects (highlighted, red), one in the left-hand pocket (from the



perspective of the reader) and one under the jacket from bottom-right to top-left. There are visible artefacts in
the Shape Index image; however these are unlikely to be readily identifiable using an automated method. We
use the curvature to look for ripples in the fabric, indicating pressure against it. We estimate strong lines by
applying Canny edge detection to the curvedness image and applying a Hough line detector. The resulting edges
tend to appear around the concealed objects, highlighted in red in Figure 15(f), suggesting promise for further
development.

6. CONCLUDING REMARKS

The work presented in this paper has demonstrated the ability to covertly capture highly detailed 2.5D and
3D data at long range, in conditions with challenging ambient illumination. The novelty of our approach lies
in exploiting a peak in the atmospheric absorption of light at 940 nm and state-of-the-art black silicon sensor
technology. We have shown that the sensitivity of the camera, combined with the lower ambient light levels at
this point in the spectrum, allows for far greater discrimination between ambient and artificial lighting than was
previously possible using the more traditional 850 nm wavelength and CMOS sensors. Of particular importance is
our ability to do so under conditions involving bright sunlight, which has hitherto prohibited successful capture
and reconstruction using artificial lighting.

This allowed us to use photometric stereo for surface reconstruction at far greater distances — up to 15 m —
than have previously been possible outdoors and under direct sunlight, obtaining high resolution 2.5D and 3D
information while separating colour from shape. Finally, the data captured using PS has been shown to have
application, at long range, for the common security problems of face recognition and the detection of concealed
objects.

The next step is to expand upon our current system using the 940 nm laser, which we anticipate will improve
our ability to discriminate artificial lighting in excess of 100 m. Further work will also look to improve on the
promising preliminary results of the object detection methods presented here.
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