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One-Step Approach for Two-Tiered Constrained
Relay Node Placement in Wireless Sensor Networks

Ali Chelli, Miloud Bagaa, Djamel Djenouri, Ilangko Balasingham, and Tarik Taleb

Abstract— We consider in this letter the problem of con-
strained relay node (RN) placement where sensor nodes must
be connected to base stations by using a minimum number of
RNs. The latter can only be deployed at a set of predefined
locations, and the two-tiered topology is considered where only
RNs are responsible for traffic forwarding. We propose a One-
Step constrained RN Placement (OSRP) algorithm which yields a
network tree. The performance of OSRP in terms of the number
of added RNs is investigated in a simulation study by varying the
network density, the number of sensor nodes, and the number of
candidate RN positions. The results show that OSRP outperforms
the only algorithm in the literature for two-tiered constrained
RNs placement.

Index Terms—Constrained relay node placement, two-tiered
topology, wireless sensor network.

I. INTRODUCTION

Optimal relay node (RN) placement is a fundamental and
challenging problem in wireless sensor network (WSN). Ex-
isting literature may be divided into two models [1]: i) single-
tiered model and ii) two-tiered model. In the formal model,
sensor nodes (SNs) participate in data forwarding towards the
base station (BS), and the topology is enhanced with dedicated
RNs to assure connectivity, or some other desired properties
(fault tolerance, QoS, etc.). In the second model, only RNs
forward data packets, while every SN is only used to acquire
and transmit its own data. The two-tiered model ensures
a longer network lifetime, as the SNs are generally power
limited nodes, while dedicated RNs tend to have less limitation
on energy (e.g. endowed with energy harvesting capabilities).
Solutions belonging to the two-tiered model may also be
split into two categories [1]: i) constrained placement and ii)
unconstrained placement [2], [3]. The latter suppose that RNs
may be deployed at any point of the deployment area, while
the former considers constraints when selecting RNs positions.
Although more challenging, constrained placement is more
realistic and permits to capture possible physical constraints on
the RNs positions. In real-world, the RNs potential positions
may be restricted to certain regions or even to a limited set of
particular locations.
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This problem has been recently treated in the literature.
Zheng et al. [4] consider it jointly with sub-carrier allocation.
They model it with mixed integer non-linear programming and
solve it with heuristics. Zhang et al. [5] proposed a solution
in a grid setting (discreetization of the space) and industrial
applications, where the RN could be placed at any centre
of grid cells. The proposed solution includes two phases, i)
calculation of the set of topologies that meet the requirements
in terms of fault tolerance, energy consumption, and ii) the
selection of the best topology. This approach has a very high
computation complexity. We are interested in particular in set-
tings where the set of potential placements is finite, similarly
to [1], [6], where Steiner trees have been used to determine
RN positions. This problem has already been proved to be
NP-hard [7]. Gao et al. [6] jointly consider minimum RNs
addition with fault-tolerance and develop heuristics based on
Steiner tree to connect SNs and BSs. Added RNs are supposed
to be able to communicate with each other directly regardless
of the distance and the physical environment conditions, which
is generally unrealistic.

We are interested in the construction of a two-tiered topol-
ogy for interconnecting SNs to BSs through RNs. This topol-
ogy is more appropriate for limited resources WSN, which
allows sensor nodes to preserve their energy for sensing and
first mile transmissions. To the best of our knowledge, there
is only one solution [1], dubbed TTCR, that addressed the
two-tiered constrained relay node placement. Fig. 1 shows
an example of TTCR execution. Fig. 1(a) depicts a network
topology comprising two BSs, forming the set B, twelve
candidate relay positions, say the set Y , and sixteen SNs, say
the set S. The circles and the squares represent the SNs S
and candidate relay positions Y , respectively, while a dashed
edge between two nodes indicates that these two nodes can
communicate together.

TTCR is executed on three steps to form two-tiered topol-
ogy. In the first step, each SN that is neighbor to a BS selects it
as its parent and then that SN is removed from the graph. Fig.
1(b) illustrates this step. In the second step, the rest of SNs
are connected to a set of activated relay position A ∈ Y that
are selected using the 22-approximation algorithm for single-
cover [8]. Fig. 1(b) illustrates this step. Before starting the
last step, the rest of SNs are also removed from the graph.
This is to construct two-tiered topology when connecting A
to B by adding some extra relays in Y . In the last step,
a heuristic Algorithm for Steiner Tree Problem (AST P) is
used to connect A to B, where A ∪ B are sources, and
the remaining candidate relay positions (Y \ A) are Steiner
points, as depicted in Fig. 1(c). This figure shows the final
tree constructed by TTCR, which adds six relays. This is far
from the optimal solution as it will be demonstrated later. The
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Fig. 1. An example that shows the execution of TTCR.

execution of TTCR on three steps does not assure optimal
solution. Although the selected RNs are locally optimal, the
final set is not necessarily globally optimal (local optimum
problem).

In this paper, we address the problem of two-tiered con-
strained RN placement and reduce the number of added
relays compared with TTCR. This latter provides a suboptimal
solution due to its three steps approach. The aim of this work is
to deal with this problem and propose a one-step approach that
construct a connected Steiner tree, which intuitively reduce the
number of RNs required to connect S to B (solution cost).

The rest of the letter is organized as follows. In Section
II, we present the proposed solution. Section III presents
the performance evaluation of the proposed solution OSRP
compared to the sole base-line approach TTCR. Finally, the
paper is concluded in Section IV.

II. PROPOSED SOLUTION

A. Network Model

We consider a wireless sensor network comprising three
types of nodes: the base stations, the sensor nodes, and the
relay nodes. The latter can be placed only in certain predefined
candidate positions. The objective is to connect the SNs to the
BS using a minimum number of RNs. The SNs only generate
the traffic while the RNs forward it (two-tiered topology). The
communication range for the SNs and the RNs are referred
to as r and R, respectively, such that R � r. The BSs are
assumed to be connected directly with each other via the wired
network.
Definition 1. The communication between nodes is modeled
as an undirected graph G = (r,R,B,Y,S), with vertex set
V = B∪Y∪S , and edge set E = ESS ∪ESB∪ESY ∪EYY ∪
EYB ∪ EBB. The notation EUZ refers to the edges from the
vertices of U to the vertices of Z . An edge (u, v) ∈ E iff the
two nodes are within the transmission range of each other. E
is formed as fellow: i) ∀u ∈ B, v ∈ B, (u, v) ∈ E. ii) ∀u ∈ S,
v ∈ B∪Y∪S , (u, v) ∈ E iff du,v ≤ r. iii) ∀u ∈ Y, v ∈ Y∪B,
(u, v) ∈ E iff du,v ≤ R. It is guaranteed that the formed graph
G ensures bidirectional communications between the nodes in
the network.

Definition 2. Let G = (r,R,B,Y,S) denotes the weighted
communication graph to be used in the two-tiered topology,
which is constructed from G by removing the edges between
SNs. Moreover, for each edge e = (u, v) ∈ E , where E denotes
the set of edges in G, the weight function is defined as:

W(e) =

{
|S ∪ Y ∪ B| if u ∈ S and v ∈ Y
|{u, v} ∩ Y| Otherwise. (1)

From (1), W(e) can take four values 0, 1, 2 and |S ∪Y ∪B|.
i) W(e) = 0 iff u, v ∈ B ∪ S; ii) W(e) = 1 iff u ∈ Y and
v ∈ B; iii) W(e) = 2 iff u, v ∈ Y; iv) W(e) = |S ∪ Y ∪ B|
iff u ∈ S and v ∈ Y .

B. Algorithm Description

In this section, the proposed solution OSRP is presented.
The main idea in OSRP is to proceed in a single step and to
calculate a Steiner tree that directly interconnects SNs to the
BSs via RNs. This is as opposed to TTCR where first a set of
activated RNs A is determined, then RNs in A are connected
to the BSs via the RNs in (Y \ A). For OSRP, the union of
SNs and BSs are the sources, while all possible positions for
RNs (Y) are utilised as Steiner points. The two tiered-topology
is guaranteed by choosing appropriate values for the weights
of the edges in the graph. A summary of OSRP is provided
in Algorithm 1, while Fig. 2 serves as a detailed illustrative
example. Given the positions of the BSs, the SNs, and the
potential positions of the RNs, the communication graph
G = (r,R,B,Y,S) is generated using Definition 1. Fig. 2(a)
depicts the communication graph G = (r,R,B,Y,S), where
the circles and the squares represent the SNs (S) and candidate
RN positions (Y), respectively.

OSRP starts by forming the weighted communication graph
G = (r,R,B,Y,S) using Definition 2. Firstly, the edges
connecting SNs to each other are removed from G (Algorithm
1: lines 1− 2). This will ensure that a SN cannot use another
SN to forward its data, which is a necessary condition to
guarantee the two-tiered topology. Secondly, OSRP assigns the
weights for the different edges in the graph using (1). For the
edges connecting two BSs or a BS to a SN a weight of zero is
assigned to this edge (Algorithm 1: lines 3−5). This will allow
connecting SNs that are in vicinity of a BS directly without
going through a RN. If an edge is interconnecting a BS to a
RN, the weight for this edge is set to one (Algorithm 1: lines
6−8), whereas for an edge interconnecting two RNs, the edge
weight is set to two (Algorithm 1: lines 9− 11). Even though
the edges connecting the SNs together are removed, it might
be possible that a RN uses a SN to forward its data, which
violates the two-tiered topology condition. To avoid this, a
weight equal to |S ∪ Y ∪ B| (the number of vertices in the
graph) is assigned to the edges connecting the SNs to the
RNs (Algorithm 1: lines 12− 14). Fig. 2(b) shows the graph
G produced by OSRP algorithm.

An AST P is now applied on the weighted graph where
the set of source nodes is the union of the BSs and the SNs
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Fig. 2. Illustrative example that shows the execution of OSRP.

(Algorithm 1: lines 15−16). Any existing heuristic can be used
in this step such as [9]. The output of the AST P is a tree
(V, E) which has a minimum total weight. The intersection
between the vertices V and the set of candidate RNs Y
represents the set of RN positions that should be activated
R (Algorithm 1: lines 17 − 18). Fig. 2(c) shows the tree V
constructed by OSRP algorithm. Note that the initial network
graph is the same in Fig. 1 and Fig. 2. By looking at the final
tree produced by TTCR and OSRP in Fig. 1(d) and Fig. 2(d),
respectively. It can be noticed that the number of added RNs
is reduced from 6 to 4 by OSRP. This example illustrates
that OSRP outperforms TTCR in terms of number of added
RNs. The performance of OSRP will be investigated more
extensively in the next section.

Algorithm 1 One Step constrained Relay node Placement (OSRP) Algorithm
Input:

G = (V, E): Communication graph, where E = ESS ∪ ESY ∪ ESB ∪ EYY ∪ EYB ∪ EBB.
B: Set of base stations.
S: Set of sensor nodes in the network.
Y: Set of candidate relay nodes in the network.
ASTP(G,W, S ): An approximation algorithm to obtain a Steiner tree from the weighted
graph G, where S are the source nodes andW represents the weight of the graph edges.

Output:
R: The set of relay nodes positions that should be activated.

1: G = (V,E = E); Initially, E equals to E.
2: E = E \ ESS; Remove the edges ESS from G.
3: for all (u, v) ∈ EBB ∪ EBS do
4: W(u, v) = 0;
5: end for
6: for all (u, v) ∈ EBY do
7: W(u, v) = 1;
8: end for
9: for all (u, v) ∈ EYY do

10: W(u, v) = 2;
11: end for
12: for all (u, v) ∈ ESY do
13: W(u, v) = |V |;
14: end for
15: S rc = S ∪ B;
16: (V,E) = ASTP(G,W, S rc);
17: R = V ∩Y;
18: Return R; III. SIMULATION EVALUATION

Given that the Steiner tree problem is NP-complete, existing
heuristics are used as general solution for AST P both in
TTCR and OSRP. Most existing heuristics are based on the
α-approximation concept, which ensures that the weight, W ,
of the constructed tree is at most α times the optimal weight
WOPT . Therefore, for any topology1, it is guaranteed that
the constructed tree has a weight W ∈ [WOPT , αWOPT ].
However, the weight W randomly fluctuates in this interval
with the topology change. Note that OSRP and TTCR use
AST P with different input topologies which will result in
inaccurate comparison between OSRP and TTCR. To make

1The topology consists of the sources and the Steiner points.

a fair comparison, we eliminate the external effects due to
AST P by applying an exact solution for Steiner Tree Problem
(STP). The exact solution is formulated through integer linear
program (ILP), which is presented in the next subsection.
A. Exact Solution For Steiner Tree Problem (STP)

Let η(u) denote the set of u’s neighbor in G, and χ, ζ the
set of source nodes and the set of Steiner points, respectively.
Three variables are also defined i) Xu,v is a boolean decision
variable that is set to 1 if node u selects node v as a parent;
(ii) W(u, v) is the weight of the edge (u, v) ∈ E ; (iii) F
is a matrix of integers (with elements Fu,v) that introduces
a flow to force the connectivity. The optimization problem is
formulated with the following ILP.

min
∑

u∈V−{B}

∑
v∈η(u)

W(u, v)Xu,v . (2)

Subject to,
∀u ∈ χ :

∑
v∈η(u)

Xu,v = 1. (3)

∀u ∈ ζ :
∑

v∈η(u)
Xu,v ≤ 1. (4)

∀u ∈ χ :
∑

v∈η(u)
Fu,v −

∑
v∈η(u)

Fv,u = 1. (5)

∀u ∈ ζ :
∑

v∈η(u)
Fu,v =

∑
v∈η(u)

Fv,u. (6)

∑
u∈B

∑
v∈η(u)

Fv,u = |χ|. (7)

∀u, v ∈ V : 0 ≤ Fu,v ≤ Xu,v |χ|. (8)

The ILP in (2) applies both for OSRP and TTCR to find the
optimal solution for to the given inputs (χ and ζ). Note that
the inputs are not the same for both algorithms even though
the initial network is the same. For AST P , χ = S ∪ B,
ζ = Y , whereas for T T CR, χ = A∪B (A is the subset of R
computed in the second step), ζ = (Y \ A). The constraints
are used to ensure the following conditions: constraint (3)
ensures that each S has only one parent; constraint (4) ensures
that a node (which does not belong to χ) can have at most
1 parent. The constraints (5), (6), (7), and (8) are used for
modeling the network connectivity and to ensure that all SNs
can transmit their data to the BSs. To guarantee that the formed
topology connects all the χ to B, a packet flow is mimicked,
which is generated and routed from χ to B. Each node in χ
generates only one packet which is then forwarded through a
set of ζ. The mimicked packet flow should be routed within
the constructed tree. Constraint (5) ensures that each node
in χ generates only one packet. Constraint (6) ensures that
the nodes which belong to ζ should not generate any packet.



4

 5

 10

 15

 20

 25

 30

 6  8  10  12  14  16  18  20  22  24

N
u
m
b
e
r
 
o
f
 
a
d
d
e
d
 
r
e
l
a
y
s

Network density (ψ)

OSRP

TTCR

(a) Network density

 10

 12

 14

 16

 18

 20

 22

 24

 26

 20  40  60  80  100  120  140  160  180  200

N
u
m
b
e
r
 
o
f
 
a
d
d
e
d
 
r
e
l
a
y
s

Number of sensor nodes

OSRP

TTCR

(b) Number of sensor nodes

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 20  40  60  80  100  120  140  160  180

N
u
m
b
e
r
 
o
f
 
a
d
d
e
d
 
r
e
l
a
y
s

Number of relay positions

OSRP

TTCR

(c) Number of relay nodes

Fig. 3. The solution cost measured as the number of relay nodes R which are added to ensure the connectivity between S and B.

Constraint (7) captures the fact that the number of packets
received at the BSs is equal to the number of sources (|χ|).
Constraint (8) forces the generated flow to be routed only
within the constructed topology: There is a flow from each
node u to its receiver v; otherwise if Xu,v = 0⇒ Fu,v = 0.

B. Numerical Analysis

In this section, we evaluate the proposed solution OSRP
against TTCR. OSRP and TTCR are evaluated in terms of
network cost which represents the number of RNs added to
interconnect S to B. The objective of any RN placement solu-
tion is to deploy the minimum number of RNs to interconnect
S to B. In the performance evaluation, we performed three
set of experiments: i) We vary the number of SNs |S| and fix
the network density ψ to 8 and the number of RN positions
|Y| to 100; ii) We vary the number of RN positions |Y| while
fixing |S| to 100 and ψ to 8; iii) We vary the network density
ψ and fix |S| and |Y| to 100. Fig. 3 illustrates the cost as a
function of the network density, the number of sensor nodes,
and the number of RNs. The results clearly show that OSRP
outperforms the TTCR for all considered investigations.

Fig. 3(a) shows the performance evaluation of TTCR and
OSRP when varying |S|. It can be seen from Fig. 3(a) that the
number of required RNs increases with the number of SNs |S|
both for OSRP and TTCR, but the number of deployed RNs
by OSRP is clearly lower than that of TTCR. For example,
when |S| = 160 OSRP require 19 RNs while TTCR require
only 23 to interconnect S to B.

In Fig. 3(b), the number of added RNs is plotted vs. the
number of candidate RN-positions. This figure shows that
the number of required RN increases proportionally with
the number candidate RN-positions Y . As the number of
candidate RN-positions increases while the network density
is kept constant, the SNs become more spread apart, and
consequently more RN nodes are needed to connect the SNs
to the BSs. OSRP requires lower number of RNs than TTCR
to interconnect S to B. The gap between both algorithms
increases proportionally with the number of candidate RN-
positions Y .

The network density ψ is varied in Fig. 3(c). It is clear
from this figure that the increase in ψ has a positive impact on
both algorithms. It is obvious that the increase in the network
density gives nodes in S more chances to transmit their data
without passing by Y . It is also clear from the figure that
the number of RNs required by OSRP is lower than the one

required by TTCR. The gain achieved by OSRP increases as
the network density decays. For instance, for a network density
of 6, OSRP reduces the number of RNs deployed on average
by 3.8 compared to TTCR. As the density of the network
increases to 24, the gain achieved by using OSRP instead
of TTCR decreases: OSRP deploys only 5.5 RNs on average
while TTCR requires 6.9 RNs, i.e., a cost reduction of 1.4 RNs
on average.

IV. CONCLUSION

In this letter, we consider the problem of constrained relay
node placement. For this problem RNs can be placed only
at a limited set of positions, and the sensor nodes should be
connected to the base stations using a minimum number of
RNs. In this work, we are interested in constructing two-tiered
topology, where the sensor nodes do not participate in the data
forwarding. In contrast to the sole solution in literature TTCR,
we solved the problem using a single step to reduce the number
of RNs that should be deployed. The performance evaluation
confirms the targeted objective and shows that OSRP clearly
outperforms TTCR in terms of the number of added relays.
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