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Abstract

Rationalizing energy consumption in smart buildings is considered in this paper, and a wireless monitoring system

based on Passive Infrared sensors (PIRs) is proposed. The proposed system is pervasive and can be integrated in

existing buildings without any complicated wiring or setting. Realistic constraints are considered for this purpose

such as sensing-hole, battery limitation, user comfort, etc. To ensure maximum coverage in presence of holes, the

optimal placement of PIRs is formulated as a mixed integer linear programming optimization problem (MILP). Ex-

perimentations have been carried out to quantify the effects of the holes on the detection accuracy and to demonstrate

the impact of the optimal PIRs placement on energy consumption. To facilitate installation and integration without

complicated settings, notably in existing buildings, the system is designed to be battery operated. Therefore, energy

efficiency will not be limited to optimize energy consumption in buildings, but also to optimize consumption in the

components of the system (sensors and actuators). Duty cycling is inevitable to extend the network lifetime of such

components, but the setting of this cycle yields a trade-off in optimizing the energy consumption i) at the building

level, vs., ii) that consumed by sensors and actuators. Reducing energy consumption (duty cycle) of sensors/actuators

will delay non-occupancy detections and thus will increase the building energy wastage, and vice-versa. Duty cycling

the radios is dealt with and modeled as a cooperative game, which allows to derive a Nash Bargaining as the optimal

balancing cycle. The proposed approach is analytically investigated using realistic parameters of the existing hard-

ware and users’ comfort. The results demonstrate that the system can survive for more than 6 years without battery

replacement.

1. Introduction

Energy consumption in residential and commercial buildings has increased dramatically worldwide in the last

decade as an inevitable consequence of the proliferation of electronic and consumer appliances, as well as the con-

stant economic and population growth notably in urban areas. The later cover 2% of the earth’s surface but are
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responsible of 78% world’s energy consumption and 60% of CO2 emission [1]. Buildings are the cause of 40% of the

total energy consumption in the US and the EU [2]. Similar figures are reported worldwide, which makes the building

sector the main source of energy consumption and expected to remain as such in the next decades [3]. Moreover,

it has been estimated that as much as 30-to-50% of the building’s energy is wasted due to misuse and non-optimal

management [4]. This motivates research efforts towards improving and modernizing Building Energy Management

Systems (BEMS) in the last few years. Such systems should have attributes from all facets of building to control and

manage functions such as Heating, Ventilation and Air-Conditioning (HVAC), lighting, fire alarm system, etc. An

efficient design of BEMS allows to achieve smooth buildings’ operations and maximize energy saving while preserv-

ing users’ comfort. Recent advances in ubiquitous wireless communications and sensing technologies have promoted

the deployment of Wireless Sensor Networks (WSNs) in many application areas, including BEMS. Battery operated

WSNs add flexibility to BEMS and allow deployment without hard or intrusive installations. This is particularly mo-

tivating in old buildings that does not incorporate any intelligent BEMS system. In such buildings, the installation of

a BEMS system maybe impossible and very expensive due the lack of the basic standards in the building structure to

support such a sophisticated installation and where the modification of the existing structures is usually undesirable.

Further, the solution can also be used in modern buildings to reduce cost and facilitate maintenance compared to

existing wired BEMS. For instance, when modifying space partitions to make new or extend the size of the offices,

additional wiring is required to connect to the existing BEMS. By using our solution, both the installation cost and

times are minimized. However, factors such as the use of low cost components (e.g., infra-red sensor for occupancy

detection) and supplying the system with batteries raise some design challenges on the system accuracy, reliability

and sustainability. Detecting user occupancy in buildings is a fundamental step for reducing wastage of energy and

improving users’ comfort. In fact, most BEMS in old buildings use a set of predefined actuation schedules for man-

aging electrical appliances, such as HVAC and lights. These schedules have a coarse-grained time dependability that

is generally related to static issues such seasons, days of the week, etc. However, by dynamically detecting vacant

places, more optimized context-aware schedules can be implemented to shorten the actuation durations without com-

promising the user’s convenience. Many of the solutions proposed for tracking the presence of occupants in buildings

are based on the use of passive infrared (PIR) sensors [5], [6], [7], [8], [9]. These sensors are made from inexpensive

pyroelectric materials that react to the change of infrared emissions in the environment, which helps in capturing the

presence of humans in a specific space. The low cost and low energy consumption of such sensors enable their large

use in battery-operated wireless systems. Further, they do not affect the privacy of people, contrary to other sensors

such as cameras and microphones. This privacy preservation make such sensors appropriate for monitoring private
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spaces such as offices, meeting rooms, homes, etc.

However, a major drawback of PIR sensors is the false negatives (non-detection) in some situations. The first

reason behind this shortcoming is that these sensors are only capable of detecting motion, but not static bodies. Whilst

this does not represent any problem in many premises of buildings where people are moving, such as corridors and

near to the doors, it prevents accurate monitoring in places such as offices where workers tend to stay immobile for

relatively long periods. To tackle this problem, some solutions have been proposed in the literature that complement

the PIRs with information provided by additional sensors. For example, the occupancy detection system proposed by

Agarwal et al. [5] is enhanced with a magnetic reed switch sensor that tracks the open/close events of an office door.

This information is matched with the output of the PIRs. ThermoSense [8] uses, in addition to a PIR sensor, a thermal

sensor array that is able to measure temperatures of a 2.5 m × 2.5 m area discretized as a 8 × 8 grid. Alternatively,

some other solutions use other sensing techniques, such as [10]. The second problem is that the sensing area of a

typical PIR module is not a contiguous volume, but it includes spaces where changes of infrared emissions are not

captured by the sensor. We refer to these uncovered spaces by, sensing-holes. The dimensions of these sensing-holes

become larger as the distance separating the sensor to the detection zone increases. For instance, with state-of-the-art

PIRs, it reaches the scale of a human body movements at a distance of 2 m to 3 m, which represents typical hight of

ceiling at offices where PIRs are usually installed. Consequently, a PIR cannot detect a person within the sensing-hole

even when he performs small movements (e.g., in the office scenario, moving his arms, his head, rotating the chair

when sitting, etc.). While it seems infeasible to detect static body only with PIRs (the first problem), it is possible to

tackle the second one by investigating the sensing-holes and their impact, and using optimal deployment of PIRs to

eliminate/minimize such holes.

In addition to the false negatives, lifetime of battery operated sensor has always been an issue in real deployments.

Frequently replacing the batteries after installation is impractical and makes the solution unattractive. The trend in

many applications is to use energy harvesting technologies to supply sensor motes. Solar energy is currently the most

effective source given its high efficiency as compared to other technologies such as wireless charging. However, this

cannot be used for indoor deployment, which features the application considered in this work. A possible alternative

in the future will be wireless recharging, but it does not seem possible in the short or mid-term horizon to achieve

reasonable charging efficiency with this technology. This makes optimal energy management of batteries the only

remaining option. Given that the radio consumes the largest amount of a node’s battery [11], the only way to extend

the lifetime is to duty-cycle the radio component and repeatedly switching it between active and sleep modes. In

active mode, a node can receive and transmit packets, while in the sleep mode, it completely turns off its radio to
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save energy. Using low cycles with high period of sleep mode trivially allows to extend the battery lifetime but

may delay reporting of detections to the control system and/or the appropriate actuator (also called switch-mote in

simplified settings), which have undesired effect on the user comfort and/or the BEMS. Whereas high cycles reduces

this problem but at the cost of reducing the batteries’ lifetime.

In this paper, we tackle all the above mentioned problems and propose an efficient yet low cost occupancy de-

tection system for energy saving in buildings. For occupancy monitoring, the system uses only PIR sensors. This

facilitates installation in existing buildings and even in buildings that does not use any BEMS (e.g., in developing

countries). The main contribution of this paper are summarized in the following.

• We propose a solution to the occupancy detection accuracy using low cost PIR sensors and formulate the

problem of placing minimal number of PIR that maximizes the coverage of the monitoring area with mixed

integer linear programming. Realistic features such as sensing holes are considered in the model. A short

version of the solution has been already published in [12].

• We consider maximizing system lifetime by duty-cycling different components of the system with the use of

PIRs to trigger their wakeup and ensuring user comfort. Without loss of generality, we consider a simple setting

in offices with PIRs/light sensors that monitor the occupancy and day light, respectively, and switch actuator

that react upon detections. We determine the optimal duty-cycle period that tradeoff the PIR sensor motes

lifetime with the switch by defining a cooperative bargaining game model between the two motes. This model

allows to derive the Nash Bargaining point as the optimal balancing cycle.

• Analytical and experimental results are provided to validate the proposed approach and empirically demonstrate

the efficiency of the solution in saving electrical energy while ensuring user comfort.

The remaining of the paper is organized as follows. Sec. 2 states some existing electrical energy management

systems and sensor based solutions. Sec. 3 presents the proposed solutions for the occupancy monitoring system,

starting with a general overview of the proposed system in Sec. 3.1, followed by the occupancy detection in Sec.

3.2, and then the duty-cycling solution, in Sec. 3.4, which has been proposed for extending the system lifetime. The

proposed game theory-based model of duty-cycle balancing with the different experiments results are presented in

Sec. 4. Finally, Sec. 5 draws the conclusions.
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2. Related Work

Energy saving in smart buildings is emerging as a hot research topic. The study in [13] has examined the possible

energy saving opportunities in modern buildings. The authors have estimated potential energy saving in a large univer-

sity campus to be 80% for lighting, 60% for computing, 50% for server rooms, and 20% for mechanical loads. Reena

et al. [14] have showed that there is an increasing need to deploy wireless based building automation system when

(i) wiring is time-consuming and too expensive, (ii) scalability and flexibility are necessary, and (iii) redeployment

or alteration is needed without affecting the aesthetics of existing buildings. Various wireless energy control systems

have been developed in the last few years [7, 5, 15, 16, 17]. Most of these system try to adapt automation to individual

behavior patterns and accordingly mimic the energy saving policy. The first step is to have an efficient occupancy

detection. Several occupancy detection systems have been proposed; using camera [18], PIR sensors [5], [15], [12],

ultrasonic [19], carbon-dioxide (CO2) sensors [20], RFID [21], WiFi [22], etc. PIR-based occupancy detection is

a low power, low cost approach, and it preserves people privacy. This make it suitable for building applications.

The authors in [5] have developed a PIR-based wireless presence sensor platform to report the occupancy state in an

existing building. An additional magnetic reed door switch sensor has been used to improve accuracy. The authors

have estimated the battery lifetime of the occupancy detection module alone to be over five years. This estimation is

reasonable as the system is not interacting with a remote actuator and stays most of the time in power save mode, and

it only wakes upon occupancy detection. However, this estimation is not accurate when the system interacts with actu-

ation and control units (HVAC control or lighting), where battery depletion would be much faster. In [7], reactive and

predictive strategies have been examined to control an HVAC system within residential buildings using PIR-sensors.

Based on a Hidden Markov Model, the predictive strategy is determined and probabilities of different possible home

states are estimated. By testing the system in 8 homes, the authors demonstrated that the system can achieve a 28%

energy saving on average. In [17], a PIR based wireless lighting control system has been developed. It allows the

users to manually configure the time out, i.e. the continuous period of non-movement before claiming non-occupancy

of the monitored space. Optimal setting of this parameter is important to avoid reporting false negatives, i.e. claiming

unoccupied state while the space is occupied by a static user (users with small or less movement), who cannot be

captured by the PIR motion sensor. However, this manual configuration overwhelms the user and does not allow to

get optimal values. For more details about occupancy detection systems, we refer the reader to a recent survey given

in [23].

While most works on building power management have been focusing on electrical energy saving or users’ com-
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fort, few works have considered the lifetime of the deployed system. Guinard et al. [24, 25] have presented a WSN

design tool for optimal sensor node placement within the monitored building by maximizing a utility function that

captures both building energy efficiency and wireless network performances. However, the latter focuses only on

the communication and sensing performances without considering the network lifetime. Aftab et al. [26] proposed

an online algorithm to balance the lifetime of wireless sensors and the effective temperature control. The problem

is formulated as an optimization problem that maintains thermal comfort within the building, while maximizing the

battery lifetime of sensor devices. The wireless sensor decides, according to the fluctuation in ambient temperature,

to update transmission frequency of new values in such a way that the amount of the communicated information is

minimized. Mady et al. [27] have developed a building lighting control system and proposed an analytical model

for the network design by considering the cost and the Quality of Control (QoC) metrics. The cost of each node

includes CPU, buffer and battery usage. Although the battery usage in communication is modeled based on a given

MAC protocol, the authors have not considered the radio duty-cycle parameter optimization that has been assumed

to be fixed. For instance, the LPL (Low Power Listening) protocol, also known as BoX-MAC and considered as the

canonical energy efficient MAC implemented in TinyOS stack protocols1, sets the radio duty-cycle parameter to 2%

(i.e. carrier sensing is performed 4ms each 2 seconds) regardless of the devices’ packet exchange rate. This leaves

room for further improvement by appropriately setting this parameter.

The only notable efforts to extended the WSN lifetime have been mainly devoted to address energy efficiency

by optimizing MAC protocols following pure experimental approaches or protocol modeling, such as using Markov

models [28, 29]. Other solutions have considered MAC parameters optimization under some performance metrics

such as reliability and latency [30, 31]. However, in these works, the optimization parameters have been designed

independently of the different application objectives such as electrical energy saving and users’ comfort. Game

theoretical models are appealing approaches in multi-objective optimization, and they are widely applied in economics

and in network resource allocation to address tradeoff between conflicting application objectives [32, 33]. In this work,

we consider the tradeoff between the building’s energy, the occupancy accuracy and the system lifetime and we try

to jointly optimize these parameters by applying a Bargaining cooperative game in building energy management to

balance performance objectives of the system.

1http://tinyos.stanford.edu/tinyos-wiki/index.php/CC2420 Asynchronous Low Power Listening Implementation
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3. The Proposed Power Management System

3.1. Overview

(a)

sensor-mote(s)

Motions Daylight

Occupancy
status

Dimming level

switch-mote

Turn On
Light

Turn Off
Light

Adjust
Bright-

ness
Etc.

Control module

Sensing module

(b)

Figure 1: Building energy control system: (a) An office equipped with a sensor-mote and switch-mote to control the light. (b) Logical view of
the different modules of the system.

We consider a typical electrical energy control system that mainly consists of occupancy detection sensors, elec-

trical power actuators, and a central control unit. The occupancy sensors are responsible of reporting the occupancy

state of the area/room where are deployed, to the central control unit. Once received by the control unit, the occu-

pancy states are translated to an action that is transmitted to actuators to turning On/Off appliances or adjusting the

heating or the cooling temperature of an HVAC system. Without loss of generality and for the purpose of illustrating

the proposed methods in real application, we consider an automatic lighting control system. However, the proposed

solutions can be applied to any control system that is occupancy-based. This choice is motivated by the ubiquity of the

light control systems, as well as the high ratio of energy consumed for lighting, estimated at 39% of annual electricity

use in buildings [3], which justifies the usefulness of the proposed application. We consider the scenario of an office

as depicted in Fig.1(a). The goal is to eliminate energy wastage by switching off the light, often forgotten On, when

employees leave their offices. The system should turns on the light once offices become occupied. To meet the user

comfort, this action should take place immediately or at a very low latency (at a sub-second scale) after the occupant

enters. In this system, the occupancy detection module (that we call the sensor-mote) is equipped with a passive

infrared (PIR) sensor. It is placed on the ceiling of the office to monitor people movements and activities. Whenever

a new occupancy state is detected by the sensor, the sensor-mote reports the new state using wireless communication

to the controller (switch-mote) that commands the light switch. We also embed the sensor-mote with a light sensor

that measures ambient light in the office. The light sensor allow to tune the control system by turning On/Off the
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Figure 2: Sensing module circuit

light with respect to the available ambient light. Dimming in accordance with the ambient light is also possible but

is not considered in our study. The switch-mote can be located anywhere in the office or incorporated with the light

switcher, which is generally placed on the wall at the office entrance. Fig. 1(b) illustrates the logical view of the

system and shows the different modules and their corresponding input and output.

In addition to the objectives related to electrical energy saving and users’ comfort, providing a cost-effective

occupancy detection and ensuring long lifetime to the sensing/actuating system are other objectives that elevate the

complexity of the problem, but essential to make the solution reliable. The objectives are conflicting; deploying few

number of low-cost sensors reduces the system cost but will have a negative impact on the accuracy of the occupancy

detection, and therefore it will reduce the amount of energy saving and adversely affect the users’ comfort level.

Further, using a low duty-cycle (inactive radio for long period) will significantly increases the system lifetime but

might delay reports on occupancy detection and thus the relevant actuation, which impacts the user comfort. Our aim

is to propose solutions that balance these conflicting objectives. A low-cost electronic system has been developed for

each module, which is described hereafter.

3.1.1. Sensing Module

The circuit of the sensing module integrates a PIR sensor and a Light Dependent Resistor (LDR) sensor, which

allow the detection of moving people and ambient light, respectively. The used sensors are small in size, consume very

low-power, and inexpensive. The resistive value of the LDR sensor depends on its illumination. The LDR connects

to a Potential Divider (PD) as shown in Figure 2. This circuit outputs a high voltage when the LDR is exposed to the

light, and a low voltage when the LDR is in dark conditions. The output voltage of the potential divider was converted

into a digital value by the ADC of the sensor-mote.
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3.1.2. Control Module

The control module is equipped with a latching (stay) relay that can maintains its state indefinitely without power.

The latching relay is the most suitable for our energy-saving application as it consumes very low power. The Panasonic

DS1E-SL2-DC3V relay has been chosen, which allows activation by pulse, and has zero power consumption after

activation. The pulses (ON) and (Off) are generated by the two transistors, Q1 and O2 that are controlled through

GPIO1 and GPIO2 of the switch-mote, as shown in Figure 3.

3.2. Occupancy Detection

3.2.1. Background and Problem Statement

PIRs are low-power PIR sensors that use pyroelectric transducers that convert infrared radiations into electrical

signals. To increase the PIR sensitivity, a Fresnel lens is used. It concentrates infrared radiations onto the detector.

This results in a field-of-view (FoV) that is more like a discrete set of beams or cones with many sensing-holes. To

be detected, the movements of the person should take place within the FoV. Fig. 4(a) illustrates the different types of

motion made by a human and the corresponding maximum sensing-hole size for which the motion can be detected

by a PIR [34]. The sensing-holes should not exceed 0.6 m to ensure an efficient detection of a sitting person’s hand

motions. The size and distribution of the holes impact the granularity of the PIR detections. Fig. 4(b) illustrates the

projection of the actual FoV of a Panasonic EKMB PIR sensor on a two dimensional plane [35]. The PIR is placed

at the ceiling of an office and the projection is performed on the plane parallel to the ground and elevated at a typical

height of desks, where most of persons’ low movement activities take place (e.g. arm and hand movement when

sitting). The figure shows the presence of several sensing-holes that represent more than 87% of the total monitored

office area, and their sizes vary from one region to another within the PIR’s FoV. They may exceed 1 m in some

places. These large sensing-holes may affect PIR-based occupancy detection systems and cause incorrect decisions,

such as turning off a light or HVAC in the presence of a person, which limit the credibility of the system.
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(a)

1.11m

5.15m

6.33m
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Figure 4: (a) The relation between the size of sensing-holes and motion sensitivity. (b) 2D view of a PIR Field-of-View. Solid rectangles
represent detection zones.

3.2.2. Problem Formulation

In the following, we define the Maximal PIR Coverage (MPC) problem that finds the optimal positions of the

PIRs for maximum coverage in the area of interest while considering the sensing-hole. To simplify the formulation,

we consider the projection of the covered area on a two dimensional plane as explained before. Despite such simpli-

fication, the computation of the detection zones for a given set of PIRs is difficult to formulate mathematically. The

monitored area is discretized and considered as a set of points, where a point will be considered covered iff it is within

the coverage zone of at least one PIR.

Let D denotes the two dimensional space to be monitored by a set, S, of PIRs. For the sake of simplicity, we

assume that D has a rectangular shape of width W and length L. The problem is discretized by dividing D using a

step l, which results in a grid of points D̃ = {(il + l
2 , jl + l

2) | 0 ≤ i ≤ bWl c ∧ 0 ≤ j ≤ bLl c}. In general, the

density of persons in the space D̃ is not homogeneously distributed and obstacles (e.g., bookshelf, desks, table, etc.)

are present. Therefore, we introduce a weighting matrix Φ(x,y)∈D̃ that enriches the geometric deployment space with

a semantic dimension indicating the places where people are more likely to be detected. This is by given, i) a high

weight to areas where people are likely to stay and exhibit low movement activity once there (e.g., area of a desk chair,

meeting table chairs), ii) a zero weight at obstacles (e.g., bookshelf, table, etc.), and iii) a regular weight elsewhere

where people are likely to move. We assume that PIRs are placed on the ceil of the deployment area without any

rotation. Consequently, the detection zones of any PIR, s ∈ S, will have a rectangular shape and can be modeled

by a set Zs ⊆ R4, where a tuple, (xi0, x
i
1, y

i
0, y

i
1) ∈ Zs, denotes the boundaries of a single detection zone, zi, on the

X and Y , when s is placed at the origin (0, 0). The consequence of a change in the PIR coordinate from the origin,

say to the position (Xs, Ys), is a simple translation of the zone, zi, on the abscissa and ordinate axes, by, Xs, and Ys,
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respectively. The MPC problem is then formalized as a mixed integer linear problem (MILP) as follows. We define

the decision variables Xs and Ys for denoting the coordinates of a PIR s ∈ S, and the binary decision variables C(x,y)

that indicate wether the point (x, y) ∈ D̃ is covered by at least one PIR or not. The problem is formulated with the

following mixed linear problem:

max
∑

(x,y)∈D̃

Φ(x,y)C(x,y), (1)

s.t.

∀(x, y) ∈ D̃ : C(x,y) = 0 ∨

∃s ∈ S,∃(xi0, xi1, yi0, yi1) ∈ Zs :

(Xs + xi0 ≤ x ≤ Xs + xi1) ∧ (Ys + yi0 ≤ x ≤ Ys + yi1)

(2)

∀s ∈ S : (0 ≤ Xs ≤W ) ∧ (0 ≤ Ys ≤ L) (3)

The first constraint formalizes that C(x,y) = 1 iff there is at least one detection zone of a sensor, s, that covers the

point (x, y), while the second restricts the coordinates of the sensors within the deployment area.

To eliminate the operators ∃ and ∨ in Eq. (2) and transform the MILP into a standard form that can be handled by

solvers, we use the big-M method [36]. Artificial binary variables Wx,y,s,z are introduced for each constraint in Eq.

(2), and a sufficiently large number M is associated with Wx,y,s,z . On application of the Big-M method, the previous

optimization problem transformed into,

∀(x, y) ∈ D̃ : ∀s ∈ S : ∀(xi0, xi1, yi0, yi1) ∈ Zs :

(C(x,y) x)−Xs − xi1 ≤ (1−Wx,y,s,z) M ∧

(C(x,y) y)− Ys − yi1 ≤ (1−Wx,y,s,z) M ∧

Xs + xi0 −
(
x+ (1− C(x,y)) M

)
≤ (1−Wx,y,s,z) M ∧

Ys + yi0 −
(
y + (1− C(x,y)) M

)
≤ (1−Wx,y,s,z) M,

(4)

∀(x, y) ∈ D̃ :
∑

(s,z)∈S∗Z

Wx,y,s,z ≥ 1, (5)

∀s ∈ S : (0 ≤ Xs ≤W ) ∧ (0 ≤ Ys ≤ L). (6)



12

(a) (b) (c)

Figure 5: Three deployments scenarios considered during the experimentation. Circle points represent the discrete grid of the deployment area
and diamond points represent the PIRs. The gray zone delimits the place of the office’s desk, which has been given a greater weight in Φ.
(a) Optimal deployment with one PIR. (b) Optimal deployment with three PIRs ensuring full coverage of the desk’s area. (c) Hole-unaware
deployment where the desk area is completely uncovered.

3.3. Experiments

We have deployed an experimental PIR-based occupancy detection system to monitor an office and quantify the

impact of the sensing-holes on the performances of the system. The experiments were performed using the EKMB

PIR sensors from Panasonic, integrated to an nRF51-based mote by Nordic Semiconductors, which features a low-

power SoC that embeds an ARM Cortex-M0 MCU, and a 2.4GHz wireless transceiver. The considered deployment

area is a single-occupant office of 3.3 × 2.4 m2. Most activities are concentrated over the office desk that received

greater weights in the matrix Φ. The discretization step2 l was fixed to 0.3 m resulting in a grid of 11 × 8 points.

While the all the office space fall within the sensing range, the real covered space is not the continuous space over this

range but includes gaps (sensing-holes), and it might be represented as a set of discontinued squares (Sec. 3.2). Three

deployments scenarios have been evaluated. The first one corresponds to the optimal solution of the MPC problem

when using one PIR. As shown in Fig. 5(a), this deployment covers nearly 63% of the desk’s area. Optimal full

coverage of this space is ensured with 3 PIRs, which corresponds to our second deployment scenario depicted in Fig.

5(b). In the third scenario, a single PIR was placed in a way to put the largest holes at the desk area as shown in Fig.

5(c). It shows the real impact of sensing-holes on the performances of the detection system. It is worth noting that

existing solutions consider the deployment represented by the third scenario as optimal since they ignore the presence

of the sensing-holes and consider the PIR covers the whole space within its sensing range (all the office).

The deployed motes actively monitor the state of the PIR and notify a central base station about any detection

event. The latter maintains a database for logging the incoming sensory data along with ground truth presence/absence

2The discretization here is made only to decrease the complexity of searching the optimal solution.
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Figure 6: Experimental results for the three scenarios: Time proportion for the different cases of detection based on raw data.
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(a) Optimal 1

Actual
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ed

ic
at

ed Presence TP = 41.4% FP = 0.017% 41.41%
Absence FN = 0.39% TN = 58.17% 58.56%

Total 41.79% 58.187%

(b) Optimal 3
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(c) Hole-unaware

Figure 7: Confusion matrix for the three scenarios: Time proportion for the different cases of detection based on raw data.

intervals, which are provided manually by occupants. To accurately capture the real occupancy state of the office

(ground truth), two push buttons wired to the base station are made available at the entrance of the office. For

practicality, one button is labeled ”ENTER” with green color, and the other ”EXIT” with red color. When a person

enter (resp. exit) the office, he must push the green (resp. red) button to increment (resp. decrements) the number of

office occupants. The experiments were performed over a period of three months. The obtained results are depicted

in Fig. 6 and the confusion matrices (Fig. 7) that summarizes, for the three deployment scenarios, the ratios of the

reported detections: true presence (TP), true absence (TA), false presence (FP), and false absence (FA). The results

confirm that taking into consideration the presence of sensing-holes helps in reducing the FA, i.e. the system is able

to capture more occupant movements. However, these results represent the distribution of the raw data collected from

PIRs and cannot be used as a reliable indication of absence. As the PIR signal fluctuates significantly when occupants

are moving, detection systems generally implement a filtering mechanism to smooth the collected raw data. The

filter is based on a timeout mechanism that is launched when no motion is detected, which delays the decision about

absence detection to overcome FA.

To evaluate the performance of the system in the different deployment scenarios and under different timeout

values, we have measured two metrics, (i) the comfort level, and (ii) the waste in energy usage. The first metric

quantifies the ability of the system to preserve the convenience of users, that is, the ability not to disturb the occupants

by keeping office energy supply on when they are present in the target area (i.e. ability to overcome FA). The second

metric reflects the proportion of time the system fails to effectively detect (or react to) the absence of occupants, which
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Figure 8: (a) The Cumulative Distribution Function (CDF) of correct absence decisions in function of times. (b) The variation of the energy
waste for different levels of users’ comfort using a timeout smoothing.

implies a missed opportunity to reduce the energy consumption. Before presenting the results related to these metrics,

we First plot the Cumulative Distribution Function (CDF) of correct absence decisions as a function of the required

time (time out) to take that decision (Fig. 8(a)). The results in Fig. 8(a) shows fast convergence of the proposed

solution vs. hole-unaware deployment, and they help in selecting the corresponding timeout to achieve a particular

TA probability (percentage). For instance, to realize 90% of TA, according to Fig. 8(a), the timeout should be set to

20sec, 35sec and 80sec for optimal3, optimal1, and hole-unaware deployment scenarios, respectively.

Formally, the comfort level C and the energy usage wasteW are computed as follows:

C =
TP

TP + FA
,W =

FP

FP + TA
,

where TP (respectively FP ) denotes the total durations of TP (respectively FP), and TA (respectively FA) denotes

the total durations of TA (respectively FA).

For every deployment scenario, the value of the absence timeout has been varied, and C,W have been measured

for every case. Fig. 8(b) shows the variation of the observed usage waste for different levels of comfort. The results

clearly show that the energy waste for the hole-unaware deployment is remarkably higher than for the proposed

solution, and it considerably grows with comfort level (in case of hole-anware). In fact, to ensure a high level of

comfort in the presence of sensing-holes, absence decisions need to be delayed for long periods (high timeout). This

is explained by the fact that these zones hamper the proper capture of small movements, which increases the time

required to catch such events. The consequence of high values of the timeout is that occupants leaving the office are

not timely detected (reported), which causes energy waste.

We can also notice from Fig. 8(b) that the performances of the optimal solution using only one PIR are very close
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to the optimal full coverage solution using three PIRs. This is as the fact the first deployment covers an important

proportion of the chair-side of the office desk. This result demonstrates that it is important to properly construct the

Φ matrix in order to focus the optimization problem on the most relevant spaces which helps reducing the number of

required sensors.

3.4. Extending System Lifetime

As the proposed control system rely on battery-operated sensor motes, it is important to optimize the battery power

usage. Each mote should switch to power-save mode during inactivity periods. Table 1 reports the power consumption

of the different components of a Nordic Beacon platform [37], used in the experiments. By comparing the energy

consumptions presented in this table, we conclude that the radio is the most energy hungry component. Therefore,

the medium access control (MAC) protocol plays a key role in extending the system lifetime, by controlling the radio

states and by employing low duty-cycles. In our occupancy detection scenario, the sensor-mote requires to report its

new PIR or ambient light readings to the switch-mote to instantly turn on the light when the space becomes occupied

or when the ambient light level becomes undesired. Instantaneous reporting is required to meet the expected users’

comfort. Because the moment when the occupancy state changes is unknown, the radio transceiver of the switch-

mote should be always in standby (receive mode). This causes waste of an important amount of energy given that

consumption in the reception mode is significant (see table 1). The trivial solution to this problem is by implementing

a low duty-cycle MAC protocol, where energy saving is achieved by repeatedly switching the radio between active

and sleep modes (duty-cycling). In active mode, a node can receive and transmit packets, while in the sleep mode, it

completely turns off its radio to save energy.

Many energy efficient duty-cycled MAC have been proposed and implemented in current sensor operating systems

such as LPL [38] and ContikiMAC [39]. Considering the use of a typical LPL MAC in our solution. In this case, a

switch-mote turns off its RF module most of time during T (the wakeup period) to maximize the lifetime as shown

in Fig. 9.(a). To enable sensor-motes to communicate with the Switch (actuator), it is required to ’capture’ the active

time when a switch-mote wakes-up to sense the channel during Tcs (see Fig.9.(a). The sensor-mote does not have

any knowledge on the receiver active time, and thus to send the detected presence or the absence state it has to turn

on its radio and waits actively by transmitting a preamble (a packetized preamble used in LPL [38]) until meeting the

switch-mote active period. A long wakeup period allows the switch-mote to save a considerable amount of energy

but certainly impact the users’ comfort parameter as it delays the light turning on. The wakeup period T should be

carefully selected in order to maintain an acceptable users’ comfort level. To enable the switch-mote to turn on the
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Table 1: CPU, PIR, and Radio Power Consumption for NORDIC BEACON platform [37]

CPU PIR Sensor Light Sensor Radio

Specification ARM Cortex-M0 MCU Panasonic EKMB PIR PDV-P8001 LDR nRF51 2.4 GHz

Power 2.3 µA Power save 1 µA Inactive 430 µA ADC read 10.5 mA TX
Consumption 3.1 µA Oscillator on 100 µA Active 13 mA RX

(a) (b)

Figure 9: (a) The communication scheme using duty-cycled MAC based solution, (b) The sensor-mote and the switch-mote lifetime for different
values of the wakeup cycle T.

light within an acceptable time, say ε time units after the space becomes occupied, the T period must not exceed ε.

To assess the system lifetime when using existing duty-cycled MAC solutions (LPL used for illustration), we cal-

culated the average energy consumption of the system according to the communication scheme depicted in Fig. 9.(a).

According to the absence/presence profile recorded by our installed light control prototype during one month, the

sensor-mote turns on its transceiver and sends the new occupancy state to the switch-mote (once detecting that the

space becomes occupied or when a new ambient light reading becomes available). To ensure that this new state will

be received by the switch-mote, the sensor-mote repeatedly retransmits this message along the period of the T till

receiving the acknowledgement from the Switch. The same thing happen when the space becomes unoccupied.

We plotted the lifetime of the sensor-mote and the switch-mote as a function of the wakeup period T in Fig. 9.(b).

The users’ comfort latency constraint (ε) has been set to 2sec. The results show that the switch-mote lifetime increases

as the wakeup period become longer. However, due to comfort constraint, the switch-mote lifetime cannot exceed

1 year and few months. This highly limits the suitability of existing duty-cycled MAC solution to our light control

system.

In order to ensure the users’ comfort required by the automatic light control system and extend its lifetime, we

propose to embed the switch-mote with a low cost PIR sensor. The later will be responsible of triggering the switch-
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mote once a movement is detected. By placing the switch-mote within the light-switch, next to the space entry, the

new PIR sensor will be able to capture any entry and thus, enable the system to instantly turn on the light when the

space becomes occupied. In this case, the switch-mote’s transceiver can be turned off without affecting the users’

comfort requirement. However, because the FoV of the new PIR sensor used by the switch-mote is mainly directed

towards the space entrance, the latter cannot autonomously determine if the space is actually unoccupied (i.e. cannot

rely on its PIR for that). This information can be only provided by the sensor-motes that have an appropriate coverage

of the monitored space. As depicted in Fig. 10.(a), both the sensor-mote and switch-mote are in power save mode

with the radio turned off when the office is unoccupied. When a person enter the office, the new PIR sensor will

trigger the switch-mote to immediately turn on the light and start duty-cycling the radio to receive occupancy state or

ambient light reading from the sensor-mote. Whenever the later detects the activity in the office or read a new light

value, it will activate its radio and start sending the new information to the switch-mote using the packetized preamble

model similarly to the LPL scheme. The switch-mote keeps duty-cycling its radio until receiving an absence state.

The sensor-mote returns to sleep mode after sending the new state. When an absence is detected, the sensor-mote

reactivates its radio and reports the switch-mote in order to turn off the light and enable it go to sleep mode to save

energy. The duty cycle period of the switch-mote (T ) has a conversely effect on the two motes’ lifetime as depicted

in Fig. 10.(a). In addition to the instantaneous turning on of the light upon occupancy (as explained above), the figure

shows that the proposed solution allows to prolong the lifetime of both motes. For instance setting T to 2sec enables

to reach a lifetime of more than 6 years for the switch-mote, and more than 12 years for the sensor-mote (vs. less than

2 years and 11 years, respectively, when using LPL as depicted in Fig. 9.(b)). But the figure shows a clear trade-off due

to the conversely effect of the period T , i.e. sensor-mote’s lifetime decreases with T because of the rise of the number

of packetized preamble transmissions, while the switch-mote’s lifetime increases proportionally with T because of

the reduction of time spent in idle listening. Optimal balancing these two performance metrics (sensor-mote lifetime

vs. switch-mote life time) will dealt with in the next section.

4. Parameter Optimization

To calculate the optimal value of the wake-up period (T ) that enables making a balance between the sensor-mote

lifetime and that of the switch-mote, we formulate the problem using game theory modeling. We use the Bargaining

model to define our two-player game. Instead of defining the individual nodes as players– which is common in the

literature [32, 33]– The game players in our model are the systems objectives (sensor-mote and switch-mote lifetime).

This limits the number of players and makes it independent from the problem size, which is scalable. The utility
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(a) (b)

Figure 10: (a) The communication scheme using duty-cycled MAC based solution, (b) The sensor-mote and the switch-mote lifetime for
different values of the wakeup cycle T.

function of each player is used by the model to determine the optimal wakeup period parameter, T ∗. Each player

threats the other with using his best optimal point obtained from a non-cooperative game in which the player finds his

best optimal operating value, i.e. player sensor-mote obtains its longest lifetime at the cost of decreasing the switch

mote and vis versa. A bargaining game is then defined in order to find an agreement operational point that satisfies

both players. The different components of the game are introduced in the following.

4.1. Utility Function

The utility function represents the lifetime that each player tends to maximize. For the sake of simplicity, we

consider the cost function of each player instead of its utility in order to obtain a convex form of the optimization

problem. The two functions are just reversely dependent. The cost function is expressed by the energy consumption

of the mote that can be represented by the effective duty cycle, i.e. the fraction of time the component is switched on

during a period of time. This period has been set to one working day in in our experiments that will be presented later.

Given the current draws in each operating mode, the mote’s lifetime can be easily expressed as a function of the

duty-cycle. Let Q be the battery capacity measured in mAh, DCk, the duty-cycle of the mote in an operating mode

k, and Ik, the current draws in each operating mode. Then the device lifetime would be,

Lifetime =
Q∑

k

(
DCk × Ik

) . (7)

The energy consumption is expressed in the following as the cost function of each player:
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Table 2: Symbols used in sensor-mote & switch-mote cost functions
SymbolDescription Values SymbolDescription Values

Tlig Time to read from Ambient
light sensor [s]

0.001 Isens Current draws in light sensor
reading [µA]

430 + Ips

Tocc Occupancy event processing
duration [s]

0.01 Ievt Current draws in event process-
ing [µA]

100 + Ips

Tsw Time to perform light switch-
ing [s]

1.0 Isw Current draws in light switch-
ing [µA]

120 + Ips

Tup Radio wakeup time [ms] 0.130 Iup Current draws in radio startup
[mA]

8.7 + Ips

Tdata Data packet transmission time
[s]

128/250
[Bytes]/[kbits/s]

Itx Current draws in transmission
[mA]

10.5 +
Ips

Tack Ack transmission time [s] 14/250
[Bytes]/[kbits]

Irx Current draws in reception
[mA]

13 + Ips

Tifs Inter frame space duration [ms] 0.640 Ips Current draws in power save
mode [µA]

4.1

Tpre Preamble transmission time [s] Tdata
Tlis Time to listen to early Ack [s] Tifs + Tack
Tcs Channel sensing time [s] Tup +3/2∗ (Tpre +

Tlis)

4.1.1. Sensor-mote Energy

The sensor-mote spends its energy in, i) processing for the occupancy event detection, Tocc, ii) processing for

ambient light reading, Tlig, iii) transmission when a new occupancy is detected, Ttx, iv) receiving acknowledgment

Trx, c) and in power save mode, Tps. Given the wakeup period, T , and the number of retransmissions, Nrtx, the time

to transmit a data packet using LPL MAC may be expressed by, [40],

Ttx = Nrtx × d
T

Tpre + Tlis
e × Tdata, (8)

where Tpre is the time for preamble transmission and, Tlis is the listen time to the early acknowledgment. Expla-

nation of each term appearing in equations is provided in Table 2. The sensor-mote cost function is thus expressed

by,

ESensor = Nocc Tocc Ievt +Nlig Tlig Isens +Ntx Ttx Itx+

Nrx Trx Irx + Tps Ips

(9)

where Nocc, Nlig, Ntx, and Nrx denote the numbers of, occupancy detections, light readings, packets transmis-

sions, and packet receptions, respectively.
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(a) (P1) (b) (P2) (c) (NBS)

Figure 11: (a) Sensor-mote cost minimization, (b) Switch-mote cost minimization, and (c) NBS trade-off solution. and NBS solution.

4.1.2. Switch-mote Energy

Similarly, the energy consumption of the switch-mote is the energy spent in, i) processing the triggered event

detection, Tocc, ii) periodic channel sensing for eventual sensor-motes packets reception, Tcs, iii) acknowledgment

transmission Tack, iv) performing light switching command, Tsw, and, v) power save mode Tps. To cover detecting

the sensor-mote transmission, the channel polling period must span for the preamble transmission time plus the time

of listening to the early acknowledgment [38]. Therefore, the switch-mote cost function is given by,

ESwitch = Nocc Tocc Ievt +Ncs Tcs Irx +Ntx Tack Itx+

Nsw Tsw Isw + Tps Ips

(10)

where Ncs, Ntx, Nsw respectively denote the number of, channel sensing, ACK transmissions, switching com-

mands. To determine these numbers, the occupancy profile of an area/office must be first extracted from the log file

recorded by the installed light control system prototype, and the total time spent in the given mode is then calculated

as a function of the occupancy intervals, Toccup Intv, and the wakeup period parameter, T .

Given the energy functions, the following optimization problem is defined for a sensor-mote

(P1) min ESensor(T )

var. T.

On the other hand, the following optimization problem is defined for switch-mote’s cost minimization:

(P2) min Eswitch(T )

var. T

The optimal solution of problem (P1), T ∗Sensor, will result in the pair(ESensor
best , Eswitch

worst ) as depicted in Fig 11.(a).
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Whereas, the optimal solution of problem (P2), T ∗switch, will result in the pair (Eswitch
best , ESensor

worst ) as depicted in

Fig. 11.(b).

4.2. Nash Bargaining Solution

To find the optimal trade-off solution for the objectives presented above (minimizing ESensor, vs. minimizing

Eswitch), we define a bargaining problem where each objective is represented by a player. The Bargaining model is

a powerful tool that helps understanding how several agents should cooperate when selfish behavior of players leads

to Pareto-inefficient results. Nash Bargaining Solution (NBS) [41] is a possible solution to this problem that defines

a set of axioms3 to characterize the equilibrium point. Note that a bargaining game with two players selects one of

the possible player’s outcomes of a joint collaboration [41] [42]. Let A⊂R2 be the set of alternatives the players

face, S={s=(u1(a),u2(a)) | a∈A} the set of feasible utility payoffs, and v = (v1, v2) (v∈S the threat point. Given the

latter, the NBS chooses a feasible agreement, Φ:(S, v) → S, that results from the negotiation, and it assumes that S

is convex, compact, and ∃s ∈ S, such that s > v for both players. The NBS solution can be calculated by solving the

following optimization problem [41]:

(NBS) max (s1 − v1)(s2 − v2)

s. t. s ∈ S, (s1, s2) ≥ (v1, v2)

var. s.

We define the intervals ASensor=[ESensor
worst , ESensor

best ] and Aswitch =[Eswitch
worst , Eswitch

best ] to be the set of strategies

that respectively the sensor-mote and the switch-mote may take, and sSensor∈ASensor, sswitch∈Aswitch the strategies

effectively chosen by the players. Fig 11.(c) shows how the NBS optimal point can be achieved where each player

can choose a strategy that reduces its threat value looking for a feasible point that satisfies both players. Thus, the

general Bargaining problem when considering the sensor-mote and switch-mote as players is expressed as,

(P3) max (ESensor
worst − ESensor(T ))(Eswitch

worst − Eswitch(T ))

s. t. (ESensor
worst , Eswitch

worst ) ≥ (ESensor(T ), Eswitch(T ))

(ESensor(T ), Eswitch(T )) ∈ S

var. T.

3The NBS axioms are: (i Pareto Optimality, (ii Symmetry, (iii Invariant to affine transformations, and (iv Independence of Irrelevant
Alternatives [41].
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The solution of the optimization problem (P3) will be the optimal cost for both players under the agreement and will

satisfy: E∗Sensor=ESensor(T ∗) and E∗switch= Eswitch(T ∗).

4.3. Numerical Results

We have applied the Nash Bargaining model to find the optimal wake-up period parameter in a case study, where

we used the occupancy profile of a single person office as an input for the defined Bargaining game.

The profile was extracted from a log file recorded by our light control system prototype installed in the office. The

record contains the occupancy states of the office during a period of 1 month. The profile was built upon averaging

the office occupancy states of 22 working days of the month. It has been used by the cost function along with the

wakeup period parameter to calculate the time spent by each player (sensor-mote and switch-mote) in each operating

mode. The current draws of each operating mode is taken from the device’s datasheet and validated through the energy

measurement taken on the prototype during experiments. Table 2 summarizes different symbols used in sensor-mote

and switch-mote cost functions with typical values. Alkaline Energizer industrial AAA batteries have been modeled

with 1200mAh of capacity and Shelf Life factor of 10 years at 21◦C [43].

4.3.1. Tradeoff Solution

We first searched for the equilibrium point without any constraints on the objectives, i.e. no preference or differen-

tiation between the objectives. Then, to prioritize and force the system to extend the sensor-mote lifetime, a constraint

that set the minimum desired lifetime has been added, i.e. (P3): ESensor(T ) 6 ESensor
max . This prioritization can be

argued by the fact that the battery replacement of a sensor-mote, which is placed at the ceiling of offices/rooms, is

more constrained than the battery of a switch-mote. The results are depicted in Fig.12, for Nash Bargaining solution

with and without the minimum sensor-mote lifetime constraint. The square in Fig. 12 shows that the obtained optimal

point for the unconstrained problem is 6.4 years for the motes, which represents the trade-off solution of the system

that ensures a fair equilibrium. The circle in Fig. 12 shows that solving the constrained variant of the problem by

setting sensor-mote lifetime to 9 (as a constraint) yields 4.3 years lifetime for the switch-mote. The figure also shows

the resulted optimal values for the duty-cycle parameter, T ∗, which are 5.65sec and 3.45sec for unconstrained and

constrained optimization problem, respectively.

4.3.2. Weighted Optimization

In this section, we consider a weighted model, where a weight (α) is given to ensure a minimum sensor-mote

lifetime with respect to the switch-mote life time, i.e. it is α times more important than the switch-mote lifetime
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Figure 13: sensor-mote and switch-mote lifetime for different values of the weight α

(α ≥ 1). Thus, the following constraint is added to the formulation:

ESensor(T ) 6 αEswitch(T ).

Fig.13 depicts the obtained results (lifetime and duty-cycle parameter) for values of α from 1 to 5. The figure

shows that sensor-mote lifetime can reach more than 9 years, and about 2 years for the switch-mote. Note that 2 years

is a tolerable frequency of battery replacement, for the switch-mote, given its ease accessibility.

4.3.3. Power Consumption Evaluation

To assess the performance of the proposed solution, we have measured the power consumption of the automatic

light control prototype system deployed in our campus. The energy consumption was measured for the different
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Figure 14: Sensor-mote and switch-mote Battery Usage for (a) the optimized solution and (b) LPL-based solution.

modules of the system over a period of 1 month and compared to the LPL-based solution. The LPL-based solution

consists in using the default MAC layer protocol to manage the radio interface of the system components, which is

widely used for low-power sensor devices and implemented in the TinyOS operating system protocol stack4.

This experiment consists in running the automatic light control system using: (a) the proposed solution with

optimized parameters and (b) the LPL-based solution, In both cases, we used the occupancy dataset recorded by our

deployed prototype in a single office during two months.

We considered in all experiments that the system components are equipped with an Energizer CR2032 battery with

1200mAh capacity. The results of energy consumption is depicted in Fig.14.(a) and Fig.14.(b) for the optimized and

the LPL-based solutions, respectively. In the proposed system, the battery usage over 1 month of running was 0.58%

for the Switch-mote and 0.38% for the PIR-mote. Whereas, in the LPL-based solution the Switch-mote and the PIR-

mote consume 3.4% and 0.36% , respectively. For both solutions, the power usage of the PIR-mote is approximately

the same. However, for the Switch-mote, the energy consumption in LPL-based solution is much more important

compared to that of our proposed solution (≈ 5.8 times). This can be explained by the fact that the LPL protocol is

scheduled to set the wakeup period of checking the channel activity to 2 seconds all the time which does not fit the

data packets exchange generated by the office occupancy profile. On the other hand, the proposed solution has been

configured to run with the optimized wakeup parameter according to the user occupancy profile as seen in Section 4.

4http://tinyos.stanford.edu/tinyos-wiki/index.php/CC2420 Low Power Communications Design Considerations
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Figure 15: Sensor-mote and switch-mote Battery Usage for (a) the optimized solution and (b) LPL-based solution applied to 3 rooms in a
residential building.

4.3.4. Multiple Offices Deployment

Our system has been deployed and tested using a single office within our campus. However, the system can be

easily deployed in a large-scale environment, i.e. in a large residential or commercial building. It is notabely suitable

for old buildings where the easy-to-install-and-maintain feature is required. To confirm this, we have evaluated the

proposed solution using real occupancy datasets recorded from residential and commercial multi-offices buildings.

We have used two open-source occupancy datasets from OpenIE 5. The first dataset includes information about oc-

cupancy status (occupied vs. unoccupied) of three zones in a residential building. These zones are the container

house with a living room, master bedroom, and kitchen. The second dataset, contains occupancy data of six offices

in a commercial building. The residential and commercial occupancy datasets cover one month with at least fifteen

minutes measurement time interval.

We have measured the energy consumption when running the automatic light control system using our solution

(with optimized parameters) and the LPL-based solution. The obtained results when considering both the residential

and commercial occupancy datasets are depicted in Fig.15 and Fig.16, respectively. The consumed energy in the

residential building (in the three zones), using our solution (Fig.15.(a)) is between 1.35% and 1.40% for the switch-

motes and around 3.44% in case of LPL-based solution (Fig.15.(b)). For the PIR-motes, the energy consumption

in both solutions is around 0.38%. The same pattern is also observed in case of the commercial building, where

the energy consumption is much better in our solution (Fig.16.(a)) for the switch-mote compared to the LPL-based

5https://openei.org/datasets/dataset/long-term-occupancy-data-for-residential-and-commercial-building
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Figure 16: Sensor-mote and switch-mote Battery Usage for (a) the optimized solution and (b) LPL-based solution applied to 6 offices in
commercial building.

solution (Fig.16.(b)). For the PIR-motes, the results are very similar with a little advantage for the LPL-based solution.

This clearly demonstrate the advantage of using the Nash Bargaining method in our solution to find the optimal

parameters that can considerably reduce the battery usage by approximately a factor of 2.5. This is due to considering

users’ occupancy profile and finding the best tradeoff that ensure an equilibrium in battery usage between the different

system components.

5. Conclusion

We have jointly considered the problems of optimal occupancy monitoring for building energy management, and

maximizing the battery lifetime of the wireless devices used for the monitoring. Without loss of generality, the study

has been focusing on a simple setting for optimal light control in offices, but while considering realistic constraints,

e.g., i) the intrinsic property of sensing holes and its impact on the accuracy of detection, ii) the preservation of

the users’ comfort when maximizing the battery lifetime, iii) balancing the lifetime of the different wireless devices

used in the framework (sensor-mote vs. switch-mote). For optimal deployment, the problem has been formulated

with mixed integer linear programming (MILP), where the positions of a set of PIRs are sought out in a way to

maximize the real covered area. For extending the lifetime of the battery powered motes without compromising the

user comfort, we used a duty-cycling mechanism with an adapted architecture. We realized that by duty-cycling the

motes, maximizing the lifetime of the sensor-mote and the switch-mote becomes a conflicting objective problem. A

cooperative game has been developed using Nash Bargaining Model for a fair tradeoff solution of the system. The

proposed approaches have been evaluated analytically using occupancy data collected from real experimentations.
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Results of occupancy detection demonstrate clear improvements in terms of detection when using the proposed hole-

aware placement, and a reduction in the waste of energy usage from 9.61% (in case of hole-unaware placement) to

1.3%. The numerical results evaluating the game theory model show that the system lifetime can reach as long as 6

years for both sensor-motes and switch-mote. Given the placement constraints, it might be more flexible to replace the

switch-mote batteries (usually placed on the wall) than the Sensor-mote batteries (usually placed on the ceilings), and

thus the lifetime of the latter becomes more crucial. We considered this and defined a weighted variant of the proposed

game that enables to capture this feature. The results show that it is possible to have a 10-year lifetime in the sensor-

mote and a 2-year in the switch-mote. As the occupancy monitoring is a central part for energy management system

in buildings, the proposed solution does not limit to light control, but it can easily bee extended to other applications

such as HVAC systems, appliances control in smart homes, etc., which represent one of the perspectives of this work.

The user preferences have been limited to the instantaneous switching of the light upon entrance. Other preferences

might be considered such as customized dimming, temperature, operation modes of devices, etc. In addition to the

physical information from the sensors (used in this work), it is possible to enrich the system with information from

other sources (crowd-sensing, social networks, etc.). Such information might feed machine learning and data-mining

tools to dynamically determine the user preferences. All these issues are in our agenda.
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