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Abstract 

Objectives: Exposure to adversity has been linked to accelerated biological aging, which in turn has been 

shown to predict numerous physical and mental health problems. In recent years, measures of DNA 

methylation-based epigenetic age––known as “epigenetic clocks”––have been used to estimate 

accelerated epigenetic aging. Although a small number of studies have found an effect of adversity 

exposure on epigenetic age in children, none have investigated if there are “sensitive periods” when 

adversity is most impactful.  

Methods: Using data from the Avon Longitudinal Study of Parents and Children (ALSPAC; n=973), we 

tested the prospective association between repeated measures of childhood exposure to seven types of 

adversity on epigenetic age assessed at age 7.5 using the Horvath and Hannum epigenetic clocks. With a 

Least Angle Regression variable selection procedure, we evaluated potential sensitive period effects.  

Results: We found that exposure to abuse, financial hardship, or neighborhood disadvantage during 

sensitive periods in early and middle childhood best explained variability in the deviation of Hannum-

based epigenetic age from chronological age, even after considering the role of adversity accumulation 

and recency. Secondary sex-stratified analyses identified particularly strong sensitive period effects. 

These effects were undetected in analyses comparing children “exposed” versus “unexposed” to 

adversity. We did not identify any associations between adversity and epigenetic age using the Horvath 

epigenetic clock. 

Conclusions: Our results suggest that adversity may alter methylation processes in ways that either 

directly or indirectly perturb normal cellular aging and that these effects may be heightened during 

specific life stages.  

Keywords:  sensitive periods; epigenetic clock; aging; ALSPAC; adversity 
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Highlights 1 

• Exposure to adversity was associated with accelerated epigenetic aging in childhood. 2 

• Associations were observed when using the Hannum but not Horvath epigenetic clock. 3 

• Effects were driven by exposure during early and middle childhood sensitive periods. 4 

• Adversity differentially affected epigenetic age acceleration in boys and girls. 5 



Marini 

1 

 

1. Introduction  1 

Exposure to childhood adversity, such as abuse or poverty, represents one of the most potent risk 2 

factors for a range of negative health outcomes across the lifespan, with estimates linking such exposures 3 

to at least a two-fold increase in subsequent risk for mental disorders (Dunn et al., 2012; McLaughlin et 4 

al., 2010). Although these associations are well-established, the specific mechanisms through which 5 

adversity becomes biologically embedded remain poorly understood. 6 

 Accumulating evidence suggests adversity may become biologically embedded through 7 

accelerated aging of cells, tissues, and organs (Gassen et al., 2017; Zannas et al., 2015). Accelerated 8 

biological aging, in which biological age outpaces chronological age, is known to be a valid indicator of 9 

impaired functionality of both the cell and the biological system in which the cell interacts (Teschendorff 10 

et al., 2013).  11 

Recently, DNA methylation (DNAm) patterns at specific CpG sites have been proposed as a 12 

promising measure of biological aging. These DNAm-based measures are referred to as “epigenetic 13 

clocks” due to their remarkably high correlation with chronological age (Hannum et al., 2013; Horvath, 14 

2013). Two independent algorithms developed to generate these DNAm-based age estimates are the 15 

Horvath clock (Horvath, 2013) and the Hannum clock (Hannum et al., 2013). Both clocks can be used to 16 

capture accelerated epigenetic aging, which represents the discrepancy between the estimate of epigenetic 17 

age based on DNAm patterns and an individual’s chronological age (Hannum et al., 2013; Horvath, 18 

2013). In adults, accelerated epigenetic aging as measured by these epigenetic clocks has been correlated 19 

with numerous adverse health outcomes (Breitling et al., 2016; Dhingra et al., 2018), including increased 20 

mortality risk (Marioni et al., 2016). These epigenetic clocks have been shown to reliably correlate with 21 

chronological age in younger populations as well (Horvath et al., 2016; Simpkin et al., 2017); accelerated 22 

epigenetic aging in children and adolescents has been associated with both more advanced growth and 23 

development and increased youth mental health problems (Suarez et al., 2018a; Sumner et al., 2018). 24 

A handful of recent studies have explored how exposure to adversity influences epigenetic aging 25 

in adulthood (Brody et al., 2016; Fiorito et al., 2017; Lawn et al., 2018; Simons et al., 2016; Wolf et al., 26 
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2017; Zannas et al., 2015). These studies have shown that individuals who have perceived subjective high 1 

levels of stress across their lifetimes (Zannas et al., 2015), including exposure to sexual abuse (Lawn et 2 

al., 2018), a parent’s mental illness (Brody et al., 2016; Davis et al., 2017), or chronic financial stress 3 

(Simons et al., 2016), have epigenetic ages that outpace their chronological age. One recent meta-analysis 4 

quantified this age acceleration, showing that any exposure to childhood trauma was associated with an 5 

epigenetic “outpace” of as much as 6 months (when epigenetic age was estimated with Hannum’s, but not 6 

with Horvath’s clock) (Wolf et al., 2017).  7 

However, to our knowledge, only two studies––both of which are cross-sectional––have 8 

investigated these associations in children. In one study of youth ages 6-13 years, children who were at 9 

least one standard deviation epigenetically older than their peers were found to score twice as high on a 10 

measure of lifetime violence exposure (Jovanovic et al., 2017). A more recent study of youth ages 8-16 11 

years reported that each childhood experience of threat (e.g., abuse, domestic violence) was associated 12 

with approximately one additional month of epigenetic age acceleration (Sumner et al., 2018).  13 

Although evidence from these studies suggests a link between adversity exposure and accelerated 14 

aging, most of this work has primarily focused on one or two types of adversity, as opposed to a range of 15 

possible exposure types. As noted, previous studies investigating adversity-induced epigenetic aging in 16 

children have also all been limited to cross-sectional designs, rather than studies using prospective 17 

assessment of adversity exposure. Furthermore, to our knowledge, no studies have examined the 18 

importance of the timing of adversity exposure. Given the growing body of support for “sensitive 19 

periods” in development, during which time developing organs, tissues, and biological systems may be 20 

particularly susceptible to the effects of experience (Bornstein, 1989; Knudsen, 2004; Shonkoff et al., 21 

2009), consideration of the timing of adversity across the life course is warranted. Indeed, a recent study 22 

found that the effects of childhood adversity on epigenetic patterns were largely driven by when the 23 

adversity occurred, with the period from birth to age 3 emerging as a sensitive period when exposure to 24 

adversity was associated with more epigenetic changes (Dunn et al., 2019). Importantly, a standard 25 

epigenome-wide association study of lifetime adversity exposure (versus no exposure) failed to detect 26 
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these associations (Dunn et al., 2019). Findings like these emphasize the need to investigate not only the 1 

biological consequences of adverse experiences, but also the possibility of time-dependent effects that 2 

may be obscured by simple exposed vs. unexposed models.        3 

In the current study, we aimed to address these limitations and test the central hypothesis that 4 

postnatal adversity exposure does have an accelerating effect on epigenetic age in childhood, and that 5 

these effects may be strongest and most detectable during sensitive periods in development. Investigating 6 

sensitive periods may not only help to reveal otherwise undetectable time-dependent effects, but it may 7 

also help to identify “high risk/high reward” periods in development, when adversity exposure can be 8 

most potent but health-promoting interventions might be most impactful. 9 

 10 

2. Methods 11 

2.1. Study Overview 12 

We tested three consecutive hypotheses. We first assessed the independent associations between a 13 

set of postnatal adversity exposures and accelerated epigenetic age at age 7.5, regardless of the timing of 14 

exposure. Second, given the previously described evidence from epigenetic studies that simple 15 

classification of individuals as exposed versus unexposed to adversity may dilute observed effects (Dunn 16 

et al., 2019), we then tested––for each adversity type––a sensitive period model, which posits that the 17 

developmental timing of exposure is most important in shaping accelerated aging (Bailey et al., 2001; 18 

Knudsen, 2004). Third, recognizing that there are other ways to conceptualize time-dependent effects, we 19 

then compared the sensitive period model to two alternative theoretical models derived from life course 20 

theory (Ben-Shlomo and Kuh, 2002; Kuh and Ben-Shlomo, 2004): an accumulation model, which posits 21 

that every additional year of exposure is associated with an increased risk for accelerated aging (Evans et 22 

al., 2013; Sameroff, 2000), and a recency model, which suggests that the effects of adversity can be time-23 

limited, and thus accelerated epigenetic aging may be more strongly linked to proximal rather than distal 24 

events (Shanahan et al., 2011). Finally, we performed two secondary analyses focused on using a broader 25 

set of age ranges to define sensitive periods and understanding sex-specific effects. 26 
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 1 

2.2. Sample and Procedures 2 

We analyzed data from the Avon Longitudinal Study of Parents and Children (ALSPAC), a large 3 

population-based birth cohort out of Avon, England of children followed from before birth through early 4 

adulthood (Boyd et al., 2013; Fraser et al., 2012; Golding et al., 2001). ALSPAC generated blood-based 5 

DNAm profiles at age 7.5 as part of the Accessible Resource for Integrated Epigenomics Studies 6 

(ARIES), which is a subsample of 1,018 mother-child pairs from ALSPAC who had complete data across 7 

at least five waves of data collection (Relton et al., 2015) (Supplemental Materials). 8 

 9 

2.3. Measures 10 

2.3.1. Cellular Aging  11 

DNAm was determined at age 7.5 using procedures performed at the University of Bristol 12 

(Supplemental Materials). Using the level of methylation for each child in the sample, we generated two 13 

estimates of cell intrinsic epigenetic age based on the approaches of Horvath (Horvath, 2013) and 14 

Hannum (Hannum et al., 2013). For each clock, we estimated age acceleration using a regression 15 

procedure in which epigenetic age was the outcome and chronological age was the independent variable. 16 

In both the Horvath and Hannum epigenetic clocks, age acceleration or deceleration is represented by the 17 

residuals of the above described regression procedures (Wolf et al., 2016). Positive residuals indicate 18 

accelerated aging, in which the child’s chronological age is lower than their estimated methylation age 19 

(hereafter referred to as accelerated aging).  20 

  21 

2.3.2. Exposure to Adversity 22 

We examined the effect of seven adversities on methylation age residuals: (a) caregiver physical 23 

or emotional abuse; (b) sexual or physical abuse (by anyone); (c) maternal psychopathology; (d) one adult 24 

in the household; (e) family instability; (f) financial hardship; and (g) neighborhood 25 

disadvantage/poverty. These adversity types were chosen based on previous research (Dunn et al., 2019; 26 
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Lawn et al., 2018) linking these exposures to epigenetic change (Brody et al., 2016; Lawn et al., 2018) or 1 

accelerated biological aging (Coimbra et al., 2017; Tyrka et al., 2010; Wojcicki et al., 2015). These 2 

adversity types were also chosen because they were each measured on at least four occasions at or before 3 

age 7 (see Table 1) from a single item or psychometrically validated standardized measures. To evaluate 4 

the effects of adversity exposure on epigenetic age without accounting for the timing of exposure, we 5 

created an “exposed” versus “unexposed” indicator for each adversity type, such that a child who was 6 

exposed to a particular adversity type at any time point was coded as “exposed” to that adversity. Second, 7 

for each type of adversity, we generated three sets of variables to test the three life course hypotheses: (a) 8 

for the sensitive period hypothesis, we created a set of variables indicating presence versus absence of the 9 

adversity at a specific developmental stage; specific time periods of assessment for each adversity are 10 

denoted in Supplemental Table 2. To test the (b) accumulation hypothesis, we generated a single 11 

variable denoting the total number of time periods of exposure to a given type of adversity. For the (c) 12 

recency hypothesis, we generated a single variable denoting the total number of developmental periods of 13 

exposure, with each exposure weighted by the age in months of the child during the measurement time 14 

period; this recency variable gave a larger weight to more recent exposures, thus, allowing us to 15 

determine whether more recent exposures were more impactful. 16 

 17 

2.3.3. Covariates 18 

 We controlled for the following covariates, measured at child birth: child race/ethnicity; number 19 

of births in the pregnancy (pregnancy size); number of previous pregnancies; maternal marital status; 20 

highest level of maternal education; maternal age; maternal smoking during pregnancy; child birth 21 

weight; parental homeownership; and parent job status (Supplemental Materials for rationale).    22 

 23 

2.4. Analyses 24 

We began by running univariate and bivariate analyses to examine the distribution of covariates 25 

and exposures to adversity in the total analytic sample. To reduce potential bias and minimize loss of 26 
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power due to attrition, we performed multiple imputation on missing exposures and covariates 1 

(Supplemental Materials). Missing data for each adversity exposure and covariate are presented in 2 

Supplemental Table 3. 3 

We first tested the association between lifetime adversity exposure and epigenetic age by testing a 4 

simple ever versus never exposed model for each adversity type.  Expecting that this model could dilute 5 

any effects of adversity exposure on epigenetic aging, we then used a novel two-stage structured life 6 

course modeling approach (SLCMA) (Simpkin et al., 2015; Smith et al., 2016) to evaluate, separately for 7 

each adversity type, whether a sensitive period model might better explained the relationship between 8 

adversity exposure and epigenetic age. We also compared this sensitive period model to accumulation or 9 

recency of exposure models. Compared to other methods, such as standard multiple regression, the 10 

SLCMA provides an unbiased way to compare multiple competing theoretical models simultaneously and 11 

identify the most parsimonious explanation for variation in epigenetic age.  12 

Details about the SLCMA modeling approach are outlined in the Supplemental Materials.  13 

Briefly, in the first stage of the SLCMA, we entered the set of variables described earlier into the Least 14 

Angle Regression (LARS) variable selection procedure (Efron et al., 2004). LARS identifies the single 15 

theoretical model (or potentially more than one models working in combination) that explains the most 16 

amount of outcome variation (in this case, epigenetic age acceleration). To identify these models, we used 17 

a covariance test (Lockhart et al., 2014) and examined elbow plots (Supplemental Figure 1). The 18 

covariance test provides a p-value for the selected variable, conditioned on the fact that LARS has 19 

selected the predictor with the largest correlation with the response. This approach resolves the common 20 

issue of “cherry-picking” when model fitting following selection. In the second stage, the life course 21 

theoretical models found in the first stage to best fit the observed data – that is, the model(s) appearing at 22 

the “elbow” of the plot (Supplemental Figure 1) and/or those with p-values <.05 in the covariance test 23 

(Lockhart et al., 2014) – were then carried forward to a multivariate regression framework to generate 24 

effect estimates for all selected hypotheses (Supplemental Materials). The goal of this second stage is to 25 

determine the contribution of a selected theoretical model after adjustment for covariates as well as other 26 



Marini 

7 

 

selected theoretical models, in instances where more than one theoretical model is chosen in the first 1 

stage. Importantly, the SLCMA method takes multiple testing into account; the covariance test p-values 2 

are adjusted for the number of variables included in the LARS procedure, controlling the type I error rate 3 

for each adversity type (Supplemental Materials). Thus, for each adversity, the testing of multiple 4 

competing lifecourse hypotheses within each SLCMA model is accounted for and the corresponding p-5 

value is not inflated regardless of number of lifecourse hypotheses tested. Given the testing of multiple 6 

adversities across two epigenetic clocks, we additionally used a Bonferroni-adjusted significance 7 

threshold of p=.004 (0.05/7 adversities * 2 outcomes) to reduce the possibility of spurious results that 8 

may be incurred by multiple testing across 14 SLCMA models.  9 

In addition, we also performed two sets of secondary analyses, which tested a broader definition 10 

of sensitive periods (Supplemental Materials) and the sex-specific effects of adversity on epigenetic age. 11 

These broader sensitive periods were defined as: very early childhood (ages 8 months – 2.75 years), early 12 

childhood (ages 3.5 – 5.75 years), and middle childhood (ages 6 – 7 years).  These time windows were 13 

selected to facilitate interpretation of our findings in comparison to prior studies using similarly-defined 14 

developmental windows (Andersen et al., 2008; Dunn et al., 2018; Kaplow and Widom, 2007; Slopen et 15 

al., 2014). 16 

 17 

3. Results 18 

There were 973 children in the analytic sample (50.2% female, 97.2% white). Descriptive 19 

statistics on other covariates are presented in Supplemental Table 4.  20 

  21 

3.1. Distribution of Exposure to Adversity and Age Acceleration 22 

Table 1 shows the prevalence of childhood adversity overall and by each age period of 23 

assessment. The lifetime prevalence of adversity exposure ranged from 12.6% for physical abuse to 24 

48.7% for family instability. Children exposed to any type of adversity were more likely than their 25 
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unexposed peers to be non-white and born to non-married mothers with low education, low social class, 1 

and with more than three previous pregnancies (Supplemental Table 4).  2 

As shown in Supplemental Table 4, girls were, on average, epigenetically older than boys. Also, 3 

children born to married mothers with higher education and lower social class had lower age residuals 4 

(according to Hannum’s epigenetic clock) compared to children whose mothers fell into other 5 

corresponding categories. No differences were observed for the remaining covariates (all p-values >.10) 6 

(Supplemental Table 4). Supplemental Table 5 shows tetrachoric correlations between developmental 7 

time periods of exposure for each adversity. Exposures were moderately correlated across time, with 8 

neighboring time points generally being more highly correlated than distal time points (Supplemental 9 

Table 5). Different types of adversities showed low to moderate correlations (tetrachoric correlation 10 

coefficient rho ranged from 0.05 to 0.45; see Supplemental Figure 2).  11 

 12 

3.2. Association between Exposure to Adversity and Age Acceleration  13 

We began with simple ever versus never exposed models for each adversity type.  Based on these 14 

models, financial hardship was the only adversity associated with age acceleration (Supplemental Tables 15 

6 and 7). 16 

We then generated models that estimated the effects of the timing of exposure. Table 2 displays, 17 

separately for each adversity type and epigenetic clock, the theoretical model selected by the LARS that 18 

best explained variability in age acceleration. As shown, evidence for three associations emerged for 19 

Hannum’s epigenetic clock, all of which emphasized age acceleration following adversity exposure and 20 

the importance of sensitive periods. First, we found evidence that exposure to sexual or physical abuse at 21 

3.5 years was associated with older epigenetic age (effect β=.07 years; 95% CI=.00-.14, p=.001, R2=.01). 22 

Similarly, exposure to financial hardship at 7 years (effect β=.11, CI=.08-.14, p=.001, R2=.05), and 23 

neighborhood disadvantage at 7 years (effect β=.12 years, CI=.01-.22, p=.001, R2=.01) were associated 24 

with an acceleration in epigenetic aging. The magnitude of these beta estimates translates to an age 25 

acceleration of about one month among children exposed to adversity. None of the other life course 26 
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theoretical models were selected as explaining the variability in age acceleration for these three or any 1 

other adversity types. Using Horvath’s epigenetic clock, none of the life course models were associated 2 

with epigenetic age acceleration for any of the adversities studied (Table 2).  Of note, these effects 3 

survived correction for multiple testing both within the SLCMA and across the two clocks and adversities 4 

tested.  5 

Comparable results were obtained when the sensitive periods were collapsed into three broader 6 

categories. In these secondary analyses, having only one adult in the household during early childhood 7 

(effect β=.06 years, CI=.02-.09, p=.002) and being exposed to maternal psychopathology in middle 8 

childhood (effect β=.03 years, CI=.06-.02, p=.023) were also associated with a modest acceleration in 9 

epigenetic age (Supplemental Table 8).  10 

Sex-stratified analyses (Table 3) showed that for girls, having only one adult in the household 11 

(effect β=.10, CI=.002-.19, p=.030), or being exposed to maternal psychopathology (effect β=.06, CI=.02-12 

.10, p=.0003), financial hardship (effect β=.008, CI=.004-.011, p<.0001), physical or emotional abuse 13 

(effect β=.08, CI=.006-.16, p=.027), or sexual abuse (effect β=.17, CI=.07-.27, p=.0004) was associated 14 

with increased epigenetic age. For example, by age 7.5, girls who were exposed to abuse at age 3.5 were 15 

biologically older than their unexposed peers by almost 2 months. In boys, exposure to financial hardship 16 

(effect β=.12, CI=.08-.16, p<.0001) and neighborhood disadvantage (effect β=.10, CI=.002-.20, p=.0005) 17 

were associated with increased epigenetic age. Each of these associations showed sensitive period 18 

specificity.  19 

 20 

4. Discussion 21 

This study tested the hypothesis that adversity exposure during sensitive periods in development 22 

is associated with accelerated epigenetic aging in childhood as measured by two epigenetic clocks, and 23 

that these associations can be better detected using methods that account for exposure timing, rather than 24 

simple comparisons of exposed versus unexposed individuals. To allow for the possibility of other timing 25 

effects, we also compared sensitive period models to alternative theoretical life course models of 26 
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exposure. To our knowledge, this study represents the first to prospectively investigate whether the effects 1 

of adversity on epigenetic aging are observable in children and the extent to which these relationships 2 

varies as a function of the timing and type of exposure.   3 

 We found that exposure to sexual or physical abuse in early childhood and exposure to financial 4 

hardship or neighborhood disadvantage in middle childhood were all associated with epigenetic age 5 

acceleration by about one month. We acknowledge that the incremental variance explained was limited, 6 

but this estimate of effect is consistent with previous literature (Horvath and Raj, 2018). It is also worth 7 

noting that the R2 values reported do not represent the percentage of variation in age acceleration 8 

explained by a particular adversity exposure, but rather the percentage of variation in age acceleration that 9 

is explained by a given lifecourse theoretical model of exposure, after accounting for any variance 10 

explained by covariates. 11 

Our findings are also consistent with previous work linking adversities, such as abuse (Lawn et 12 

al., 2018), financial stress (Simons et al., 2016), and parental psychopathology (Brody et al., 2016; Lawn 13 

et al., 2018), with accelerated epigenetic aging in adulthood. Although the literature to date on the 14 

association between social environmental exposures and epigenetic aging in children is limited, the 15 

observed associations here between abuse experiences and accelerated epigenetic aging align with recent 16 

studies on the epigenetic consequences of violence exposure (Jovanovic et al., 2017; Sumner et al., 2018).  17 

Our results extend previous findings by exploring the effects of the timing of prospectively-18 

assessed exposure. We found evidence for sensitive periods during early and middle childhood, when the 19 

association between adversity exposure and epigenetic aging appears to be particularly strong. This 20 

finding aligns with human (Essex et al., 2013; McGowan et al., 2009) studies showing the importance of 21 

sensitive periods in epigenetic programming. It seems therefore plausible that the epigenetic age of cells 22 

is influenced by environmental inputs in a similar time-susceptibility manner. The current findings further 23 

emphasize the importance of attending to possible time-dependent effects when studying the effects of 24 

adversity on cellular aging, including DNAm and other cellular-based measures of accelerated aging. Our 25 

results suggest that an approach that does not account for the specific life stages when adversity occurs 26 
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may fail to detect effects of adversity on epigenetic age acceleration, and crude classifications of children 1 

as exposed vs. unexposed to “early life” adversity may mask observed differences among those exposed 2 

to adversity.    3 

 The sex-stratified analyses revealed that adversity could differentially affect epigenetic age 4 

acceleration in boys and girls. Some of these associations were particularly notable; for example, by age 5 

7.5, girls who were exposed to abuse at age 3.5 were biologically older than their unexposed peers by 6 

almost 2 months. These findings suggest that the associations found in our main analyses may have been 7 

largely driven by the strength of the effect in girls. Our sex-stratified results are also consistent with 8 

previous findings indicating sex-specific effects in the patterning of epigenetic marks following prenatal 9 

(Suarez et al., 2018b) and childhood adversity (Essex et al., 2013; Massart et al., 2016), and underscore 10 

the value of sex-stratification in future analyses. 11 

Disentangling the multiple possible mediational pathways driving these associations is challenging 12 

given the complex environmental contributions that comprise early life stress (Tyrka et al., 2013). One 13 

possible pathway may be through disrupted immune functioning, which has been implicated in a range of 14 

mental disorders (Misiak et al., 2019). Human post-traumatic stress disorder studies have found that 15 

adversity exposure may activate hypothalamic–pituitary–adrenal axis and disrupt neural-immune 16 

signaling (Agorastos et al., 2019). In keeping with this theory, a recent meta-analysis using data from 17 

more than 2,000 individuals from the Psychiatric Genomics Consortium PTSD Epigenetics Workgroup 18 

concluded that traumatic stress was associated with accelerated epigenetic aging in adulthood, and that 19 

cells integral to immune system maintenance and responsivity might play an important role in pacing the 20 

epigenetic clock (Wolf et al., 2017). Of note, this association was observed for childhood but not lifetime 21 

trauma exposure, suggesting the unique impact of adversity exposures occurring earlier in development.  22 

In the current study, we did not find an association between exposure to the studied adversities and 23 

Horvath’s epigenetic clock. Although a recent cross-sectional study by Sumner et al. found an association 24 

between threat-related experiences and Horvath-based estimates of accelerated epigenetic aging (Sumner 25 

et al., 2018), there are multiple possible explanations for this discrepancy. In comparison to the Sumner et 26 
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al. paper, our study population comprised a different racial and ethnic make-up and used different 1 

covariates. Moreover, our study also used distinct adversity types (such as physical abuse), rather than 2 

collapsing across types to create summed adversity exposure scores. Consistent with our results, other 3 

studies using both the Horvath and Hannum clocks have found that associations may exist for one clock, 4 

but not for another (Wolf et al., 2016; Wolf et al., 2017). The Horvath and Hannum models differ in the 5 

tissue and age of subjects used to develop them, and the sets of CpG sites used are largely different as 6 

well. An increasing body of literature suggests that the two clocks may in fact be suited to capture 7 

different aspects of biology, with the two clocks showing only modest correlation across disease 8 

phenotypes (Lu et al., 2018). Together, these factors may account for the observed difference in results 9 

between the two epigenetic clocks in our study.  10 

 11 

4.1. Strengths and Limitations 12 

There are several strengths of the current study. We performed a more inclusive and detailed 13 

assessment of adversity types; most research in the field to date has focused on single types of adversity 14 

exposure, such as parental depression or low socioeconomic status only. Moreover, we also incorporated 15 

different life course theoretical models of adversity exposure, thereby allowing us to investigate which 16 

temporal features of exposure are most strongly associated with epigenetic aging. Finally, most studies to 17 

date have focused on older samples, often with a median chronological age above 45 years (Simpkin et 18 

al., 2016), whereas the current study focused on epigenetic aging in children. 19 

Our study had limitations. First, our findings are based on DNA extracted from blood, which may 20 

be limiting as patterns of epigenetic change following social environmental stress exposure have been 21 

found to be tissue-specific, such that the same individual may have different Horvath’s epigenetic clock 22 

estimates for different tissues (Levine et al., 2016). Therefore, we cannot exclude the possibility that 23 

childhood adversities affect cell methylation in a tissue-specific pattern and that peripheral blood-based 24 

measures of DNAm may not capture methylation changes of all tissues that occur following adversity. As 25 

others have noted (Tyrka et al., 2016), however, although leukocytes cannot be assumed to provide a clear 26 
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window into brain-based processes, they may be particularly interesting, given their susceptibility to 1 

widespread effects, such as glucocorticoid and immune signaling. The challenge of tissue and cell-type 2 

specificity is unfortunately a limitation of all epigenome-brain research in living human subjects. Second, 3 

given the scope and scale of ALSPAC (which contains more than 75,000 variables), we needed to select 4 

and operationalize discrete adversity types for analysis. To do this in a principled manner, we looked to 5 

the previous literature both in ALSPAC (Dunn et al., 2019; Lawn et al., 2018) and in other cohorts 6 

(Brody et al., 2016; Coimbra et al., 2017; Tyrka et al., 2010; Wojcicki et al., 2015) to guide our selection 7 

of the seven adversity types used in our analysis, focusing on standard scales and single item measures 8 

that were asked in consistent ways across the duration of the study. However, we were unable to include 9 

in our analysis other likely distressing adverse experiences, such as death of a parent, due to low 10 

prevalence of exposure in the current sample. Future research should investigate epigenetic aging 11 

following other serious adverse experiences in higher risk samples where this and other exposures would 12 

be more commonly recorded or consistently queried. Third, although the focus of the current study was 13 

limited to postnatal adversity exposures, future research should consider incorporating prenatal measures 14 

as well, particularly given evidence of the association between prenatal exposure to stressors like 15 

maternal psychopathology and epigenetic age at birth (Suarez et al., 2018b). Fourth, given the structure of 16 

the data and the lack of complete overlap in adversity assessment across time, we were unable to examine 17 

the adversities all together in the primary analyses. Although the correlations between adversities were 18 

low to moderate, it is nevertheless possible that attending to only one adversity type at a time could lead 19 

to overestimates of the effect of a given exposure. However, the results of a sensitivity analysis that 20 

examined mutually adjusted effects suggested that while the strength of associations was slightly 21 

attenuated, the overall patterns of associations remained similar (Supplemental Materials). One potential 22 

strength of examining each type of adversity individually is that we were able to identify meaningful 23 

differences in the associations between distinct adversity types and accelerated aging, which could yield 24 

different approaches for intervention. One challenge for future analyses will be to develop new ways to 25 

examine multiple adversities simultaneously without simply summing across number of exposures 26 
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(McLaughlin and Sheridan, 2016). Fifth, although we used multiple imputation in an effort to reduce 1 

potential bias and minimize loss of power, we cannot rule out the possibility that missing or incomplete 2 

outcome data due to attrition may have influenced our findings. Sixth, because the oldest sensitive period 3 

coincides with the most recent exposure occasion for all children, it may be difficult to discern between 4 

the oldest sensitive period and recent exposure. Seventh, we focused exclusively on adversity exposures 5 

and did not consider potentially positive environmental influences. Future research should consider both 6 

adverse and protective exposures. Finally, although we selected covariates (such as maternal smoking and 7 

child birthweight) that are routinely adjusted for in analyses of epigenetic aging (Simpkin et al., 2017, 8 

2016), some of these covariates may be associated with downstream factors that could fall along the 9 

pathway between adversity and childhood epigenetic aging and therefore inadvertently capture effects of 10 

potential mediators. Thus, the described effects may be attenuated. 11 

 12 

Conclusions 13 

In conclusion, we found that adversity experiences assessed in very early, early, and middle 14 

childhood were differentially associated with accelerated epigenetic aging at age 7.5. These findings 15 

suggest that accelerated epigenetic aging may function as one of the mechanisms through which 16 

childhood adversity becomes biologically embedded, and that adversity exposures during sensitive 17 

periods in childhood may have a particularly strong accelerating effect on epigenetic age. Future research 18 

leveraging repeated methylation measurements will be necessary to identify the varied trajectories of this 19 

acceleration across development, in the hopes of further teasing apart potential sensitive period effects 20 

from non-linearity in the ticking rate of the epigenetic clock (Horvath and Raj, 2018). Additional research 21 

is also needed to further test the effect of accelerated cellular aging on subsequent risk for depression and 22 

other neuropsychiatric disorders. Nevertheless, understanding the biological sequelae of childhood 23 

adversity––and how those sequelae differ depending on sensitive periods in exposure––represents the first 24 

step towards the development of targeted strategies designed to disrupt the processes linking adversity to 25 

psychiatric diseases as early in the life course as possible. 26 
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Table 1. Exposure to childhood adversity in the total analytic sample and by the age at exposure (n=973) 
 

Caregiver 

physical or 

emotional abuse 

Sexual or 

physical abuse 

(by anyone) 

Family instability 
Maternal 

psychopathology 

Financial 

hardship 

One adult in the 

household 

Neighborhood 

disadvantage  
 

 
N  (%) N (%) N (%) N  (%) N (%) N (%) N  (%) 

Unexposed 822 84.5 850 87.4 499 51.3 686 70.5 669 68.8 833 85.6 829 85.2 

Exposed 151 15.5 123 12.6 474 48.7 287 29.5 304 31.2 140 14.4 144 14.8 

Age at Exposure   

Very early childhood    

  8 months  34 3.7 --- --- --- --- 95 10.2 104 11.3 243 3.7 --- --- 

  1.5/1.75 yrs 38 4.2 28 3 170 18.2 89 9.8 98 10.7 288 4.3 76 8.4 

  2/2.75 yrs 56 6.3 32 3.6 182 20.3 130 14.8 97 10.9 350 5.2 74 8.4 

Early childhood   

  3.5 yrs --- --- 36 4.0 186 20.5 114 12.9 140 14.5 --- --- --- --- 

  4/4.75 yrs 41 4.6 35 3.9 118 13.2 --- --- --- --- 410 6.9 --- --- 

  5/5.75 yrs 57 6.4 24 2.7 114 13.0 --- --- --- --- --- --- 55 6.2 

Middle childhood   

  6/6.75 yrs 50 5.7 23 2.6 69 7.8 130 14.9 --- --- --- --- --- --- 

  7 yrs --- --- --- --- --- --- --- --- 121 12.5 504 7.6 43 4.9 

 

 

 



Table 2. Results of LARS models showing the life course theoretical model that best explained the relationship between adversity and age 

acceleration (n=973) 

Adversity Hannum’s clock Horvath’s clock 

 Model selected p-value 
Improvement 

R2 
Model selected p-value 

Improvement 

R2 

Caregiver physical or 

emotional abuse 
sensitive period (5 years) .11 0.004 sensitive period (5 years) .11 <0.001 

Sexual or physical abuse sensitive period (3.5 years) .0013 0.009 sensitive period (4.75 years) .99 <0.001 

Maternal psychopathology sensitive period (6 years) .07 0.004 sensitive period (2.75 years) .89 <0.001 

One adult in the household sensitive period (4 years) .09 0.003 sensitive period (7 years) .21 <0.001 

Family instability sensitive period (1.5 years) .93 <0.001 sensitive period (6.75 years) .98 <0.001 

Financial hardship sensitive period (7 years) <.0001 0.05 sensitive period (7 years) .79 <0.001 

Neighborhood disadvantage sensitive period (7 years) 0.0002 0.01 sensitive period (7 years) .68 <0.001 

Models are based on multiply imputed data and are adjusted for sex, race, maternal smoking, birth weight, maternal education, pregnancy size, 

maternal marital status, home ownership, age of mother at child birth, parental job status, and number of previous pregnancies. Values that are 

statistically significant are denoted in bold. The Bonferroni-adjusted significance threshold is P=.004. 

The R2 values reported do not show the variance in age acceleration explained by a particular adversity exposure. Rather, the R2 values generated 

using the SLCMA show the percentage of variation in the residuals of the outcome explained by particular lifecourse theoretical model of a 

particular adversity exposure. Thus, the R2 values reported here can be interpreted as the percentage of variation in age acceleration that is 

explained by a given lifecourse theoretical model of exposure, after accounting for any variance explained by covariates. 

 

 



Table 3. Results of LARS models showing the life course theoretical model that best explained the relationship between adversity and age acceleration, with 

Hannum’s epigenetic clock, stratified by sex (n=973) 

 Girls (n=488) Boys (n=485) 

Adversities  Model selected  p-value Improvement R2  Model selected  p-value Improvement R2 

Caregiver physical or 

emotional abuse 
sensitive period (5 years) .027 0.012 sensitive period (2.75 years) .193 0.006 

Sexual or physical abuse sensitive period (3.5 years) .0004 0.027 sensitive period (5.75 years) .615 0.002 

Maternal 

psychopathology 
sensitive period (6 years) .0003 0.020 sensitive period (1.75 years) .578 0.002 

One adult in the 

household 
sensitive period (1.75 years) .030 0.011 sensitive period (7 years) .812 0.001 

Family instability sensitive period (4.75 years) .923 <0.001 sensitive period (3.5 years) .235 0.004 

Financial hardship recency <.0001 0.050 sensitive period (7 years) <.0001 0.060 

Neighborhood 

disadvantage 
sensitive period (7 years) .108 0.008 sensitive period (7 years) .0005 0.022 

Models are based on multiply imputed data and are adjusted for sex, race, maternal smoking, birth weight, maternal education, pregnancy size, maternal marital 

status, home ownership, age of mother at child birth, parental job status, and number of previous pregnancies. Very early childhood=ages 8 months to 2.75 years. 

Values that are statistically significant are denoted in bold.  
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Supplemental Materials 

 

Sample and Procedures 

Data came from the Avon Longitudinal Study of Parents and Children (ALSPAC), a 

prospective, longitudinal birth-cohort of children born to mothers who were living in the county of 

Avon England (120 miles west of London) with estimated delivery dates between April 1991 and 

December 1992 (Boyd et al., 2012; Fraser et al., 2012; Paternoster et al., 2012). ALSPAC was 

designed to increase knowledge of the pathways to health across the lifespan, with an emphasis on 

genetic and environmental determinants. Approximately 85% of eligible pregnant women agreed to 

participate (N=14,541), and 76% of eligible live births (n=14,062) who were alive at 12 months of age 

(n=13,988 children) were enrolled. Response rates to data collection have been good (75% have 

completed at least one follow-up). Ethical approval for the study was obtained from the ALSPAC 

Ethics and Law Committee and the Local Research Ethics Committee. Please note that the study 

website contains details of all the data that is available through a fully searchable data dictionary 

(http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/).  
Several studies have assessed the representativeness of the ALSPAC cohort with regards to 

the total Avon area population, and the whole of Great Britain (Boyd et al., 2013; Fraser et al., 2012). 

Although the study population has been found to be broadly similar to the total Avon area population 

and to the rest of Great Britain, ALSPAC mothers generally had a higher socio-economic position (as 

indicated by fewer mothers being unmarried, not having a car, or living in rented accommodation) in 

comparison to the equivalent population of either Avon or Britain (Fraser et al., 2012). ALSPAC 

mothers were also more likely to be white than equivalent women in both Avon and Britain (Fraser et 

al., 2012). 

The ARIES mother-child pairs were randomly selected out of those with complete data across 

at least five waves of data collection. In comparison to ALSPAC mothers not participating in ARIES, 

ARIES mothers had, on average, a higher socio-economic position (as indicated by being more highly 

educated, having higher ranking occupations, and being more likely to be married and a homeowner). 

ARIES mothers were also more homogenously White, and less likely to have smoked during their 

pregnancies (Supplemental Table 1). 

 

  

Measures 

Exposure to Adversity 

Caregiver physical or emotional abuse. Exposure to physical or emotional abuse was 

determined through mailed questionnaires administered separately to the mother and the mother’s 

partner. Children were coded as having been exposed to physical or emotional abuse if the mother, 

partner, or both responded affirmatively to any of the following items assessed over six time-points (8 

months, 1.75 years, 2.75 years, 4 years, 5 years, and 6 years): (1) Your partner was physically cruel to 

your children; (2) You were physically cruel to your children; (3) Your partner was emotionally cruel 

to your children; (4) You were emotionally cruel to your children. 

Sexual or physical abuse. Exposure to sexual or physical abuse was determined through an 

item asking the mother to indicate whether or not the child had been exposed to either sexual or 

physical abuse from anyone. This question was included at seven time-points: child ages 1.5 years, 

2.5 years, 3.5 years, 4.75 years, 5.75 years, 6.75. Reports of sexual or physical abuse were not 

reported to child welfare services, consistent with the lack of mandatory reporting laws in the UK 

(Bell and Tooman, 1994; Khan, 2018). Parents were also informed prior to responding that all of their 

responses were confidential. 

Maternal psychopathology. Maternal psychopathology was determined using data from: (1) 

the Crown-Crisp Experiential Index (CCEI), which includes separate subscales for anxiety and 

depression (Birtchnell et al., 1988; Crown and Crisp, 1979); (2) the Edinburgh Postnatal Depression 

Scale (EPDS)(Cox et al., 1987); and (3) a question asking about suicide attempts in the past 18 

months. These measures were collected from mothers at five time-points: child ages 8 months, 1.75 

years, 2.75 years, 5 years, and 6 years of age. Consistent with prior ALSPAC studies (Enoch et al., 

2010) and previous cut-points established in the literature (see below), we coded children as exposed 

to maternal psychopathology if one or more of the following criteria occurred: (1) the mother had a 
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CCEI depression score greater than 9 (Crown and Crisp, 1979); (2) mother had a CCEI anxiety score 

greater than 10(Birtchnell et al., 1988); (3) mother had an EPDS score greater than 12 (Cox et al., 

1987); or the (4) mother reported a suicide attempt since the time of the last interview.  

One adult in the household. Mothers indicated the number of adults (>18 years of age) living 

in the household at six time-points: when the child was 8 months, 1.75 years, 2.75 years, 4 years, and 

7 years. Children were coded as exposed if there were fewer than two adults in the household. 

Family instability. Mothers indicated whether the child had been: (1) taken into care; (2) 

separated from their mother for two or more weeks; (3) separated from their father for two or more 

weeks; or (4) acquired a new parent. These items were completed at seven time-points: when children 

were ages 1.5 years, 2.5 years, 3.5 years, 4.75 years, 5.75 years, 6.75 years. Children were coded as 

exposed if any of these events occurred. 

Financial hardship. Mothers indicated the extent to which the family had difficulty affording 

the following: (1) items for the child; (2) rent or mortgage; (3) heating; (4) clothing; (5) food. Each of 

the 5 items was coded on a likert-type scale (1=not difficult; 2=slightly difficult; 3=fairly difficult; 

4=very difficult). These items were completed at five time-points: when children were ages 8 months, 

1.75 years, 2.75 years, 5 years, and 7 years. Children were coded as exposed if their mothers reported 

at least slight difficulty for three or more items at each time point; this cut-point roughly corresponded 

to the top quartile. 

Neighborhood disadvantage. At four time-points, when children were 1.75 years, 2.75 years, 

5 years and 7 years of age, mothers indicated the degree to which the following were problems in their 

neighborhood: (1) noise from other homes; (2) noise from the street; (3) garbage on the street; (4) dog 

dirt; (5) vandalism; (6) worry about burglary; (7) mugging; and (8) disturbance from youth. Response 

options to each item were: 2=serious problem, 1=minor problem, 0=not a problem or no opinion. 

Items were summed, yielding scores ranging from 0-16. Children with scores of eight or greater, 

which generally corresponded to the 95th percentile, were classified as exposed to neighborhood 

disadvantage. 

 

Cellular Aging  

Peripheral blood samples (whole blood or buffy coat) were collected according to standard 

procedures at age 7. After DNA extraction, the Zymo EZ DNA MethylationTM kit (Zymo, Irvine, 

CA) was used for the bisulfite-conversion process. DNAm was determined using the Illumina Human 

Methylation 450k BeadChip microarray, which captures DNAm at 99% of RefSeq genes (over 

485,000 CpG sites). All procedures were performed at the University of Bristol (Relton et al., 2015). 

The level of methylation is expressed as a ‘beta’ value (β-value), representing the proportion of cells 

methylated at each interrogated CpG site, and ranges from 0 (no methylated dinucleotides observed) 

to 1 (all dinucleotides methylated).   

Using the β-values for each participant in the sample, we generated two estimates of 

epigenetic age based on the approaches of Horvath (Horvath, 2013) and Hannum (Hannum et al., 

2013). For each clock, we estimated age acceleration using a regression procedure in which epigenetic 

age was the outcome and chronological age was the independent variable. To derive the Hannum 

clock, we followed a well-established procedure (Simons et al., 2016; Wolf et al., 2016; Wolf et al., 

2017): we summed the normalized β-values using the Touleimat method (Touleimat and Tost, 2012) 

and multiplied these summed values by the 71 respective regression coefficients obtained by Hannum 

and colleagues in their model (20). This regression procedure adjusted for blood cell composition 

(specifically percentage of CD8+,CD4+,CD56, CD19,CD14, and granulocytes). For the Horvath 

clock, we used the online epigenetic clock calculator (http://labs.genetics.ucla.edu/horvath/dnamage/) 

which calculates the “intrinsic epigenetic age acceleration” derived by regressing the epigenetic age 

against chronological age, adjusting for cell counts (Chen et al., 2016). In both the Horvath and 

Hannum epigenetic clocks, age acceleration or deceleration is represented by the residuals of the 

above described regression procedures (Marioni et al., 2015; Wolf et al., 2016). Positive residuals 

indicate accelerated aging, in which the child’s chronological age is lower than their estimated 

methylation age (hereafter referred to as accelerated aging). Conversely, negative residuals indicate 

age deceleration, in which the child’s estimated methylation age is lower than their actual 

chronological age 
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Data Analysis 

Covariates 

Beyond the technical adjustments described above, we additionally controlled for the 

following variables, measured at child birth: child race/ethnicity (0=non-White; 1=White); child birth 

weight (<3000=0, 3000-3500 = 1, 3500-4000=2, >4000=4); pregnancy size (0=single; 1=multiple); 

number of previous pregnancies (between 0-3+); maternal age (0=ages 15-19, 1=ages 20-35, 

2=age>35); highest level of maternal education (1=less than O-level, 2=O-level, 3=A-level, 4=Degree 

or above; in the UK except Scotland, the lower and the higher two main levels of standardized 

examinations in secondary schools are the O level and the A level respectively); parent job status (i.e. 

the highest social class of either parent: 1=foreman; 2=manager; 3=supervisor; 4=lending hand; 

5=self-employed; 6=none of these); homeownership (0=mortgage/own home; 1=rent home; 2=other); 

and sustained maternal smoking during pregnancy (0=non-smoker; 1=smoker in two or more 

trimesters, including the third trimester) (Richmond, 2015).  

 Justification for the Inclusion of Baseline SES Variables as Covariates. In the current study, 

the following baseline socioeconomic status (SES) related variables were included as covariates in the 

primary analysis: parent job status, maternal education, and home ownership. While there is concern 

that these covariates conceptually overlap with some of the childhood adversity types treated as 

exposure (namely, financial hardship and neighborhood disadvantage), we included these variables as 

potential confounders for on two primary reasons.  

First, different dimensions of SES are associated with childhood adversity and have distinct 

effects on health outcomes (Glymour et al., 2014); the effect of SES captured by the baseline 

variables is conceptually separate from financial hardship and neighborhood disadvantage. Abundant 

research evidence has shown that children who experience adversity – including child maltreatment, 

parental psychopathology, parental substance use, or family disruption – are more likely to be poor, 

and to be raised by mothers who have less education, receive public assistance, and live in 

disadvantaged neighborhoods. Moreover, some dimensions of child SES that are linked to these 

specific types of childhood adversity, such as parental education or parent social class (as defined by 

parent job status), tend to be more fixed or stable across time. Other dimensions tend to be less stable, 

such as indicators of financial hardship or neighborhood disadvantage, which vary as a function of 

access to specific resources at different time-points in life or the occurrence of major life events 

leading to change in individual circumstances. It has been argued that this temporal variation requires 

the separate consideration of different domains of SES (Braveman et al., 2005; Duncan et al., 2002; 

Rehkopf et al., 2016), as they each could have different links to health outcomes. In the current study, 

controlling for baseline SES would help tease apart the effects of subjective levels of poverty or 

neighborhood disadvantage experienced by the children throughout development from a less variable 

status of social disadvantage as captured by baseline maternal education, home ownership, and parent 

social class. In fact, the correlations between baseline SES variables and the more dynamic aspects of 

SES (i.e., financial hardship and neighborhood disadvantage) are moderate to low in the analytic 

sample (|r| ≤0.31 for parent job status, |r| ≤0.53 for maternal education, and |r| ≤0.53 for home 

ownership). Inclusion of parent social class thus allowed us to control for the baseline environment 

into which children were born and better capture the effects of perceived level of stress during 

childhood.  

Second, baseline SES variables are plausible suspects for confounding the relationship 

between exposure to other types of childhood adversity and epigenetic aging and the estimate of these 

types of adversity on epigenetic aging may be biased without adjusting for baseline SES. 

Confounding has been traditionally defined based on associational criteria; in the past decade, 

researchers in the field of causal inference (see for example: Greenland et al., 1999; Pearl, 1998; 

VanderWeele and Shpitser, 2013) have emphasized alternative strategies such as greater use of causal 

diagrams and careful assessment of theoretical evidence. As discussed above, there is theoretical 

evidence for suspecting a link between baseline SES variables and various forms of childhood 

adversity. There has also been growing research revealing associations between different indicators of 

SES and epigenetic aging. As an example, Fiorito et al. (Fiorito et al., 2017) found an association 

between SES trajectories (defined using occupational position) and accelerated aging in three 

prospective cohorts. Furthermore, Simons et al. (Simons et al., 2016) used a similar approach to tease 

apart the effects of fixed and dynamic aspects of SES; they showed that low income was linked to 
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epigenetic age acceleration after adjusting for baseline SES variables such as education. As baseline 

SES variables may affect exposure to childhood adversity and epigenetic aging independent of the 

exposure to childhood adversity while not being a downstream effect of the exposure, we decided to 

include baseline SES variables as covariates to control for confounding.  

Justification for the Inclusion of the Other Baseline Variables as Covariates. In addition to 

variables capturing socioeconomic statues, we have included other variables that are known to be 

associated with exposures to childhood adversity as well as epigenetic aging. Failure to include these 

variables may lead to biased estimates of the exposure-outcome relationship. Some of the factors are 

known to confound genetic and epigenetic analyses if not properly accounted for, such as child race or 

ethnicity. The prevalence of trauma and childhood adversity is patterned by race and ethnicity 

(Roberts et al., 2011), and the rates of epigenetic aging were different across race and ethnicity groups 

as well (Horvath et al., 2016).  

Various factors related to pregnancy and the prenatal environment have also been linked to 

epigenetic changes and differential profiles of epigenetic aging in the offspring. Simpkin et al. 

systematically investigated associations between prenatal and antenatal experiences and accelerated 

aging using data from the same sample (i.e., ARIES) and a replication sample, and found that parity 

(or number of previous pregnancies), child birth weight, and maternal smoking during pregnancy 

were robustly related to accelerated aging (Simpkin et al., 2016). Other prior research has also 

provided suggestive evidence of links between other pregnancy related factors (such as maternal age 

and pregnancy size) and differences in epigenetic marks (Markunas et al., 2016). Characteristics of 

the prenatal and antenatal environment may also index adverse experiences in early life that are 

related to childhood adversity. Therefore, we adjusted for these factors in our analyses to ensure that 

the observed associations between childhood adversity and epigenetic aging were not induced by 

differences in children’s experiences before or at birth. 

In summary, we included a series of covariates in the analyses based on the conventions in the 

field as well as theoretical knowledge about potential confounding mechanisms. 

 

Multiple Imputation 

Although missing data were limited overall (Supplemental Table 3), to reduce potential bias 

and minimize loss of power due to attrition, we performed multiple imputation, separately for each 

exposure, using logistic regression in 20 datasets with 25 iterations each among all children with 

complete data on the outcome. Variables were included in the imputation models following the 

guidance of van Buuren and colleagues (van Buuren et al., 1999; van Buuren and Groothuis-

Oudshoorn, 2011) as well as prior research with imputation in the ALSPAC dataset (Evans et al., 

2012; Ramchandani et al., 2008). All covariates and exposures were allowed to enter the imputation 

models. Variables uncorrelated with the missing variable (r<0.10) were excluded from the imputation 

model (van Buuren et al., 1999; van Buuren and Groothuis-Oudshoorn, 2011). Imputation was 

performed with chained equations (Azur et al., 2011) with the mice package in R (van Buuren and 

Groothuis-Oudshoorn, 2011).  To reduce noise in estimation of effect estimates, we did not impute the 

outcome (White et al., 2011). For each adversity, we assessed the convergence of the imputation 

model and the distribution of imputed data as compared to the observed data. 

After imputation, there were 973 children in the analytic sample. We then achieved a single 

dataset for analysis by implementing LARS on the covariance structure among all variables, estimated 

by averaging the covariance structure across all multiply imputed datasets. This allowed us to avoid 

potential problems arising from different model selections across multiply imputed datasets (Wood et 

al., 2008). 

 

Exposed vs. Unexposed Modeling 

To explore the association between adversity exposure and epigenetic age without accounting 

for the timing of exposure, we began by running simple ever vs. never exposed models for each 

adversity type (Supplemental Tables 6 and 7).  

  

LARS Regression Modeling 

To explore the role of timing of exposure, for each type of adversity, we generated three sets 

of encoded variables: (1) a set of variables indicating presence vs. absence of the adversity at a 



 5 

specific developmental stage, to test the sensitive period hypothesis; (2) a single variable denoting the 

total number of time periods of exposure to a given adversity, to test the accumulation hypothesis 

(coded as 0-6); and (3) a single variable denoting the total number of developmental periods of 

exposure, with each exposure linearly weighted by the age (in months) of the child during the 

measurement time period, to test the recency hypothesis; this variable assumed a linear increase in the 

effect of exposure over time and weighted more recent exposures more heavily than distally-occurring 

ones, allowing us to determine whether more recent exposures were more impactful. This weighted 

recency variable is distinguished from the last sensitive period model, which captures only the most 

recent exposure.  

We then evaluated the relative importance of these variables using a two-stage structured 

lifecourse modeling approach (SLCMA) originally developed by Mishra (Mishra et al., 2009) for 

analyzing repeated, binary exposure data across the lifecourse. Relative to a more traditional 

regression model, the main advantage of the SLCMA is that it provides a structured and unbiased way 

to compare multiple competing theoretical models simultaneously and identify the most parsimonious 

explanation for the observed outcome variation.  

In the first stage, we followed the approach of Smith (Simpkin et al., 2015) and entered the set 

of variables described previously into a Least Angle Regression (LARS) procedure (Efron et al., 

2004) in order to identify, separately for each type of adversity, the single theoretical model (or 

potentially more than one models working in combination) that explained the most variability in child 

age acceleration. We used a covariance test (Lockhart et al., 2014) and examined elbow plots to 

determine whether the selected variables were supported by the ALSPAC data. The covariance test 

provides a p-value for the selected variable that accounts for the selective nature of the LARS 

procedure; in other words, the test statistic is conditioned on the fact that LARS has selected the 

predictor with the largest correlation with the response. Therefore, the common issue of “cherry-

picking” of model fitting following selection is resolved. Compared to other variable selection 

procedures, including stepwise regression, the SLCMA has been shown to not over-inflate effect size 

estimates (Efron et al., 2004) or bias hypothesis tests (Lockhart et al., 2014). Compared to other 

methods for the structured approach, LARS has been shown to have greater statistical power and not 

bias subsequent stages of analysis (Simpkin et al., 2015). To adjust for potential confounding, we 

regressed each encoded variable on the covariates and implemented LARS on the regression residuals 

(Smith et al., 2016). 

In the second stage, the theoretical models determined by a covariance test p-value threshold 

of 0.05 in the first stage (which appeared before the elbow; see Figure 1) were carried forward to a 

single multiple regression framework, where measures of effect would have been estimated for all 

selected hypotheses. The goal of this second stage is to determine the contribution of a selected 

theoretical model after adjustment for covariates as well as other selected theoretical models, in 

instances where more than one theoretical model is chosen in the first stage. Of note, the p-value from 

the covariance test (i.e., adjusting for testing multiple models), instead of the p-value we would have 

obtained in a linear regression, is reported. As the covariance test does not provide a confidence 

interval (CI) directly, the CIs were calculated using a method proposed by Smith et al. (Simpkin et al., 

2015), which accounts for the selective nature of the LARS as well and has been shown to have 

desirable coverage probability in simulations. Since the inference adjusts for the fact that selection has 

already been performed in the same sample, over-fitting is not of concern in the current study.  

 

Secondary Analysis 

 Two additional sets of analyses were performed following the primary analyses described 

above. First, to explore the possibility that a broader definition of sensitive periods would yield 

comparable results, and to facilitate interpretation of our findings in comparison to prior studies 

(Andersen et al., 2008; Dunn et al., 2018; Kaplow and Widom, 2007; Slopen et al., 2014), we re-

analyzed our data focusing on three sensitive periods: very early childhood (ages 8 months – 2.75 

years); early childhood (ages 3.5 – 5.75 years); and middle childhood (ages 6 – 7 years) 

(Supplemental Table 8). These time periods have been used to define potential sensitive periods in 

previous studies by our research group (Dunn et al., 2017; Dunn et al., 2018) and others (Andersen et 

al., 2008; Kaplow and Widom, 2007; Slopen et al., 2014).   
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Second, we performed sex-stratified secondary analyses, given that adversity exposure 

(Koenen et al., 2010) varies between males and females and males overall have higher IEAA than 

females ((Horvath et al., 2016) (Table 3). 

 

Sensitivity Analysis: Adjusting for Exposure to Other Types of Adversity   

In the primary analyses, we examined the time-dependent effects of exposure to childhood 

adversity on epigenetic aging. The results suggested that exposure to sexual or physical abuse at 3.5 

years, exposure to financial hardship at 7 years, and exposure to neighborhood disadvantage at 7 years 

were each independently associated with an acceleration in epigenetic aging. While examining 

individual types of childhood adversity in separate regression models allowed us to identify and 

interpret meaningful differences in the associations between distinct adversity types and accelerated 

aging, we recognize the possibility that the observed effects may be partially explained by other types 

of adversity, since different types of adverse experiences likely co-occur.  

We were unable to test this hypothesis in the primary analyses due to the limitations of 

LARS/LASSO modeling. Although all exposures to adversity were repeatedly measured, the 

LARS/LASSO modeling approach currently does not allow for inclusion of time-varying covariates.  

It was therefore impossible to adjust for other forms of exposure appropriately without running into 

the issue of inappropriately adjusting for a mediator. For example, for financial hardship to confound 

the relationship between the association between sexual or physical abuse and epigenetic aging, it 

would have to occur before all occasions of exposure to sexual or physical abuse; otherwise, it could 

mediate the relationship and hence adjusting for it would lead to bias towards the null (Schisterman et 

al., 2009). Thus, due to the nature of model selection in the SLCMA, we included all encoded 

variables in the model simultaneously. 

However, one alternative approach is to further assess the effects of the selected hypotheses 

from the SLCMA in a multiple linear regression framework while preserving the temporality of 

exposures, which we performed here as a sensitivity analysis. Briefly, for each of the three selected 

hypotheses (sexual or physical abuse at 3.5 years, exposure to financial hardship at 7 years, and 

exposure to neighborhood disadvantage at 7 years), we fitted a linear regression model adjusting for 

any exposure to other types of adversity strictly before the time point of the selected hypothesis (i.e., 

not concurrent exposure). All other baseline covariates in the primary analyses were also included. As 

shown in Supplemental Figure 3, the point estimates of the effects were relatively stable before and 

after adjusting for exposure to other adversity that preceded the examined the hypothesis. The 

confidence intervals were tightened for exposure to sexual or physical abuse and neighborhood 

disadvantage with the additional adjustment. There was no statistical evidence for an effect of 

exposure to other types of adversity. Therefore, we concluded that although the observed effects may 

be attenuated after adjusting for other adversity, the general patterns of effects remained the same.  

We would like to note that there are a few limitations to this alternative approach. First, 

because the linear regression approach did not take model selection into account, the inference may 

not be valid and should not be interpreted independent of the primary analyses. Second, although we 

attempted to preserve temporality by only adjusting for other types of exposure that occurred before 

the selected hypothesis in each model, the underlying causal relationships among these factors are 

unclear — different types of adversity may work jointly and interactively to affect outcomes such as 

epigenetic aging. Third, although the aggregate measure of any other exposure that we included may 

be too crude and the confounding mechanism may be both adversity- and time point-specific, we were 

unable to test all possibilities given the number of possible combinations and our sample size.  

 In conclusion, we emphasize the need to focus on overall patterns of associations between 

time-dependent effects of exposure to childhood adversity and epigenetic aging. An important goal of 

future analyses will be to develop new ways to examine multiple adversities simultaneously, taking 

different causal mechanisms into consideration (McLaughlin and Sheridan, 2016). 
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Supplemental Tables 

 

 

Supplemental Table 1. Distribution of covariates in the ARIES and ALSPAC samples 

  
ARIES  

(n=973)  

ALSPAC  

(n=15445) 

p-value  

(χ2 test) 

Female (%) 488 (50.2) 7152 (48.7) 0.356 

White (%) 911 (97.2) 11488 (94.9) 0.001 

Maternal smoking during pregnancy (%) 99 (10.7) 2577 (21.2) <0.001 

Birth weight, g (%)   <0.001 

<3000 128 (13.4) 2760 (20.0)  

3000 - 3499 346 (36.2) 4924 (35.7)  

3500 - 3499 336 (35.2) 4382 (31.8)  

>= 4000 145 (15.2) 1735 (12.6)  

Maternal education (%)   <0.001 

Less than O-level 154 (16.2) 3735 (30.0)  

O-level 325 (34.1) 4303 (34.6)  

A-level 279 (29.3) 2795 (22.5)  

Degree or Above 195 (20.5) 1603 (12.9)  

Maternal marital status (%)   <0.001 

Never Married 118 (12.3) 2522 (19.2)  

Widowed/Divorced/Separated 49 (5.1) 787 (6.0)  

Married 791 (82.6) 9838 (74.8)  

Home ownership (%)   <0.001 

Mortgage/own home 835 (88.3) 9579 (73.2)  

Rent home 92 (9.7) 3046 (23.3)  

Other 19 (2.0) 462 (3.5)  

Age of Mother at Child Birth (%)   <0.001 

Ages 15-19 9 (0.9) 650 (4.6)  

Ages 20-35 866 (89.5) 12363 (88.4)  

Age >35 93 (9.6) 968 (6.9)  

Parental social class (%)   <0.001 

   Professional 175 (18.0) 1419 (9.6)  

   Managerial and technical 377 (38.7) 4288 (29.0)  

   Skilled, non-manual 204 (21.0) 2623 (17.8)  

   Skilled, manual 54 (5.5) 909 (6.2)  

   Semi-skilled, manual 18 (1.8) 270 (1.8)  

   Unskilled, manual/other 145 (14.9) 5254 (35.6)  

Number of previous pregnancies (%)   0.01 

   0 439 (46.7) 5800 (44.7)  

   1 346 (36.8) 4550 (35.0)  

   2 119 (12.7) 1860 (14.3)  

   3+ 36 (3.8) 772 (5.9)  
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Supplemental Table 2. Description of theoretical models used in the analysis, with exposure to abuse as an example 

Life course model tested Definition Variables Specific variables entered into the LARS model 

Sensitive period 

A single timepoint at which there can 

be exposure to adversity. To test if a 

single adversity experience at a specific 

timepoint explains the most variance in 

epigenetic age residuals. 

6 

abuse_period1=exposed (1) vs. unexposed (0) at time period 1 (8 months) ;  

abuse_period2= exposed (1) vs. unexposed (0) at time period 2 (1.75 years);  

abuse_period3= exposed (1) vs. unexposed (0) at time period 3 (2.75 years);  

abuse_period4= exposed (1) vs. unexposed (0) at time period 4 (4 years);  

abuse_period5= exposed (1) vs. unexposed (0) at time period 5 (5 years);  

abuse_period6= exposed (1) vs. unexposed (0) at time period 6 (6 years) 

Accumulation 

Sum of the number of times exposed to 

a given type of adversity across all time 

periods.  To test whether the cumulative 

impact of each adversity experience 

explains the most variance in epigenetic 

age residuals.  

1 
abuse_accumulation=count of the number of time periods exposed to abuse 

(range 0-6) 

Recency 

Sum of the number of times exposed to 

each adversity reported across all time 

periods, with each time period of 

exposure weighted by the age in years 

of the child during the exposure. To test 

if temporal proximity to adversity 

events explains the most variance in 

epigenetic age residuals.  

1 

abuse_recency= abuse_period1 exposed (1) vs. unexposed (0)*(0.67) + 

abuse_period2 exposed (1) vs. unexposed (0) *(1.75) +  

abuse_period3 exposed (1) vs. unexposed (0) *(2.75) +  

abuse_period4 exposed (1) vs. unexposed (0) *(4) +  

abuse_period5 exposed (1) vs. unexposed (0) *(5) +  

abuse_period6 exposed (1) vs. unexposed (0) *(6) 
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Supplemental Table 3. Missing data for each adversity exposure and covariate 

Variable Timing of assessment n (%) missing 

maternal smoking during pregnancy Baseline 52 (5.34) 

child birth weight Baseline 18 (1.85) 

child race/ethnicity Baseline 36 (3.7) 

sex Baseline 0 (0) 

maternal age Baseline 5 (0.51) 

parent job status  Baseline 0 (0) 

highest level of maternal education Baseline 20 (2.06) 

number of births in the pregnancy  Baseline 0 (0) 

parental homeownership Baseline 27 (2.77) 

maternal marital status Baseline 15 (1.54) 

number of previous pregnancies Baseline 33 (3.39) 

caregiver physical or emotional abuse 

8 months 45 (4.62) 

1.75 years 57 (5.86) 

2.75 years 79 (8.12) 

4 years 76 (7.81) 

5 years 77 (7.91) 

6 years 89 (9.15) 

sexual or physical abuse (by anyone) 

1.5 years 40 (4.11) 

2.5 years 78 (8.02) 

3.5 years 64 (6.58) 

4.75 years 79 (8.12) 

5.75 years 97 (9.97) 

6.75 years 91 (9.35) 

maternal psychopathology 

8 months 45 (4.62) 

1.75 years 66 (6.78) 

2.75 years 93 (9.56) 

5 years 89 (9.15) 

6 years 101 (10.38) 

one adult in the household 

8 months 47 (4.83) 

1.75 years 71 (7.3) 

2.75 years 88 (9.04) 

4 years 87 (8.94) 

7 years 91 (9.35) 

family instability 

1.5 years 40 (4.11) 

2.5 years 78 (8.02) 

3.5 years 64 (6.58) 

4.75 years 79 (8.12) 

5.75 years 97 (9.97) 

6.75 years 91 (9.35) 

financial hardship 

8 months 49 (5.04) 

1.75 years 60 (6.17) 

2.75 years 82 (8.43) 

5 years 5 (0.51) 

7 years 5 (0.51) 

neighborhood disadvantage 

1.75 years 72 (7.4) 

2.75 years 88 (9.04) 

5 years 88 (9.04) 

7 years 94 (9.66) 
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Supplemental Table 4. Distribution of covariates in the total sample and by exposure to any childhood adversity, and epigenetic age measures (n=973) 
 

Total Sample Exposure to any adversity Hannum's clock age ᶺ Horvath's clock age ᶺ 
 % N % N χ2 p-value Mean SD p-value# Mean SD p-value# 

Gender      1.41 .23    .04   .72 

  Boys 49.8 485 74.8 363   -0.010 0.136  -0.023 2.019  

  Girls 50.2 488 78.3 382   0.010 0.157  0.023 2.000  

Race     4.71 .029   .88   .46 

  White 97.2 911 75.9 691   -0.008 0.094  -0.043 1.983  

  Non-White 2.8 26 96.2 25   -0.003 0.138  0.246 1.801  

Maternal Smoking     0.82 .36   .74   .72 

  Smoker 10.7 99 80.8 80   0.005 0.139  0.030 2.047  

  Non-smoking 89.3 822 76.1 626   -0.001 0.149  -0.046 1.701  

Birth weight category (in 

grams)  
    3.81 .28   .25   .30 

  <3000 13.4 128 80.5 103   0.014 0.176  0.238 1.991  

  3000-3500 36.2 346 77.7 269   -0.012 0.127  0.051 2.134  

  3500-4000 35.2 336 73.2 246   0.004 0.157  -0.137 1.928  

  >4000 15.2 145 78.6 114   0.006 0.135  0.063 1.955  

Maternal Education*     10.41 .015   .05   .41 

  less than O-level 16.2 154 85.1 131   0.017 0.139  0.109 2.179  

  O-level 34.1 325 72.0 234   0.005 0.157  -0.175 1.880  

  A-level 29.3 279 76.3 213   -0.017 0.105  0.022 2.027  

  Degree or Above 20.5 195 78.5 153   -0.012 0.136  0.035 1.957  

Pregnancy Size     0.61 .43   .65   .37 

  Single 99.8 971 76.5 743   0.000 0.147  0.003 2.009  

  Multiple (2+) 0.2 2 99.9 2   0.004 0.002  -1.279 1.240  

Maternal Marital Status     29.70 <.001   <.001   .41 

  Never Married 12.3 118 91.5 108   0.013 0.147  0.186 2.366  

  Widowed/Divorced/     

Separated 
5.1 49 95.9 47   0.070 0.263  -0.221 2.401  

  Married 82.6 791 73.3 580   -0.009 0.121  -0.033 1.914  
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Home Ownership     20.66 <.01   .18   .56 

  Mortgage/own home 88.3 835 74.4 621   -0.004 0.135  -0.036 2.015  

  Rent home 9.7 92 94.6 87   0.022 0.159  0.090 2.005  

  Other 2 19 89.5 17   -0.021 0.094  0.393 1.801  

Age of Mother at Child 

Birth 
    2.85 .24   .06   <.001 

  Ages 15-19 0.9 9 100 9   0.103 0.132  2.195 2.733  

  Ages 20-35 89.5 866 76.9 666   -0.002 0.136  -0.068 1.930  

  Age >35 9.6 93 75.3 70   -0.011 0.136  0.33 2.470  

Parental job status     12.45 .029   <.001   .14 

  Foreman 18 175 76 133   -0.012 0.119  0.045 1.916  

  Manager 38.7 377 76.4 288   -0.017 0.115  -0.161 1.883  

  Supervisor 21 204 69.6 142   0.009 0.166  -0.062 1.913  

  Lending Hand 5.5 54 83.3 45   0.008 0.011  0.335 2.402  

  Self-Employed 1.8 18 77.8 14   0.138 0.321  0.646 2.187  

  None of these 14.9 145 84.8 123   0.002 0.185  0.247 2.338  

Number of previous 

pregnancies 
    9.29 .026   .44   .22 

  0 46.7 439 78.8 346   -0.003 0.136  0.048 2.035  

  1 36.8 346 71.7 248   0.000 0.152  -0.157 1.795  

  2 12.7 119 79 94   -0.015 0.092  0.251 2.532  

  3+ 3.8 36 88.9 32     0.026 0.117   0.180 1.828  

*See supplemental methods for categorization of maternal education. # t-tests and ANOVAs. ᶺ These represent the residuals of the regression procedure in 

which epigenetic age was the outcome and chronological age was the independent variable. Median (IQR) for Hannum’s clock age: -0.031 (-0.091 - 0.05); 

Median (IQR) for Horvath’s clock age: -0.12 (-1.29 – 1.10) 
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Supplemental Table 5. Tetrachoric correlations between developmental time periods exposure for each 

adversity 

Caregiver physical or emotional abuse 

Age (years) 8 months 1.75 2.75 4 5  

8 months      

1.75 .796     

2.75 .679 .788    

4 .590 .721 .765   

5 .552 .535 .622 .638  

6 .428 .471 .478 .553 .700 

Sexual or physical abuse (by anyone) 

Age (years) 1.5 2.5 3.5 4.75 5.75 

1.5      

2.5 .472     

3.5 .019  .279    

4.75 .297  .369  .653   

5.75 .366 .440 .572  .507  

6.75 .259  .359 .234 .443 .510 

Maternal psychopathology 

Age (years) 8 months 1.75 2.75 5  

8 months      

1.75 .697     

2.75 .577 .691    

5.08 .652 .643 .665   

6  .469 .553 .599 .707  

One adult in the household 

Age (years) 8 months 1.75 2.75 4  

8 months      

1.75 .908     

2.75 .811 .938    

4 .707 .859 .941   

7  .600 .793 .832 .814  

Family instability 

Age (years) 1.5 2.5 3.5 4.75 5.75 

1.5      

2.5 .558     

3.5 .543 .660    

4.75 .073 .197 .378   

5.75 .168 .260 .351 .515  

6.75 .136 .246 .251 .455 .647 
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Financial hardship 

Age (years) 8 months 1.75 2.75 5  

8 months      

1.75 .472     

2.75 .019 .279    

5 .297 .369 .653   

7 .366 .440 .572 .507  

Neighborhood disadvantage 

Age (years) 1.75 2.75 5  

1.75     

2.75 .758    

5 .760 .808   

7 .701 .782 .879    
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Supplemental Table 6. Results of linear regression analysis of exposed vs. non-exposed on Hannum’s epigenetic clock (n=973)    

 Beta (years) se p-value 95% C.I. 

Caregiver physical or emotional abuse 0.012 0.0145 .428 -0.018 - 0.041 

Sexual or physical abuse 0.027 0.015 .078 -0.003 - 0.056 

Maternal psychopathology 0.003 0.011 .812 -0.019 - 0.025 

One adult in the household 0.029 0.017 .092 -0.005 - 0.063 

Family instability 0.003 0.011 .748 -0.018 - 0.024 

Financial hardship 0.047 0.010 <.0001 0.027 - 0.068 

Neighborhood disadvantage 0.004 0.019 .822 -0.033 - 0.041 

All the models are adjusted for the covariates measured at child birth specified in the manuscript (namely: child race/ethnicity; 

number of births in the pregnancy; number of previous pregnancies; maternal marital status; highest level of maternal education; 

maternal age; maternal smoking during pregnancy; child birth weight; parental homeownership; and parent job status) 
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Supplemental Table 7. Results of linear regression analysis of exposed vs. non-exposed on Horvath’s epigenetic clock (n=973) 

 Beta (years) se p-value 95% C.I. 

Caregiver physical or emotional abuse -0.030 0.181 .869 -0.386 - 0.326 

Sexual or physical abuse -0.120 0.201 .551 -0.515 - 0.275 

Maternal psychopathology -0.035 0.149 .814 -0.328 - 0.258 

One adult in the household 0.098 0.194 .614 -0.283 - 0.480 

Family instability 0.040 0.138 .771 -0.230 - 0.310 

Financial hardship 0.095 0.148 .523 -0.196 - 0.385 

Neighborhood disadvantage  -0.153 0.191 .424 -0.529 - 0.223 

All the models are adjusted for the covariates measured at child birth specified in the manuscript (namely: child race/ethnicity; 

number of births in the pregnancy; number of previous pregnancies; maternal marital status; highest level of maternal education; 

maternal age; maternal smoking during pregnancy; child birth weight; parental homeownership; and parent job status) 
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Supplemental Table 8. Results of LARS models showing the life course theoretical model that best explained the relationship between adversity and age 

acceleration, using Hannum’s and Horvath’s clocks, with sensitive periods collapsed into three categories: very early, early, and middle childhood (n=973) 

Adversity Hannum’s clock Horvath’s clock 

 Model selected p-value Improvement R2 Model selected p-value Improvement R2 

Caregiver physical or emotional 

abuse 

Exposure middle 

childhood 
.5567 0.001 

Exposure very early 

childhood 
.7684 <0.001 

Sexual or physical abuse 
Exposure very early 

childhood 
.0038 0.007 

Exposure early 

childhood 
.671 <0.001 

Maternal psychopathology 
Exposure middle 

childhood 
.0478 0.004 

Exposure very early 

childhood 
.505 <0.001 

One adult in the household 
Exposure early 

childhood 
.038 0.004 

Exposure middle 

childhood 
.121 0.002 

Family instability 
Exposure very early 

childhood 
.814 <0.001 

Exposure middle 

childhood 
.393 0.001 

Financial hardship 
Exposure middle 

childhood 
<.0001 0.05 

Exposure middle 

childhood 
.739 <0.001 

Neighborhood disadvantage 
Exposure middle 

childhood 
.012 0.01 

Exposure middle 

childhood 
.260  0.001 

Model fully adjusted for sex, race, maternal smoking, weight at birth, maternal education, pregnancy size, maternal marital status, home ownership, age of 

mother at child birth, parental job status, and number of previous pregnancies.  Very early childhood=ages 8 months to 2.75 years. Values that are statistically 

significant are denoted in bold. 
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Supplemental Figure 1.  Elbow plot illustrating LARS 

variable selection procedure  

 

LARS begins by first identifying the single variable 

with the strongest association to the outcome; it then 

identifies the combination of two variables with the 

strongest association, followed by three variables, and 

so on, until all variables are included.  LARS therefore 

achieves parsimony by identifying the smallest 

combination of encoded variables that explain the most 

amount of outcome variation.  In addition to a 

covariance test, which is calculated at each stage of the 

LARS procedure and tests the null hypothesis that 

adding the next encoded variable does not improve r2, 

results can also be summarized in an “elbow plot,” 

showing the increase in overall model r2 as additional 

predictors were added to the model.  The point where 

this plot levels off indicates the point of diminishing 

marginal improvement to the model goodness-of-fit 

from adding additional predictors, suggesting that the 

predictors included in the model at this point represent 

an optimal balance of parsimony and thoroughness.  In 

this example, both accumulation and sensitive period 1 

were selected in the best fitting model. 
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Supplemental Figure 2. Graphical depiction 

of tetrachoric correlations between exposed 

vs. nonexposed to different adversity types 

 

The heat map indicates the strength of the 

correlations between adversity exposures 

throughout childhood, with stronger positive 

correlations denoted in dark blue. No 

negative correlation was present. As shown, 

most of the heat map is pale blue (indicating 

low positive correlation). The strongest 

observed correlation was between financial 

hardship and having one adult in the 

household (r=0.45). The weakest observed 

correlation was between financial hardship 

and sexual or physical abuse (r=0.05). 
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Supplemental Figure 3. Effect estimates of the 

selected hypotheses after adjusting for the presence 

versus absence of any of the other six types of 

adversity that occurred before the examined time 

point.  

 

The point estimates of the effects were relatively 

stable before and after adjusting for exposure to any 

other adversity that preceded the examined hypothesis,  

with exposure status coded as a binary indicator 

(1=exposed to any of the other types of adversity 

before the occurrence of the examined exposure, 

0=unexposed). The confidence intervals were 

tightened for exposure to sexual or physical abuse and 

neighborhood disadvantage. There was no statistical 

evidence for an effect of exposure to other types of 

adversity. All other baseline covariates in the primary 

analyses were also included.  
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