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ABSTRACT

The construction of intercity highways by the United Kingdom (UK) government has resulted

in a progressive increase in vehicle emissions and pollution from noise, dust, and vibrations

amid growing concerns about air pollution. Existing roadside pollution monitoring devices

have faced limitations due to their fixed locations, limited sensitivity, and inability to cap-

ture the full spatial variability, which can result in less accurate measurements of transient

and fine-scale pollutants like nitrogen oxides and particulate matter. Reports on regional

highways across the country are based on a limited number of fixed monitoring stations

that are sometimes located far from the highway. These periodic and coarse-grained mea-

surements cause inefficient highway air quality reporting, leading to inaccurate air quality

forecasts. Multi-target neural network is a type of machine learning algorithm that offers the

advantage of simultaneously predicting multiple pollutants, enhancing predictive accuracy

and efficiency by capturing complex interdependencies among various air quality parame-

ters. The potentials of this and similar multi-target prediction techniques are yet to be fully

exploited in the air quality space due to the unavailability of the right data set. To address

these limitations, this doctoral thesis proposes and implements a framework which adopts

cutting-edge digital technologies such as Internet of Things, Big Data and Deep Learning for

a more efficient way of capturing and forecasting traffic related air pollution (TRAP). The

empirical component of the study involves a detailed comparative analysis of advanced predic-

tive models, incorporating an enriched dataset that includes road elevation, vehicle emission

factors, and background maps, alongside traditional traffic flow, weather, and pollution data.

The research adopts a multi-target regression approach to forecast concentrations of NO2,

PM2.5, and PM10 across multiple time steps. Various models were tested, with Fastai’s tabu-

lar model, Prophet’s time-series model, and scikit-learn’s multioutput regressor being central

to the experimentation. The Fastai model demonstrated superior performance, evidenced by

its Root-Mean Square Error (RMSE) scores for each pollutant. Statistical analysis using the

3



Friedman and Wilcoxon tests confirmed the Fastai model’s significance, further supported

by an algorithmic audit that identified key features contributing to the model’s predictive

power. This doctoral thesis not only advances the methodology for air quality monitoring

and forecasting along highways but also lays the groundwork for future research aimed at

refining air quality assessment practices and enhancing environmental health standards.
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Chapter 1

Introduction

1.1 Background

The United Kingdom (UK) has struggled in recent years to manage the impact of the green-

house gas (GHG) emissions emanating from its key sectors such as transportation, waste

management, agriculture, amongst others. According to CCC (2017), despite a 5% reduc-

tion in emission rate between 2015 and 2016, the country was unable to meet its second

carbon budget and GHG reduction targets in 2017. Studies associated the missed target

to the uptake in road construction projects that led to an increased number of cars and

emissions on major highways (Sloman et al. 2017). With the transportation sector being a

significant contributor to a substantial amount of GHG emissions (27%), it is no surprise

the government has invested about £100 million to proactively tackle air quality challenges

in a bid to protect its citizens’ health and support clean air initiatives (DEFRA 2019). The

impact of traffic-related air pollution on human health cannot be overemphasised. Its long

and short term effects have been linked with many life-threatening health conditions and

diseases (Pascal et al. 2013, Wu, Shaowei et al. 2016). Evidence suggests that currently,

the UK records an average of about 40,000 deaths yearly as a result of NO2 pollution alone

(RCP 2016). The recorded annual death by countries, according to EEA (2016), ranked UK

as the second country with the highest number of fatalities from NO2, second only to Italy.
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NO2 and other harmful pollutants like PM2.5 and PM10 have been associated with ailments

such as cancer, asthma and heart diseases; and have resulted in enormous treatment costs

for people suffering from such conditions.

According to World Bank (2022), the global cost of the adverse health effects associated

with exposure to air pollution is $8.1 trillion, equivalent to 6.1 per cent of global GDP. It

is, therefore, surprising that a substantial fraction of the UK populace (particularly those

that commute to their various destinations via highways) are still susceptible to the adverse

health effects of air pollutants along the UK highways (Vohra et al. 2021). Due to exposure to

motor vehicle exhaust emissions, non-exhaust related pollution from brake and tyre wear, and

particles from highway construction (Barikayeva et al. 2018), commuters are constantly at risk

of high concentrations of air pollutants. Some of these pollutants, especially PM2.5, PM10,

NO2 are the most life-threatening road pollutants that have been linked to cardiovascular

and respiratory illnesses (Mabahwi et al. 2014, Alvanchi et al. 2020). The study of Public

Health England (2019) estimates that between 2017 and 2025, these air pollutants would

have costed the NHS and social care system in England a total of £1.6 billion.

There is therefore a pressing and cogent need to find innovative and sustainable ways

to monitor air pollutants and curb their devastating effects on health and human capital,

as well as associated GDP losses (DEFRA 2020). According to (Alvanchi et al. 2020),

monitoring particulate matter (PM2.5, PM10) and other highway pollutants like NO2 is not

a straightforward task because pollutants tend to decay and diffuse into the background

concentration within 200m from the source. Highway speed limits and traffic congestion

complicate things further as they result in varying driving patterns such as sudden slow-

downs and speedups, which elevate these pollution levels or limit their dispersion (Karner

et al. 2010, Zhang & Batterman 2013). The most affected are the commuters or residents

living close to roads since they are constantly exposed to numerous pollutants. An average
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commuter will spend an average of 4%–7% of their day on or close to a major road.

According to Barthwal & Acharya (2018), most countries monitor air pollution using sta-

tionary monitoring stations operated by government authorities. Figure 1.1 illustrates how

the UK currently monitors highways to come up with its ultra low emission policies. Highways

are monitored by Highways England (a government-owned company charged with operating,

maintaining, and improving motorways in England) via its automatic urban and rural net-

work (AURN), which collects sparse air pollutant data. However, evidence suggests that

these air quality analysers are relatively heavy and expensive to install or maintain (Carullo

et al. 2007, Barthwal & Acharya 2018). Therefore, it is impracticable for Highways Eng-

lands’ monitoring stations to be deployed across the UK to capture pollutant concentration

levels and improve air quality. Data captured from these AURN stations are instrumental

for the UK government in monitoring long-term pollution trends, assessing the impact of

policy initiatives, and ensuring compliance with health-based air quality standards. This

data supports the UK’s air quality forecasting system, developed by the Met Office, aimed

at mitigating health risks associated with traffic-related pollution. Despite these advances,

real-time traffic-related air pollution (TRAP) forecasting remains a challenge, primarily due

to the complex interplay of variables like weather conditions and traffic flow (Barrera-Animas

et al. 2022, Sun et al. 2021). Over the past decade, there has been a significant increase in

research efforts aimed at overcoming the hurdles of precise forecasting, with scholars delving

into novel methodologies to tackle this complex issue. These studies have explored a range

of innovative approaches, including the application of advanced machine learning algorithms,

the integration of big data analytics, and the utilisation of real-time data streams to enhance

prediction accuracy. Despite these advancements, the field continues to face several persis-

tent constraints, such as the dynamic nature of the variables involved, the need for vast and

high-quality datasets, and the challenges in integrating interdisciplinary knowledge for com-

prehensive forecasting models. Additionally, the rapid evolution of technology and changing
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environmental conditions introduce further complexity, requiring ongoing adaptation and

refinement of forecasting methodologies

Figure 1.1: The current situation of highway AQ monitoring in the UK. (House of Commons
2024)

1.1.1 Urban Highway Pollution And Prevalent Pollutants

Highway traffic pollution in urban areas is a pressing concern with far-reaching implications

for both public health and the environment. This issue is primarily driven by the emissions

originating from a wide range of vehicles, including cars, trucks, and buses, which rely pre-

dominantly on fossil fuels for propulsion. The combustion of these fuels generates a complex

mixture of pollutants released into the urban atmosphere. Promoting public transportation

and reducing traffic congestion have been integral parts of urban planning and policy ini-
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tiatives aimed at minimising the number of vehicles on the road and ultimately mitigating

pollution. Various strategies, including congestion pricing, carpooling incentives, and the

development of cycling and pedestrian-friendly infrastructure, are employed to manage traf-

fic more effectively Kuss & Nicholas (2022). The complexities of urban highway pollution

are intricate and multifaceted, transcending the simple consideration of health impacts and

specific pollutant types. This multifaceted issue presents itself with a plethora of intricacies,

one of which is the diverse range of pollution sources that contribute to the overall problem.

While vehicle emissions are a significant contributor, they coexist with emissions from indus-

trial and construction activities near urban highways, as well as emissions arising from road

surfaces themselves when inadequately maintained. Each of these sources has unique charac-

teristics, necessitating tailored and multifaceted approaches to address the issue effectively.

Geographical and meteorological factors add another layer of complexity. The dispersion

and concentration of pollutants are influenced by local topography, wind patterns, and at-

mospheric conditions, creating a dynamic and challenging environment in which pollution

levels can vary significantly across different locations within the same urban area (Amato

et al. 2014).

Traffic-related pollutants comprise a complex blend of harmful substances, with key pol-

lutants including particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), and carbon

monoxide (CO). PM2.5 and PM10 are of particular concern due to their ability to remain sus-

pended in the air and penetrate the respiratory system, causing health issues such as asthma,

bronchitis, and cardiovascular problems Wang et al. (2009). Nitrogen oxides, primarily pro-

duced from vehicle combustion processes, contribute to ground-level ozone formation and can

exacerbate respiratory conditions and cardiovascular diseases. Carbon monoxide, resulting

from the incomplete combustion of fossil fuels, impairs the blood’s ability to carry oxygen,

leading to various health issues, including headaches, dizziness, and in severe cases, asphyxia-

tion (Yli-Tuomi et al. 2005). Mitigating these pollutants involves comprehensive monitoring,
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stringent emissions controls, and innovative pollution management strategies. Effective miti-

gation strategies necessitate a nuanced understanding of the geographical intricacies and their

integration into comprehensive approaches, as well as leveraging advancements in technology

to monitor and reduce pollution levels dynamically. By addressing these multifaceted chal-

lenges, urban areas can work towards significantly improving air quality and public health.

1.1.2 Supporting Technologies For Highway Air Quality Monitoring and Fore-

casting

The Internet of Things (IoT) has become transformative by connecting everyday objects to

the internet, enabling comprehensive data collection and sharing. This technology bridges the

physical and digital worlds and has evolved from machine-to-machine (M2M) communication

in the late 20th century. IoT applications span various domains, including transportation,

where it supports connected vehicles, intelligent traffic management, and enhances trans-

portation safety Arthurs et al. (2021). In smart cities, IoT optimises infrastructure such

as traffic management, waste collection, and street lighting Ramı́rez-Moreno et al. (2021).

In healthcare, IoT enables remote patient monitoring and real-time health tracking through

wearable devices Yuehong et al. (2016). In this modern era, the term “big data” has become

increasingly prominent, signifying a revolutionary shift in the way we handle and derive value

from data. Big data represents a fundamental transformation in the scale, speed, and diver-

sity of data generated in our interconnected world. This shift has given rise to a new era

of possibilities and challenges, shaping how businesses, organisations, and society as a whole

collect, process, and utilise information (Johnson et al. 2023). At its core, big data is a term

used to describe extraordinarily large and complex datasets. These datasets are often too

massive to be effectively managed and analysed using traditional data processing tools and

methods. Managing and analysing big data requires sophisticated tools like Apache Hadoop

and Apache Spark for distributed processing and tools like Apache Kafka and Apache Flink

for real-time data stream processing.
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Deep learning is a sub-field of machine learning that has witnessed significant advance-

ments, particularly in the last two decades. These developments have been propelled by a

combination of factors, including the exponential growth in computational power, the avail-

ability of vast datasets, and innovative optimisation algorithms. Innovations like rectified

linear units (ReLU) have addressed issues like the “vanishing gradient” problem, allowing

for deeper networks. The recent surge in deep learning has also led to the development of

ever-larger neural networks, including models with hundreds of millions or even billions of

parameters. These models, often referred to as “transformers”, have demonstrated remark-

able capabilities in various tasks, particularly in natural language processing. Deep learning,

however, is not without challenges. Model interpretability remains a concern, as the internal

workings of deep neural networks can be difficult to comprehend (Lisboa et al. 2023). Ethical

considerations, such as bias in models and data, are also areas of active research and scrutiny.

Researchers are working to make deep learning more transparent, fair, and accountable. As

deep learning continues to advance, it holds the promise of further breakthroughs in artifi-

cial intelligence, from improved language models to more capable autonomous systems. Its

potential is virtually limitless, and its influence is manifesting across diverse domains, from

healthcare and finance to creative arts and environmental sciences Hatcher & Yu (2018).

These technologies have the potential of collectively enhancing highway air quality monitor-

ing and forecasting by enabling real-time data collection, processing, and analysis, leading

to more accurate and timely insights for improving air quality.

1.1.3 Concepts Of Scalability And Accuracy In Highway Air Quality Forecasting

Scalability is a critical consideration in air quality forecasting, as it determines the ability

of a forecasting system to handle increasing amounts of data and expand to cover larger

geographical areas or more parameters without a significant drop in performance. Scalable

air quality forecasting systems must be capable of integrating diverse data sources, such as

IoT sensors, satellite imagery, and meteorological data, and processing this information in
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real-time to provide timely and relevant forecasts Kaginalkar et al. (2021). The use of cloud

computing platforms and high-performance computing resources is essential for scalability

Jackson et al. (2010). These technologies allow for the deployment of distributed computing

frameworks that can manage vast datasets and complex models efficiently. Scalable systems

ensure that air quality forecasts remain accurate and reliable as more sensors are deployed

and as the system is expanded to cover larger urban areas or regions.

Accuracy in air quality forecasting is paramount, as it directly impacts the reliability

of the forecasts and the ability to make informed decisions. Accurate models can predict

pollution levels with high precision, enabling authorities to issue timely warnings and take

appropriate measures to mitigate the impact of poor air quality on public health. Deep

learning advancements, particularly the development of sophisticated neural network archi-

tectures such as convolutional neural networks (CNNs) and long short-term memory (LSTM)

networks, have significantly improved the accuracy of air quality forecasting models Liao et al.

(2020). These models can capture complex spatial and temporal patterns in the data, leading

to more precise predictions. Techniques like transfer learning and fine-tuning of pre-trained

models further enhance accuracy by leveraging existing knowledge and adapting it to spe-

cific datasets. Evaluation metrics such as Mean Absolute Error (MAE), Root Mean Square

Error (RMSE), Mean Absolute Percentage Error (MAPE), the coefficient of determination

(R2), and the correlation coefficient (r) are used to assess model performance. These met-

rics provide quantitative measures of accuracy and reliability, helping to refine and improve

forecasting models to ensure they deliver dependable air quality predictions.

1.2 Research Problem

The current monitoring strategy employed by most EU member states and the UK involves

the use of fixed monitoring stations like the AURN stations which are expensive to acquire

and maintain (Borrego et al. 2015). This section introduces some of the prevalent challenges
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of this strategy to better understand the importance of the proposed intervention in this

study.

1.2.1 Coarse-Grained vs Fine-Grained Air Quality Measurements

Coarse-grained and fine-grained air quality measurements refer to the scale and detail at

which air quality data is collected and analysed. Coarse-grained air quality measurements

provide data at a broader scale, typically over larger geographical areas or longer time pe-

riods. These measurements might give an overall picture of air quality trends or average

conditions but can miss local variations and short-term fluctuations. They’re often used

for general assessments, policy planning, and compliance with long-term air quality stan-

dards. Coarse-grained data can be sufficient for understanding regional trends or making

comparisons between different large areas. AURN monitoring stations produce a limited

spatial resolution of air quality (due to the distance between stations) which is needed for

comprehensive spatiotemporal mapping and assessment (Yang et al. 2018). The expensive

cost of acquiring these stations encourages sparse deployment, which in turn results in these

relatively coarse-grained measurements (Rai et al. 2017). As highlighted in the study of De-

varakonda et al. (2013), this form of raw data still requires the adoption of dispersion models

to infer the concentration of pollution. Contrarily, a fine-grained measuring technique is

spatially-dense and allows scalability to provide information on short-term concentration

changes when needed (Baron & Saffell 2017). This type of measurement can detect short-

term changes and are essential for understanding the dynamic nature of air pollutants and for

making informed decisions that protect public health at a local level. Studies indicate that

this sort of detailed pollutant information is currently restricted or completely non-existent

(Kumar et al. 2015, Ahlers et al. 2016, Carabetta 2019).
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1.2.2 Real-Time Air Quality Monitoring

While fine-grained air quality measurements are crucial for informed decision-making in en-

vironmental planning and policy, the need for immediate data access is equally imperative

(Kadri et al. 2013). Advancements in wireless communication and sensing technologies have

enabled companies like Aeroqual and Membrapor to develop sensors for real-time, compre-

hensive monitoring. However, these devices have inherent limitations. They often require

multiple sensors to track various pollutants due to their specific detection capabilities, poten-

tially complicating and escalating the costs of monitoring systems (Lewis et al. 2016). The

accuracy and sensitivity of these sensors can vary, influencing the precision of pollutant level

readings. External factors such as temperature and humidity can also affect sensor perfor-

mance. Furthermore, regular calibration and maintenance are essential to ensure sustained

accuracy, introducing further challenges in sensor deployment and data consistency. These

factors are vital in the effective application of sensors in air quality monitoring strategies.

Additionally, the cost-benefit balance regarding sensor longevity and measurement accuracy

remains a significant challenge, as many low-cost sensors fail to provide accurate measure-

ments over long periods, primarily due to the power required for continuous operation (Rai

& Kumar 2017).

1.2.3 Prediction Accuracy Of TRAP Forecasting Models

Asides from inefficient highway air quality monitoring, another major challenge rests on the

issue of how data disparity and isolated data sets affect the accurate prediction of pollutant

concentration levels. Traditional models are mostly trained on traffic flow, meteorological and

historic pollution data collected over many years. Other highway and traffic-related data such

as background air pollution concentrations, vehicle emission factor and highway topography

are often ignored because of their unavailability. Consequently, many of the machine learning

models only excel on the often limited data sets upon which they have been trained. While it

might seem intuitive that providing a real-time quality dataset to an air pollution forecasting
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model would enhance its prediction accuracy, this is not always the case. The integration of

real-time data into forecasting models is influenced by multiple factors, such as the model’s

architecture, data complexity, and the model’s capability to assimilate and adapt to real-time

inputs. Real-time data can sometimes introduce noise, complicating the learning process and

not always enhancing model accuracy. Hence, its impact on forecasting must be assessed

individually, considering the model and data’s unique attributes.

The study of Fong et al. (2020) for example, could only make next day predictions and

struggled with periods shorter than a day or even several days ahead. While the proposed

approach was able to demonstrate the use of transfer learning techniques in conjunction with

LSTM recurrent neural networks, the authors linked the difficulty of making predictions over

various timescales to data availability. Another important limitation of the study is the

inability of the proposed approach to simultaneously and accurately predict multiple pollu-

tants and the impact of contributing variables. The impacts of contributing variables like

weather parameters, traffic flow, and historical pollution data on air pollution forecasting

are significant and multifaceted. Weather conditions, including temperature, wind speed,

and humidity, directly influence pollutant dispersion and concentration, while traffic flow

data reflect emission levels, particularly in urban settings. Historical pollution trends also

provide valuable insights into periodic variations, enabling models to predict future air qual-

ity. Predictions from machine learning algorithms like linear regression depend on the linear

dependency between different highway parameters and pollutants. However, these relation-

ships are complex and non-linear, thereby making multi-target predictions even more difficult

(Masmoudi et al. 2020). Also, most of the developed models do not offer pragmatic solutions

that can be deployed in a real-world scenario. Rigorous validation of these models in these

kinds of scenarios is almost non-existent.
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1.3 Justification For Study

The importance of tracking highway air pollution and implementing effective mitigation

strategies cannot be overstated, especially in today’s context of escalating environmental

concerns globally. Air pollution, particularly from traffic-related sources, poses significant

health risks, contributing to respiratory and cardiovascular diseases among populations ex-

posed to pollutants. The UK, with its dense traffic networks, serves as a critical area of study

but also provides insights applicable to Europe and other regions worldwide, where similar

challenges persist.

The ability to accurately forecast and monitor Traffic-Related Air Pollution (TRAP) is

essential for developing strategies that can effectively reduce exposure and mitigate the ad-

verse effects on public health and the environment. By enhancing our understanding and

prediction capabilities, policymakers can make informed decisions that lead to more sus-

tainable and healthier urban environments. This includes implementing traffic management

strategies, urban planning reforms, and pollution control technologies that align with both

national and international environmental goals. Moreover, as climate change continues to

impact environmental dynamics globally, the need for robust, scalable solutions to monitor

and predict air pollution becomes even more critical. These solutions are pivotal not only

for immediate health concerns but also for long-term sustainability efforts. Implementing

advanced forecasting and monitoring frameworks can therefore provide a blueprint for other

regions struggling with similar issues, making the research not only relevant to the UK but

also to the global effort in combating air pollution. This global relevance underscores the

necessity of this research at a time when both environmental awareness and the urgency to

act are at their peak.
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1.4 Research Novelty

There is a predominant gap in knowledge within the body of air quality literature, espe-

cially concerning the real-time capturing and forecasting of TRAP pollutants, as argued in

preceding subsections. Existing studies have not yet explored an integrated approach like

the one proposed in this study, which could improve the accuracy of forecasting models.

This lack of exploration is due to the complexities associated with integrating various digital

technologies, the substantial resources needed, and challenges related to data accessibility.

On the back of significant advancements in scalable machine learning (ML) approaches such

as deep learning, this study, therefore, proposes and implements a scalable monitoring and

forecasting framework for real-time capturing and estimation of pollutant concentration lev-

els on UK highways. This framework leverages internet of things (IoT) sensors for real-time

monitoring, graphics processing units (GPUs) for parallel computing, big data for scalable

storage and deep learning for forecasting highway pollutant concentration.

In addition, this study takes a different approach and models the prediction of traffic pol-

lutant concentration as a multi-target regression problem with additional highway data such

as background air pollution concentrations from the UK Pollution Climate Model (PCM),

vehicle emissions factor and terrain data added to the conventional weather and historic pol-

lution data. A range of available datasets was thoroughly examined to pinpoint the most

pertinent ones, especially those offering detailed and comprehensive data that aligns with

the objectives of the research. The PCM was chosen for its detailed, high-resolution de-

piction of air pollution, crucial for the study’s analytical depth while the vehicle emissions

and terrain data allows for a nuanced analysis that acknowledges the complex interplay of

factors influencing traffic pollutant levels. While Multi-Target Regression (MTR) permits

the simultaneous prediction of multiple dependent variables, its real-world application still

poses numerous challenges due to the complexity of some domains (Borchani et al. 2015).

Previous investigations into using MTR for forecasting pollutant concentrations have encoun-
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tered issues with accuracy or feature selection. Notably, no prior research has assessed the

unique dataset combination presented in this study. On a related note, many studies confirm

that deep learning algorithms can help models learn the fundamental relationships between

variables in a dataset (Guo & Berkhahn 2016, Shrestha & Mahmood 2019, Akinosho et al.

2020). Nevertheless, there’s ongoing discussion among researchers about the effectiveness of

these algorithms with tabular data (Fayaz et al. 2022). Therefore, this study also seeks to

examine the applicability of deep learning for tabular data and to explore the dynamics of

variable relationships through an extensive audit of the developed forecasting models.

1.5 Research Questions

Listed below are the identified research questions of this study :

• What are the limitations of existing highway pollution forecasting methods?

• What are the computational challenges in implementing a scalable solution for highway

pollution forecasting, and how can they be overcome?

• Can the integration of supplementary highway data, including background air pollution

levels, vehicle emission factors, and terrain information, with historical pollution and

meteorological records enhance the accuracy of forecasting models?

• Can the application of deep learning techniques, such as categorical embeddings, en-

hance the current accuracy levels?

• What is the most effective way to communicate monitored and forecasted highway

pollution information to the general public?

1.6 Research Aim and Objectives

The overall aim of this research is to investigate a better performing and scalable method

of monitoring and forecasting highway pollution using big data, IoT and deep learning tech-
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nologies. Hence, the following objectives have been identified as being critical to realising

the primary aim.

• Evaluate existing TRAP forecasting methods, identify limitations, and identify appro-

priate deep learning algorithms.

• Develop and implement a scalable forecasting framework to address and resolve com-

putational challenges in highway pollution modelling.

• Develop an extensive training dataset incorporating relevant highway features to en-

hance the accuracy of pollutant forecasting and demonstrate the complexities of data

integration.

• Examine and compare the accuracies of different multi-target forecasting models for

NO2, PM2.5, and PM10 concentrations, with and without the use of categorical embed-

dings, against prominent machine learning algorithms, and identify influential features

using the model that performs best.

• Design a prototype application to demonstrate model integration and real-time air

quality visualisation and journey planning on UK highways.

1.7 Research Methodology And Workflow

To fulfil the research objectives of this study, a combination of experimental design and

case-study methodology was employed, each serving distinct but interrelated purposes. The

rationale behind this methodological approach stems from the need to achieve two primary

objectives. Firstly, this study recognises the importance of system implementation to vividly

demonstrate the practicality of the proposed framework through the development of a fully

operational system. This approach inherently aligns with the principles of experimental

design in research, emphasising the importance of systematic and structured processes (Har-

rison et al. 2017). On the other hand, the adoption of a case-study strategy was motivated
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by the intention to rigorously test the results of the developed system in diverse real-life

settings. This pragmatic approach has proven highly effective and has been a cornerstone in

related research endeavours featuring multiple case studies, as exemplified in studies by Saide

et al. (2016) and Chauhan et al. (2021). The use of a case-study methodology is crucial for

assessing the system’s effectiveness in various contextual situations, greatly contributing to

the study’s thoroughness. Moreover, the experimental design approach was key in shaping

the layered structure of the framework to be proposed later, directly aligning with the second

research objective. Layering within the framework represents a widely adopted application

design technique, facilitating the systematic dissection of intricate software systems into man-

ageable modules. These layers encompass vital components such as libraries, programming

languages, and services, which are indispensable for the system’s effective monitoring and

forecasting. This architectural structure enhances the organisation of the system, making it

more modular, scalable, and amenable to maintenance and expansion. Figure 1.2 depicts a

high-level workflow defined for achieving the objectives of this study.

1.8 Research Scope and Limitations

In this research, addressing the “who”, “what”, “why”, and “how” is crucial to defining the

study’s scope clearly and ensuring its relevance and applicability. The “who” focuses on

the key stakeholders impacted by Traffic-Related Air Pollution (TRAP), including environ-

mental researchers, urban planners, policymakers, and the UK public, especially those near

caes-study highways. The “what” entails the development and implementation of a sophis-

ticated monitoring and forecasting framework for TRAP, leveraging IoT sensors, GPUs, and

deep learning within the context of these highways. The “why” underscores the urgency to

enhance TRAP understanding and predictions, driven by the imperative to mitigate health

and environmental risks. Lastly, the “how” details the methodological approach, utilising

real-time data collection, advanced computational processes, and predictive analytics to ex-

tract meaningful insights. Addressing these questions ensures a holistic understanding of the
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Figure 1.2: Research workflow for addressing the objectives defined for this study
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study’s intent, methodology, and potential impact, providing a comprehensive framework

that guides the research towards meaningful outcomes.

While the research aims to make a substantial contribution to the field of TRAP monitor-

ing and forecasting, it recognises the limitations inherent in its scope. The selection of only

four UK highways may not encompass the full variability of highway environments across

the country, potentially limiting the generalisability of the findings. The study’s reliance on

advanced technologies and specific data sets means that the results are contingent on the

current state of these tools and the data’s accuracy and completeness. Moreover, the focus

on the UK context necessitates careful consideration when applying the findings to other geo-

graphic settings, as local traffic, environmental, and policy conditions may differ significantly.

Despite these constraints, the research offers significant insights into TRAP monitoring and

forecasting, with potential implications for policy and practice within and possibly beyond

the UK context.

1.9 Expected Contribution To Knowledge

This doctoral research makes a substantial contribution to the field of air quality management

and data-driven forecasting. One key aspect it addresses is the intricate process of data

integration. The research explores the intricacies of data integration, elucidating the process

of combining data from varied sources to create a unified, more coherent dataset. This

process is not without its challenges, as highlighted in the study, which also emphasises

the critical need to obtain the necessary authorisations to access specific datasets. Gaining

insights from a real-world perspective is invaluable, offering researchers and practitioners

critical understanding and practical knowledge that can guide their work, enhancing the

accuracy and depth of their analyses, and facilitating more informed decision-making in

their respective fields. Another fundamental component of this research is its exploration of

data format disparities among the data sets. It introduces the innovative concept of data
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integration maps, which are schematic representations that illustrate how data from various

sources is combined, transformed, and loaded into a target system, acting as a bridge between

data sources with differing formats. This approach offers a practical solution for harmonising

heterogeneous data and streamlining the integration process. The study’s focus on data

format standardisation adds depth to the understanding of data integration complexities,

benefiting those involved in working with diverse data sources.

Similarly, this study builds on existing research knowledge through the comparative anal-

ysis of deep learning against other prominent machine learning algorithms in the context of

air quality forecasting. The study underscores the importance of algorithm selection and

hyperparameter tuning. It reveals that, regardless of the data’s quality or type, effective

model training requires careful consideration and customisation. These findings serve as a

valuable resource for researchers and practitioners seeking to enhance the accuracy of air

quality forecasting, emphasising the need for adaptable machine learning techniques in this

field.

Finally, the study underscores the social, economic, and technological significance of ac-

curate air quality forecasting. It emphasises the potential to mitigate traffic-related pollution

risks and addresses the pressing issue of environmental injustice in developed countries. Ad-

ditionally, it recognises the economic implications of air pollution, making the case for more

informed decision-making in air quality management systems. From a technological perspec-

tive, the research exemplifies the productionisation of air quality models for traffic-related

pollution, offering a streamlined approach to deploying models for real-world use cases while

addressing the challenge of model drift. These comprehensive insights contribute significantly

to the knowledge base in air quality management and environmental sustainability.
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1.10 Thesis Layout

This thesis is structured into chapters, with each chapter dedicated to addressing one or two

research objectives. Each chapter follows a consistent format: it begins with a brief intro-

duction, proceeds to the main body, and concludes with a chapter summary. Following this

introductory chapter, Chapter Two undertakes a review of the existing body of literature in

the realm of air quality monitoring and forecasting. This chapter emphasises the significant

constraints identified in studies attempting to utilise the three primary technologies, namely

Big Data, the Internet of Things, and Deep Learning, all of which are central to this study.

In addition, this chapter offers an overview of existing deep learning architectures, serving to

fulfil the first research objective. Chapter Three delves into the philosophical underpinnings

of this study, expounding upon the principles guiding research design, data collection meth-

ods, and sampling techniques employed throughout the study. In Chapter Four, a scalable

framework designed for city-wide and national-scale air quality monitoring and prediction is

presented. This chapter provides insights into the framework’s architectural layers and their

key components. Moreover, a practical implementation is included to validate the frame-

work’s functionality and demonstrate its real-world applicability. Chapter Five extends the

baseline model developed during the framework validation process in Chapter Four. This

extension involves the integration of additional highway data into the training data set, fol-

lowing the framework’s recommendations. The augmented data set is then used to train an

improved model, with comprehensive details of the training process and comparisons with

other machine learning models presented in this chapter. In Chapter Six, an algorithmic

audit is conducted on the best-performing model to identify outliers that may impede its

performance. This chapter outlines the results of this audit and implements rectification

strategies. Finally, Chapter Seven serves as the conclusion of this study. It offers a summary

of research findings, addresses the challenges encountered, and provides recommendations for

future research endeavours as shown in figure 1.3 below.
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Figure 1.3: Thesis Layout
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Chapter 2

Review of Enabling Digital

Technologies For TRAP Monitoring

and Forecasting

2.1 Chapter Overview

This chapter explores the digital technologies pivotal in managing traffic pollution, building

upon the challenges outlined in the preceding chapter. While previous research has offered

solutions, they often tackle the issues in isolation. The chapter reviews technologies such as

the Internet of Things, Big Data, and Machine Learning, recognised in the literature as key

components in traffic pollution management. It examines the specific roles these technologies

play in monitoring and forecasting traffic-related pollution, discussing their application in

existing studies and implementation. In addition, the chapter addresses the obstacles to the

widespread adoption of these technologies in the field.
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2.2 Traffic-Related Air Pollution Monitoring - Enabling Technolo-

gies and Methods

This section explores the applications of IoT and Big Data in TRAP monitoring, highlighting

their transformative impact on urban environmental management. It also discusses the bar-

riers to their adoption, including technical challenges, data privacy concerns, and the need

for robust infrastructure and regulatory frameworks.

2.2.1 Internet of Things And TRAP Monitoring

The relevance of IoT to TRAP monitoring cannot be overstated in today’s increasingly

urbanised and technologically advanced world. IoT’s role in TRAP monitoring is a game-

changer, offering innovative solutions to the challenges posed by urban air pollution. IoT’s

significance lies in its ability to create a network of interconnected sensors and devices that

continuously collect data on various environmental parameters, including air quality. These

sensors are strategically placed throughout urban areas, providing a real-time, granular view

of air pollution levels. This vast amount of data is instrumental in understanding the complex

dynamics of TRAP. By amalgamating diverse data streams, researchers and policymakers can

identify trends and patterns that would be impossible to discern from traditional monitoring

alone. IoT’s geospatial capabilities are equally relevant to TRAP monitoring. It provides

a fine-grained understanding of pollution hotspots and vulnerable areas. This information

is invaluable in designing targeted mitigation strategies, such as the placement of green

infrastructure or the rerouting of traffic away from sensitive locations. By harnessing the

geospatial aspects of IoT, cities can optimise resource allocation and focus efforts where they

are most needed. IoT goes beyond data collection; it encourages citizen engagement and

crowd-sourced data collection. Mobile apps and online platforms enable residents to report

pollution incidents, contributing real-time data for monitoring. This citizen science approach

not only improves data accuracy but also fosters community awareness and participation in
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pollution management.

The interconnectedness of IoT systems allows for collaborative efforts between cities, re-

gions, and even countries. Shared data and experiences can lead to more effective regional

pollution control strategies and the standardisation of monitoring and reporting practices.

This global perspective is vital in addressing transboundary pollution issues and striving for

more sustainable, cleaner urban environments. In addition, IoT contributes to transparency

and accountability in pollution management. By making pollution data accessible to the

public, it empowers citizens to hold authorities and industries accountable for their pollu-

tion levels. This transparency can stimulate action and encourage the adoption of cleaner

technologies and practices, ultimately driving a positive change in urban pollution dynamics.

In summary, IoT’s relevance to TRAP monitoring lies in its ability to provide real-time,

data-driven insights, enable predictive analysis, support targeted mitigation strategies, en-

gage citizens, facilitate collaboration, and promote transparency, all of which are pivotal in

addressing the challenges of urban air pollution.

2.2.2 Existing Applications of IoT For TRAP Monitoring

With the recent application of IoT in several sectors, various applications in developing road-

side and traffic-related air quality monitoring systems emerged. For instance, Mart́ın-Baos

et al. (2022) introduced a cost-effective IoT system that combined video processing and ma-

chine learning to monitor traffic flow and the Air Quality Index (AQI). The real-time traffic

flow computation using motion vectors and the AQI estimation through machine learning

regression models signified a significant advancement in precise air quality monitoring. Their

approach not only overcame calibration complexities but also proved to be a valuable solution

for diverse traffic and climate scenarios. Manna et al. (2014) tackled the issue of air quality

degradation due to increasing urbanisation and vehicle emissions. Their innovative use of

Wireless Sensor Networks, Electrochemical Toxic Gas Sensors, and Radio Frequency Identi-
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fication (RFID) offered real-time vehicle pollution monitoring. This approach was especially

valuable for identifying and controlling sources of pollution exceeding specified limits. The

combination of these technologies opened new possibilities for reducing the impact of vehicle

pollution on urban environments. Rana et al. (2022) aligned their research with the United

Nations’ agenda for improved pollution detection and sustainable urban living. Their IoT ar-

chitecture, complete with sensor nodes, gateways, and Long-Range communication, brought

a new level of sophistication to air quality monitoring. By customising hardware and reduc-

ing data redundancy, this system offered real-time monitoring of air quality indicators. The

evaluation metrics, including bit rate, receiver sensitivity, and time on air, ensured data ac-

curacy. The study highlighted the significance of optimising IoT hardware for comprehensive

and accurate air quality assessments.

Shakhov & Sokolova (2019) brought a unique perspective by introducing the concept of

mobile sensors mounted on vehicles for air pollution monitoring. By distinguishing between

deterministic and Poisson traffic flows, the study focused on detecting elevated pollution

levels when vehicles were present. This approach introduced dynamism to air pollution data

collection, improving the understanding of pollution sources and variations. Kumaresan et al.

(2021) underscored the grave health concerns related to air pollution. The introduction of

an IoT roadside air pollution monitoring system, coupled with a mobile app, provided an

effective solution for real-time monitoring and data sharing. This approach could make a

significant impact in high-traffic areas and signal zones prone to pollution spikes, enhancing

public health protection and city planning. Al-Dweik et al. (2017) introduced a modular

Road Side Unit (RSU) that harnessed IoT technology to collect data from various sensors and

cameras mounted on vehicles. This data-driven approach opened new avenues for real-time

traffic management, such as speed limit adjustments and traffic congestion reduction. The

addition of weather advisory warnings aligned with the broader goal of reducing emissions and

improving road safety. Pal et al. (2018) concentrated on real-time pollution monitoring and
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personalised air quality information for individual vehicles. Their IoT-based solution was

valuable for addressing vehicle-generated pollution in urban areas. The approach ensured

that drivers and relevant authorities had access to real-time data, contributing to a better

understanding of pollution sources.

Goyal et al. (2018) introduced a prototype for vehicle-mounted sensing of PM2.5 and

PM10. This innovative technology addressed real-world challenges, enabling the creation of

dense air pollution data. The system provided insights into the root causes of air pollution and

offered potential solutions for managing and mitigating pollution in urban areas. Mateichyk

et al. (2020) explored the impact of modern transport infrastructure and the use of IoT

for roadside pollution monitoring. The information and analytical system they introduced

combined various advanced technologies to assess and forecast the influence of different factors

on roadside pollution. This technology held the potential to provide essential insights for

optimising transport infrastructure and ensuring sustainable urban development. Rushikesh

& Sivappagari (2015) introduced an IoT-based roadside air pollution monitoring system with

a mobile app. Their emphasis on real-time monitoring and data sharing facilitated public

awareness and engagement. By focusing on high-traffic zones and signal areas, this technology

ensured that pollution spikes were promptly detected and addressed. These studies were able

to highlight the potential of real-time data collection and analysis in creating healthier urban

environments.

2.2.3 Barriers To The Adoption of IoT For TRAP Monitoring

The adoption of IoT for TRAP monitoring faces several barriers, despite its potential to

revolutionise environmental data collection and management. One of the primary challenges

is the high initial cost of implementing IoT infrastructure. Deploying a network of sensors

and devices across urban areas, along with the necessary data storage and processing in-

frastructure, can be financially demanding for municipalities and local authorities (Idrees &
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Zheng 2020). The cost of maintenance and system upgrades over time further compounds

the financial burden. Data privacy and security concerns present another significant barrier.

IoT systems collect vast amounts of sensitive data, including location information and po-

tentially personally identifiable information. Protecting this data from unauthorised access

and cyber threats is a crucial consideration. Ensuring robust data encryption, secure data

storage, and adherence to privacy regulations becomes paramount, which can be complex

and resource-intensive.

Interoperability and standardisation challenges are also notable impediments to IoT adop-

tion in TRAP monitoring. There is a lack of uniform standards for IoT devices and platforms,

making it difficult to integrate various sensor types and data sources seamlessly (Toma et al.

2019). Without standardised protocols, data compatibility and system interoperability be-

come challenging, limiting the effectiveness of IoT systems in addressing TRAP concerns.

Scalability and network coverage are additional barriers. The deployment of IoT sensors

must cover extensive urban areas to provide comprehensive TRAP data. However, expand-

ing and maintaining network coverage can be a complex undertaking, especially in densely

populated and geographically diverse cities. Ensuring uninterrupted network connectivity

and sensor functionality is a logistical challenge.

Data management and analytics pose another barrier. IoT systems generate vast amounts

of data. Efficiently storing, processing, and analysing this data require advanced data man-

agement infrastructure and expertise. Without the capability to manage and extract mean-

ingful insights from the data deluge, the potential benefits of IoT for TRAP monitoring

remain unrealised. Moreover, community acceptance and participation are essential for IoT

adoption in TRAP monitoring. Ensuring public trust and involvement is a hurdle that re-

quires community outreach and education efforts. In addition, regulatory and compliance

issues present challenges for IoT adoption. Governments and municipalities must navigate a
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complex web of regulations and compliance requirements, particularly in the realm of data

protection and environmental monitoring. Ensuring that IoT systems adhere to relevant

regulations while still maintaining their effectiveness is a delicate balance.

2.2.4 Big Data And TRAP Monitoring

The relevance of big data in the context of TRAP monitoring is of paramount importance,

especially in today’s rapidly urbanising world. As cities continue to expand, the volume

of traffic and the associated pollution intensifies. Big data, characterised by its immense

volume, velocity, and variety, plays a pivotal role in both comprehending and addressing

the impact of highway pollution, specifically TRAP. First and foremost, the vast amount

of data generated from various sources, including traffic sensors, satellite imagery, weather

stations, and air quality monitoring stations, provides a comprehensive and real-time view

of urban environments. This data serves as a powerful tool in understanding the intricate

dynamics of TRAP. By amalgamating diverse data streams, researchers and policymakers can

identify trends and patterns that would be impossible to discern from traditional monitoring

methods alone. Furthermore, big data facilitates spatial analysis, allowing for a granular

understanding of TRAP hotspots and vulnerable areas. This insight is invaluable in designing

targeted mitigation strategies, such as the placement of green infrastructure or the rerouting

of traffic away from sensitive locations. By harnessing the geospatial aspects of big data,

cities can optimise resource allocation and focus their efforts where they are most needed.

In addition, big data offers an opportunity for citizen engagement and crowd-sourced data

collection. Mobile apps and online platforms enable residents to report TRAP incidents,

contributing real-time data for monitoring. This citizen science approach not only improves

data accuracy but also fosters community awareness and participation in TRAP management.

The interconnectedness of big data systems allows for collaborative efforts between cities,

regions, and even countries. Shared data and experiences can lead to more effective regional
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TRAP control strategies and the standardisation of monitoring and reporting practices. This

global perspective is vital in addressing trans-boundary TRAP issues and striving for more

sustainable, cleaner urban environments. Also, big data contributes to transparency and

accountability in TRAP management. By making TRAP data accessible to the public, it

empowers citizens to hold authorities and industries accountable for their pollution levels.

This transparency can stimulate action and encourage the adoption of cleaner technologies

and practices, ultimately driving positive change in urban TRAP dynamics.

2.2.5 Existing Applications of Big Data For TRAP Monitoring

Reddy et al. (2021) presented a comprehensive system for monitoring ambient air quality on

roads, with a focus on identifying vehicles emitting pollution beyond predefined limits. Their

approach integrates IoT, electrochemical toxic gas sensors, RFID, and big data techniques

including stream processing and data visualisation to monitor air contamination patterns.

Their proposed framework was designed to also aid in intelligent traffic light control to re-

duce emissions, demonstrating the potential of Big Data in traffic pollution management.

The study of Mateichyk et al. (2020) recognised the need for digitisation in traffic man-

agement and utilised artificial intelligence, Big Data, and predictive analytics to develop an

information and analytical system for monitoring roadside pollution due to traffic flows. This

innovative approach leverages various technologies to assess and forecast roadside pollution,

thereby contributing to efficient transport infrastructure development. In another investiga-

tion, Wang & Huang (2017) sought to tackle air pollution issues around metropolitan areas in

China. They designed an Environmental Monitoring Vehicle to collect data on air pollutants,

utilising GPS, IMU, and a range of sensors. Big Data analysis, including spatial correlation

and spatial clustering, allowed for the creation of periodic reports on roadside air quality.

This approach demonstrates the promise of Big Data in enhancing air quality monitoring,

especially in densely populated urban areas.
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El Fazziki et al. (2017) proposed an agent-based system for modelling urban road network

infrastructure, real-time air pollution indexes, and dynamic traffic regulation. By integrat-

ing agent technology with machine learning and Hadoop-based frameworks - HBasee and

MapReduce, they aimed to optimise traffic management and reduce vehicle emissions. Their

system holds the potential to significantly improve air quality in urban environments through

real-time monitoring and regulation. In yet another study, Cecilia et al. (2018) introduced

a high-throughput hardware-software infrastructure for gathering information from vehicles

to provide novel Intelligent Transportation Systems (ITS) services. By parallelising fuzzy

clustering techniques on CPUs and GPUs, they efficiently processed vehicle data to identify

highly polluting traffic areas and drivers. This approach showcases the applicability of Big

Data in creating smart ITS services for better traffic and air quality management. Apte

et al. (2017) recognised the limitations of conventional fixed-site pollution monitoring meth-

ods and employed a novel approach. Equipping Google Street View vehicles with pollution

measurement platforms allowed for highly detailed urban air quality mapping. By utilising

Big Data, they achieved greater spatial precision and revealed pollution patterns that signifi-

cantly impact public health and environmental equity. Chang (2019) used Big Data-oriented

Social Network Analysis to analyse event co-occurrence and spatial correlation characteristics

of pollution scenarios at monitoring stations. This data-driven approach improved under-

standing of regional high pollution characteristics, providing valuable insights for real-time

air quality management and pollution precaution.

In another context, Tarek et al. (2018) focused on efficiently analysing air quality data

using large-scale data mining techniques. By applying clustering methods and time-series

analysis to air pollution data, they successfully identified pollution hotspots and temporal

pollution trends. This approach has the potential to provide more dynamic and efficient

insights into air pollution patterns. Sridhar et al. (2022) proposed an IoT-based air quality

monitoring system. They utilised air sensors and data processing to detect harmful gases and
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provide real-time air quality information. The system, which can display air quality based on

standard criteria, offers essential information for assessing air pollution and taking preventive

measures. N. Genikomsakis et al. (2018) harnessed low-cost sensors to develop a portable

air pollution monitoring system focused on PM2.5. Their on-field testing demonstrated the

system’s accuracy and potential for collecting spatio-temporal PM2.5 profiles. This innovation

contributes to fine-detailed air quality monitoring in support of intelligent transportation

systems.

In this study, implementing best practices from recent research, such as the utilisation of

advanced IoT systems and big data processing, as shown in studies like those by Reddy et al.

(2021) and El Fazziki et al. (2017), is essential. A successful approach to consider would be the

application of integrated systems combining IoT sensors with AI-driven analytics for traffic

pollution management. In addition, adopting technologies for real-time data processing and

visualisation, similar to the systems developed by Sridhar et al. (2022), can further enhance

the effectiveness of pollution monitoring. These technologies can facilitate more accurate

and timely responses to fluctuating pollution levels, thereby supporting the development

of a robust, scalable forecasting model as well as demonstrating the complexities of data

integration in environmental monitoring.

2.2.6 Barriers To The Adoption of Big Data For TRAP Monitoring

The implementation of big data for TRAP monitoring is not without its challenges. These

challenges must be addressed to fully leverage the potential of big data in understanding and

mitigating TRAP in urban environments. Data privacy and security concerns are signifi-

cant. Handling sensitive air quality and location data raises worries about data breaches and

misuse, potentially hindering data sharing and collaboration. Protecting this data through

robust encryption, access controls, and adherence to data protection regulations is impera-

tive. Data quality and standardisation issues also pose challenges. Inconsistencies in data
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quality and format across various sources can make data integration and analysis difficult

(Krogstie 2015). Establishing standards and protocols for data collection and sharing is

essential to ensure the reliability of data.

Access to high-speed internet and reliable connectivity is crucial for real-time TRAP

monitoring. However, inadequate infrastructure, particularly in developing regions, can limit

the effectiveness of big data solutions. Expanding infrastructure and ensuring connectivity

in remote areas is a pressing concern. The cost and resource constraints associated with

implementing big data solutions can be a barrier, especially for smaller municipalities and

organisations with limited budgets. Funding is needed to invest in sensor networks, data

centres, and maintenance. A shortage of expertise in data science and analytics presents

another challenge. Specialised skills are crucial for effective big data analysis, but a lack of

data experts and limited training opportunities can hinder progress. Integrating data from

diverse sources, including traffic sensors, meteorological stations, and air quality monitoring

stations, can be complex due to data silos and incompatible formats. Creating a unified

dataset for analysis is a challenge that needs to be addressed.

As data volumes continue to grow, scalability becomes a pressing issue. Expanding big

data infrastructure to accommodate increasing data loads is a significant undertaking that re-

quires careful planning and investment. The complex regulatory landscape surrounding data

sharing, privacy, and compliance can create obstacles for cross-border data exchange. Navi-

gating these regulatory hurdles is essential for effective TRAP monitoring. Public awareness

and acceptance of data collection and monitoring initiatives can significantly impact their

success (Conrad & Hilchey 2011). Transparency, public education, and gaining public trust

are essential to ensure the cooperation of residents. Ethical and legal considerations related

to data ownership, consent, and ethical use also need to be addressed. Establishing clear

ethical guidelines is essential to ensure the responsible use of data in TRAP monitoring.
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2.3 Traffic-Related Air Pollution Forecasting - Enabling Technolo-

gies and Methods

This section highlights the applications of chemical transport models and deep learning in

TRAP forecasting, examining how these technologies model the complex interactions between

various pollutants and environmental factors. It also discusses the barriers to their full

adoption, including computational demands, the need for extensive training data.

2.3.1 Chemical Transport Models And TRAP Forecasting

Chemical Transport Models (CTMs) are complex and comprehensive tools used in the field of

atmospheric science and environmental research. These models are designed to simulate the

dispersion and behaviour of air pollutants in the atmosphere. CTMs serve a critical role in

understanding how pollutants are transported, diffused, and transformed in the air, making

them indispensable for assessing air quality and addressing environmental and public health

concerns (Ward 2019). A key element of Chemical Transport Models (CTMs) is the inclusion

of emission sources. These models account for emissions from both natural and anthropogenic

sources. To do this, emission inventories compile comprehensive data on the types and

amounts of pollutants emitted into the atmosphere, serving as crucial inputs for CTMs. In

addition, CTMs simulate the movement and dispersal of these pollutants in the atmosphere,

incorporating meteorological data such as wind speed, wind direction, temperature, and

atmospheric stability to enhance the accuracy of their predictions. These meteorological

factors have a significant impact on how pollutants move through the air. By integrating

high-resolution meteorological data from sources like weather stations and numerical weather

prediction models, CTMs can provide accurate simulations of how pollutants spread over time

and space (Gariazzo et al. 2020).

A crucial aspect of CTMs is their ability to account for chemical reactions in the at-
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mosphere. Pollutants are not static; they can undergo transformations through chemical

processes, resulting in the formation of secondary pollutants. CTMs capture these chemical

reactions, providing insights into the changing composition of the atmosphere (Cui & Wang

2021). This is particularly important for understanding the complexities of air quality and

the formation of various air pollutants, including ozone, particulate matter, and secondary

aerosols. To facilitate their modelling work, CTMs adopt a grid-based approach (Karamchan-

dani et al. 2011). This involves dividing the study area into a grid of cells, both horizontally

and vertically. Each grid cell represents a specific location within the domain being studied.

The use of grids allows for the spatial and temporal discretisation of the atmosphere, which

is critical for modelling air quality at different scales. CTMs can, therefore, be applied to

assess air quality in small urban areas, larger regional settings, and even global domains.

2.3.2 Existing Applications Of Chemical Transport Models For TRAP Fore-

casting

The study of Pohjola et al. (2007) conducted a field measurement campaign near a ma-

jor road in Helsinki, focusing on aerosol measurements. It compared measured concentration

data with predictions from the road network dispersion model CAR-FMI in combination with

the MONO32 aerosol process model. The study evaluated vehicular exhaust emissions, at-

mospheric dispersion, and particle transformation within a distance of 200 meters. The most

critical process affecting particle concentrations was atmospheric dilution, with coagulation

and condensation playing a minor role. Condensation was found to affect particle diameter in

the smallest modes. Modelling with 109–1010 molecules of condensable organic vapor yielded

the closest match to measured values. In a similar study, Masood et al. (2017) modelled CO

emissions from Mathura road in New Delhi, India using the CALINE4 model, employing

emission factors and vehicle classification methodology. Predicted and monitored CO con-

centrations at the receptor location showed fair agreement, and the model’s performance was

assessed, with a root mean square error (RMSE) of 302 and a correlation coefficient (r) of
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0.87. Predicted CO emissions were integrated with ArcGIS to generate digital maps, identi-

fying pollution hot spots for policy formulation and environmental impact assessment. Lin

& Ge (2006) introduced an alternative approach, combining a cell-transmission traffic propa-

gation model with a Gaussian dispersion model to estimate traffic emissions and roadside air

quality. This model captured time-dependent vehicular traffic characteristics and highlighted

high carbon monoxide concentrations at intersections during off-peak traffic hours.

The study of Beevers et al. (2012) investigated coupling CMAQ and ADMS air quality

models for predicting NOX , NO2, and O3 concentrations in London. The model showed

reasonable agreement with monitoring data from 80 sites. The study pointed out the need

for improved prediction of road transport-related NOX emissions, especially hourly scal-

ing. The combination of regional and local scale models demonstrated promise as a tool for

policy development and epidemiological studies. Mishra et al. (2016)’s study investigated

gaseous emission dispersion from urban roadside sites in Delhi. It used the General Finite

Line Source Model (GFLSM) to predict CO, NO2, and SO2 concentrations, showing a high

level of agreement between observed and predicted values. The model exhibited reasonable

prediction capabilities for gaseous pollutant dispersion from on-road vehicles in an urban en-

vironment. In another study, Heist et al. (2013) developed a GIS-based air pollution model,

STEMS-Air, for PM10, offering daily and annual predictions. The model performed well

in predicting concentrations of PM10, making it a valuable tool for air pollution mapping

in urban areas. Gulliver & Briggs (2011) focused on air pollution mapping for short-term

exposure studies using the STEMS-Air model for PM10. The model achieved good agree-

ment with observed concentrations, making it suitable for air quality planning, health risk

assessment, and epidemiological studies. In related research, Stocker et al. (2019) conducted

a model inter-comparison with four dispersion models, evaluating their abilities to capture

near-road pollutant dispersion using experimental datasets. The results highlighted the chal-

lenges and uncertainties associated with near-road air dispersion modelling. This study shed
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light on the complexities of modelling near-road exposures to traffic-generated pollutants,

emphasising the need for validation and uncertainty reduction in dispersion models.

The referenced studies highlight the importance of integrating detailed modelling tech-

niques to accurately assess urban air quality, which presents a good practice worth adopting

in this research. Particularly, the combination of traffic data with air quality models, as

demonstrated in the works of Lin & Ge (2006) and Beevers et al. (2012), offers a robust

method for understanding the fluctuations in pollutant levels. However, these studies also

expose a significant gap in the fine-tuning of emission factor calculations and their tempo-

ral resolution. Enhancing the granularity of emission factors, especially on an hourly basis,

could substantially improve the predictive accuracy of the models. Addressing this gap in

the current study could lead to more precise strategies for air pollution control and provide

actionable insights for urban planning and public health policy.

2.3.3 Barriers To The Adoption of CTM Tools For TRAP Forecasting

ADMS-Roads and ADMS-Urban, integral components of the Atmospheric Dispersion mod-

elling System (ADMS) suite, developed by Cambridge Environmental Research Consultants

(CERC), represent advanced CTMs with their unique advantages and constraints. One

prominent limitation inherent in these models is the simplification of complex physical and

chemical processes (Liang et al. 2023). While these models offer precision in various scenar-

ios, they rely on simplifications that may not encompass the full complexity of real-world

atmospheric interactions (Cha et al. 2023). Consequently, these simplifications introduce a

degree of approximation into the model’s predictions. The reliance on assumptions and gen-

eralisations is another limitation (Suleiman et al. 2019). ADMS-Roads may assume uniform

emissions from vehicles, which may not always align with the diverse and dynamic nature of

real-world traffic conditions. These simplifications can impact the precision of the model’s

output, particularly in scenarios with varying traffic patterns. ADMS-Roads is designed for
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a specific spatial scope, primarily focusing on the air quality near roads and highways. This

means that its application is not well-suited for assessing air quality over larger areas, such

as regional or global scales (Lv et al. 2020). Consequently, the model’s utility is constrained

to the immediate vicinity of roadways. The accuracy of ADMS-Roads is highly contingent

on the quality and precision of input data. Errors or uncertainties in input data, including

emission inventories and meteorological information, can significantly affect the reliability of

the model’s predictions. Ensuring accurate and up-to-date input data is critical for obtaining

dependable results. The model may also lack a high level of vertical resolution, primarily

focusing on the horizontal dispersion of pollutants. This limitation can be particularly rele-

vant in areas with tall buildings or complex terrain where understanding vertical dispersion

is crucial (CERC 2020).

Modelling air quality in areas with complex terrain, such as hilly or mountainous regions,

can present challenges for ADMS-Roads. The model may not fully capture the intricate

effects of terrain on pollutant dispersion, potentially leading to less accurate results in such

areas (Horizon Nuclear Power 2018). Accurate calibration and validation of the model are

vital, and the lack of precise validation data can compromise its reliability. Users must

carefully validate the model with observed data to ensure the accuracy of its predictions.

ADMS-Roads may not account for rapid changes in traffic conditions, such as temporary

road closures, traffic congestion, or shifts in vehicle types. These variations in traffic patterns

can influence emissions and dispersion patterns, and the model’s inability to adapt quickly

to such changes is a limitation. When it comes to modelling non-exhaust emissions, such

as tire and brake wear, ADMS-Roads may face challenges. These emissions are not as well-

documented as exhaust emissions, and modelling them accurately can be complex due to

variations in wear rates and limited data availability (CERC 2020). In addition, real-time

data assimilation can be difficult to implement. It requires continuous access to accurate

real-time data, which may not always be readily available in all regions where the model is
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applied.

2.3.4 Deep Learning And TRAP Forecasting

Deep learning has emerged as a transformative approach in the field of TRAP forecasting,

providing significant advancements over traditional modelling techniques. The relevance of

deep learning in TRAP forecasting is underscored by its ability to handle complex, high-

dimensional data, capture non-linear relationships, and provide accurate, scalable solutions

for real-time air quality management. Air pollution dynamics are inherently non-linear,

driven by a multitude of interacting factors such as traffic volume, weather conditions, and

human activities. Traditional linear models may fail to capture these intricate relationships,

leading to less accurate predictions. Deep learning models, however, are designed to model

non-linear relationships through their complex network structures. Deep learning architec-

tures such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs)

can identify and learn from patterns in spatial and temporal data, respectively. This enables

deep learning models to capture the underlying processes driving air pollution, resulting in

more reliable forecasts. Accurate TRAP forecasts generated by deep learning models pro-

vide essential information for policymakers, urban planners, and public health officials. By

understanding the predicted patterns of air pollution, these stakeholders can make informed

decisions about traffic management, urban development, and public health interventions.

For example, forecasts can inform the implementation of traffic restrictions, the placement of

green spaces, or the timing of public health advisories. The ability of deep learning models

to provide detailed, location-specific predictions enhances their utility in supporting targeted

and effective decision-making.

2.3.5 Deep Learning Architectures

Recent theoretical results inspired by the brain and cognition show that to be able to learn

some high-level representation of complex functions involved in complicated forecasting tasks,
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one may have to implement deep architectures (Bengio 2009). This section describes some

of the common Deep Learning architectures relevant to TRAP forecasting.

2.3.5.1 Deep Neural Network (DNN)

A Deep Neural Network is typically a standard neural network with “depth”. The depth of a

neural network is determined by the number of hidden layers (second and third layers in Fig-

ure 2.1) between the input and output layers. Even though no threshold determines when a

neural network can be identified as “Deep”, most researchers have agreed that a CAP(Credit

Assignment Path) depth > 2 can be considered “Deep” while Schmidhuber (2015) consid-

ers CAP > 10 to be very deep learning. DNNs are trained to model complex non-linear

relationships by extracting uniquely abstract features that help improve its performance.

Each layer of its multi-layered composition is dedicated to a particular feature identification

(Carreira-Perpiñán & Hinton 2005).

Figure 2.1: Deep Neural Networks(DNNs) Architecture

2.3.5.2 Convolutional Neural Network (CNN)

CNNs are widely used for image processing applications (Krizhevsky et al. 2012). The ar-

chitecture came into limelight after the results of AlexNet( A deep learning network used

for image classification) at the ImageNet competition (Krizhevsky et al. 2012). Unlike con-
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ventional MLPs, CNN neurons are arranged in a way that matches the width, height and

depth of images. In addition to input layers, output layers and activation functions, CNNs

particularly have two additional layers, the convolution and pooling layers (depicted as the

second to fourth hidden layers in Figure 2.2). The convolution layer convolves the image by

using different convolutional filters and shifting the receptive fields gradually. It is common

practice to insert a pooling layer between successive convolutional layers. The pooling layer,

on the other hand, reduces the size of the output from the convolution layer by calculating

the mean, max, median or other statistical features of the image at different pixels.

Figure 2.2: Convolutional Neural Networks(CNNs) Architecture

2.3.5.3 Recurrent Neural Network (RNN)

RNNs are best suited for handling sequential data. They outshine other forms of deep

learning when processing time-dependent information (Mikolov et al. 2010). Parameters

across different time steps are shared based on sequential data properties. RNNs are mostly

applied in video and speech processing since they can keep information on a previously

processed audio chunk or video frame in order to make predictions of successive data. A

RNN’s output yt at any time t is dependent not only on input xt but also on xt−i at times t−i.

Like other deep learning architectures, RNNs can also be trained using the backpropagation

algorithm. More specifically, a backpropagation variant – Back Propagation Through Time

(BPTT), is the standard training algorithm for RNNs (Werbos 1988, Schmidhuber 2015). A

sample of RNN architecture is shown in Figure 2.3.
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Figure 2.3: Recurrent Neural Networks (RNNs) Architecture

2.3.5.4 Auto-Encoder (AE)

Auto-Encoders(AEs) are mainly used for data denoising and dimensionality reduction (Alain

& Bengio 2014, Wang et al. 2016). Unlike other MLPs, AEs extract features from the input

layer with the aim of replicating the same input data in the output layer. AEs involve an

encoding and decoding process which forces the network to ignore the noisy part of the input

and instead focus on encoding/representation of the more informative segments. The output

layer in AEs has the same dimension(number of nodes) as the input layer(illustrated in figure

2.4) aimed at replicating the input data rather than having to predict Y given X like in most

MLPs. The hidden layer plays a vital role by ensuring that the network actually learns the

features of the input data and not just output the same version of the input data.

Figure 2.4: Autoencoders (AEs) Architecture
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2.3.6 Existing Applications of Machine Learning Methods For TRAP Forecast-

ing

Catalano & Galatioto (2017)’s research proposed an innovative Machine Learning approach

to enhance urban air pollution forecasting. The study introduced the concept of a self-

adaptive model, capable of selecting the most suitable prediction model from a range of

alternatives, ultimately leading to more precise predictions, especially for extreme pollution

events. The research’s real-world application was tested in the Greater Manchester Area,

UK, focusing on nitrogen dioxide concentration prediction. The primary discovery was that

the self-adaptive approach outperformed standard statistical methods and artificial neural

networks by up to 27% and 113%, respectively, for extreme air pollution event predictions.

Meng et al. (2021) aimed to address the health concerns related to traffic pollution near

residential buildings. To achieve this, the research delved into the spatial distribution of

PM2.5 concentration emanating from road traffic emissions. A spatial distribution model for

estimating PM2.5 concentration (SDC) was developed using Machine Learning techniques.

Subsequently, the impact on residents’ life expectancy was evaluated using this model. In

another study, Wu et al. (2022) investigated the environmental impacts of elevated roads,

particularly their effects on air quality in Shanghai, offering novel insights. Notably, the study

employed a Long Short-Term Memory (LSTM) model to predict air quality, considering the

daily periodicity of pollutants.

The study of Lozhkin et al. (2016) introduced a pioneering differential neural network

model for estimating CO emissions’ dispersion near highways, providing practical applica-

tions. The approach optimised the model based on simulated and experimental measure-

ments, enabling the prediction of emergencies when parameters like wind speed, direction,

and fire conditions change. In similar research, Pandey et al. (2013) addressed submicron par-

ticle prediction in Hangzhou using Machine Learning. The standout feature of the research

was the comprehensive use of Machine Learning techniques to predict PM1.0 and ultrafine
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particle (UFP) levels, improving our understanding of their relationships with meteorologi-

cal and traffic variables. The study’s key discovery was that tree-based classification models,

such as Alternating Decision Trees and Random Forests, were highly effective in predicting

PM1.0 and UFP levels, suggesting their potential for air quality forecasting. It underlined

the importance of systematically collecting and analysing datasets using Machine Learning

in predicting submicron-sized ambient air pollutants. Wang et al. (2020) used two years

observation data from Shanghai’s roadside air quality monitoring stations to develop an air

quality forecasting model. The study uncovered distinct daily and weekly variations in fine

particulate matter (PM2.5) and carbon monoxide (CO) concentrations, closely linked with

traffic patterns. The study of Suleiman et al. (2016) focused on air quality modelling through

Machine Learning, specifically predicting particle mass concentration and particle number

counts. The research highlighted the effectiveness of Boosted Regression Trees (BRT) and

Artificial Neural Networks (ANN) for air quality prediction, providing valuable tools for air

quality management. The primary contribution was the emphasis on model interpretation,

with BRT offering an advantage in this aspect. It introduced an approach that balances

prediction accuracy and model interpretability, aiding in the decision-making process for air

quality management.

Fong et al. (2020) utilised Long Short-Term Memory (LSTM) Recurrent Neural Networks

for air pollution prediction in Macau. The distinctive element was the application of trans-

fer learning to enhance prediction accuracy, making the models more efficient. The LSTM

models proved highly accurate and demonstrated potential in improving air quality forecast-

ing. This research provided a valuable tool for urban planning, public health management,

and environmental quality monitoring, contributing to better air quality. In another study,

Hashad et al. (2021) study explored machine learning (ML) methods to predict particle con-

centrations downwind of various vegetation barrier designs. Data from 83 computational

fluid dynamics simulations were employed to train and test ML models. Notably, random
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forest (RF), neural networks (NN), and XGBoost (XGB) models excelled, achieving low

normalised root mean square errors and high R2 values, outperforming support vector ma-

chine (SVM) and linear regression (LR) models. The study emphasised the importance of

vegetation dimensions and particle size in predicting pollutant concentrations.

While the individual contributions of these studies are impressive, there remains an un-

derutilised potential in synthesising these varied approaches for a holistic prediction model.

In particular, integrating models like the LSTM used in Fong et al. (2020) for capturing tem-

poral patterns in pollution data, alongside spatial distribution techniques as applied in Meng

et al. (2021), could offer a more comprehensive understanding of urban air quality dynamics.

By adopting these advanced techniques, this study aims to not only predict but also actively

manage air quality through informed, data-driven decisions. Thus, the current research ini-

tiative is focused on integrating these innovative Machine Learning strategies to develop a

robust, adaptable air quality forecasting framework tailored to complex urban environments.

2.3.7 Barriers To The Adoption of Machine Learning Methods For TRAP Fore-

casting

The implementation of machine learning and deep learning techniques for predicting traffic-

related air pollution encounters multiple significant obstacles. A primary issue is the quality

and volume of the required data. Predictive models depend on large, high-quality datasets

that include variables such as air pollution levels, and traffic flow. Yet, the collection of such

detailed and precise data frequently faces challenges due to inadequate monitoring infrastruc-

ture and the limited availability of comprehensive historical data in various regions. Merging

data from varied sources like traffic sensors, air quality monitors, and meteorological stations

also introduces significant challenges (Zheng et al. 2013). Issues such as data formatting,

standardisation, and alignment must be tackled to facilitate accurate model development, a

process that can be notably time-intensive. Additionally, the computational requirements of
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deep learning models present a further obstacle. These models demand substantial comput-

ing power and typically require advanced hardware like GPUs for efficient operation. This

high resource dependency means that smaller organisations or areas with restricted compu-

tational resources might find it difficult to adopt and sustain the necessary infrastructure for

these advanced predictive models.

Model complexity and opacity are also significant hurdles. Deep learning models, often

described as “black boxes”, can be challenging to interpret, making it difficult to understand

their decision-making processes. This lack of transparency may hinder their adoption, par-

ticularly by regulatory bodies and policymakers who require clear, interpretable models for

decision support. Training deep learning models is a specialised skill, demanding expertise in

hyperparameter tuning, network architecture design, and addressing issues like overfitting.

Securing individuals with this expertise, such as data scientists or machine learning engineers,

can be challenging in some areas. Privacy and security concerns associated with sensitive

data, such as personal information from traffic cameras or air quality monitoring stations,

must also be addressed. Striking a balance between data privacy and security while enabling

its use for machine learning applications is a complex task (Wachter 2018). Regulatory

compliance is paramount, as implementing machine learning and deep learning models for

air pollution prediction may require adherence to environmental regulations and standards.

Ensuring that these models comply with the relevant rules can be a substantial barrier, es-

pecially in regions with strict environmental regulations. Resource constraints, particularly

in terms of funding and skilled personnel, can hinder the development, implementation, and

maintenance of machine learning models. Smaller municipalities or regions may struggle to

overcome these limitations. Scalability is another pressing concern as regions grow and ur-

banise. Ensuring that machine learning models can adapt to changing traffic patterns, urban

expansion, and evolving pollution sources is crucial for their long-term adoption. Ensuring

the accuracy and reliability of predictions is also paramount. While machine learning models

70



have the potential to improve prediction accuracy, they are not infallible. Ongoing calibra-

tion and validation are necessary to ensure that predictions meet the necessary standards for

decision-making.

2.4 Chapter Summary

The chapter extensively explores the role of digital technologies in managing traffic-related air

pollution, emphasising IoT, Big Data, and Machine Learning as crucial components. These

technologies have been instrumental in enhancing the monitoring and forecasting of traffic

pollution through various applications and innovations highlighted throughout the studies.

Key findings include the transformative potential of IoT in creating interconnected networks

of sensors that provide real-time, detailed environmental data, thus enabling precise pollution

monitoring and management strategies. However, significant barriers such as the integration

of diverse data sources and ensuring the quality and granularity of data have been identified.

These challenges underscore the gaps in current practices, particularly in data standardisation

and the application of machine learning to interpret complex environmental datasets. The

hurdles related to data privacy, security, and the computational demands of processing large

datasets also present limitations that could impede the adoption of these technologies on a

wider scale.

Moving forward in this study, the plan is to leverage the insights gained from these

technologies to develop a more integrated approach to traffic pollution management. This

will involve enhancing data collection methods to improve the quality and accuracy of the

data used for pollution forecasting. In addition, advancing the application of machine learning

algorithms will be crucial to effectively analyse and interpret the integrated data, thereby

improving the accuracy of pollution forecasts. These steps will aim to bridge the identified

knowledge gaps, particularly in data integration and machine learning application, to foster

a more effective and comprehensive traffic pollution management system.
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Chapter 3

Research Methodology

3.1 Chapter Overview

This chapter embarks on an exploration of the research theory, design principles, and phi-

losophy that form the foundation of this study. It commences with a general overview of

these fundamental concepts before delving into the rationale and motivations guiding their

selection within the specific context of this study.

3.2 Research Theory and Design Principles

3.2.1 Research Theory

Research involves gathering knowledge and collecting facts about unknown occurrences around

us. Understanding what knowledge is and adopting a philosophical perspective on these oc-

currences is essential before embarking on a research project. Everyone has a conscious or

unconscious philosophical perception of their daily life, although some argue against having

theoretical standpoints, believing that new theories often override old ones, causing confu-

sion. However, this view is flawed, as philosophical stances enhance research arguments and

make them explicit. Philosophical viewpoints help recognize fundamental assumptions in

research, allowing for accurate analysis of methods and the authenticity of findings.
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Empiricists and rationalists represent two foundational philosophical perspectives that in-

fluence research methodologies and knowledge interpretation. Empiricists argue that knowl-

edge is derived from sensory experience, emphasizing evidence and observation. This ap-

proach is central to scientific methods, which rely on quantitative measurements and system-

atic observation. Rationalists, in contrast, believe that reason and intellect are the primary

sources of knowledge, independent of sensory experience. They argue for innate ideas embed-

ded in the human mind at birth and emphasize logical reasoning as the basis of all knowledge.

These perspectives highlight the relationship between research and theory, which is further

discussed in subsequent sections.

3.2.1.1 Inductive Research Method

The word “theory” has several meanings and is often used in diverse ways. The widely

accepted definition, however, depicts it as a way of explaining observations. Researchers often

find it challenging to relate the abstractness of a theory to the actual world. It is crucial to

understand that scientific theory development is unachievable if observed information cannot

be explained (Chibucos et al. 2005). As suggested by Boss et al. (1993), independent empirical

information must be used to test conceptual ideas. Inductive research starts with observations

that are fed into a series of theories within a domain to determine which theory supports

the findings. Induction involves drawing conclusions from observations. After theoretical

deliberation on collected data, a researcher may collect more data to further investigate

whether a theory holds. This strategy of additional data collection to confirm a theory is

known as iterative and is supported by the grounded theory (Glaser & Strauss 1967).

3.2.1.2 Deductive Research Method

Deductive research method, also known as the “top-down” approach is often based on a

theoretical foundation from which several alternative hypotheses can be drawn (Johnson-

Laird 1999). It is one of the shared perspectives on the interrelation between research and
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theory. A research hypothesis is deduced and scrutinised based on known ideology about a

particular field of interest (Eysenck & Keane 2015). Research starts with general assumptions

which have to be proven through logical arguments (Walliman 2017). An example of such

supposition is “Every living thing must grow”. So if an animal or plant is considered to be a

living thing, it must grow at some point. The conclusion drawn is as a result of the theory

about living things as well as several observations on the growth of living things. This is a

typical example of a deductive argument. Although theories can be truthfully proven through

observations, they can also be refuted through observations which do not conform with the

hypothesis.

3.2.1.3 Abductive Research Method

Abductive research, sometimes known as reduction (Rotaru et al. 2014) is another approach

that investigates the kind of inferences or best explanation that can be drawn after a set of

observations (Sober 2001). In his first introduction of the idea o fabduction, Peirce (1931)

presented abduction as a reasoning process which yields explanations with respect to the

effect and cause of a phenomenon. Abduction is seen as closely related to induction with the

latter considered as a hypothetical argument resulting from the former (Fann 2012).

3.2.2 Research Design

A research work can be aimed at Grouping – categorising similar entities together, Exam-

ining – describing possible outcomes from observed situations, Explaining – making sense

of findings from descriptive research, Evaluating – providing comparative judgements on the

quality of happenings or objects, Correlating – investigating relationships between different

phenomena or entities , Comparing – investigating contrasting differences between different

or Predicting – suggesting possible future occurrences based on already known correlation

between past events (Walliman 2017). These are often regarded as research objectives, and

particular research can either have one or multiple objectives. Some of these objectives are
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reliant on the successful completion of one another; for example, one should have properly

evaluated an event before making predictions. Research design can be viewed as a frame-

work that guides the creation of evidence that best suites set criteria and methods by a

researcher (Kerlinger 1986). Several research designs are applicable based on the objectives

of the research of interest.

3.2.2.1 Experimental Research Design

Experimental research design investigates the implications of manipulating the conditions of

an event. For real experiments to be conducted, variations need to be made to an independent

variable while its effects are observed on a dependent variable. This variation is known as

the manipulation phase of an experiment. However, in most social experiments, non-numeric

experimental variables are quite difficult to manipulate. For example, gender cannot be

manipulated by replacing male with a female; neither can people be allocated to different

social groups than the one they usually belong. A high level of social engineering is required

to effect this kind of manipulation. Every experiment needs to fulfil an internal validity

constraint which requires that an experimental result provides evidence to support the causal

relationship between variables. There should be enough proof that a variable x actually causes

the changes in a dependent variable y. An experiment which matches specific attributes of

experimental design but does not meet all the internal validity prerequisites is known as a

quasi-experiment design. The experimental design is considered to be a standard for judging

quantitative research.

3.2.2.2 Comparative Research Design

Comparative design examines contrasting differences between two or more observations.

Walliman (2017) highlights that this design type compares present and past happenings,

especially when a researcher has little or no control over occurrences. Comparative de-

sign thrives in studies involving concept-building, theory-building and recognition of causal
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processes (Bloemraad 2013). Schenker & Rumrill Jr (2004) in their study, specify that

causal-comparative design mostly encompasses the use of already existing groups to identify

differences within the group based on dependent variables. The research further points out

that these dependent variables are usually not manipulable in ethical or practicable scenarios.

3.2.2.3 Case-study Research Design

Case study research design involves conducting a detailed and comprehensive investigation

of a single entity or a small group of closely related entities. It is particularly useful when

researchers seek to explore and understand complex real-world situations in depth. One of

the defining characteristics of case studies is the focus on in-depth investigation. This means

that it allow researchers to delve deeply into the specifics and intricacies of a particular case,

which can be especially valuable when dealing with complex or unique phenomena. Another

key feature of case study research is its emphasis on contextual understanding. Researchers

not only examine the case itself but also consider the broader context in which it operates.

This may include historical factors, cultural influences, and environmental elements that can

provide a more comprehensive perspective.

3.2.2.4 Cross-sectional Research Design

Cross-sectional Design, also commonly known as survey design, is usually applied to research

carried out to predict the outcome of interest for a particular population, mainly in issues

relating to public health planning (Levin 2006). Cross-sectional research is characterised

with attributes such as having multiple cases, quantitative method of data collection, non-

manipulable variables and focuses on a single point in time.

3.3 Research Philosophy

At every step of research, assumptions are always made; either consciously or unconsciously

(Burrell & Morgan 1979). These assumptions about the nature of reality or the development
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of knowledge are known as research philosophies (Pietrobon & Dai 2012). The way research

questions are formed, the methodology used to address these questions and the interpretation

of discoveries are influenced by philosophical assumptions (Crotty 1998). In this section,

epistemological, ontological and axiological types of research philosophies are discussed.

3.3.1 Epistemology

Coined from greek words episteme and epistania, meaning knowledge and to understand

or know respectively, epistemology is the study of what counts as knowledge in the world

(Cooksey & McDonald 2011). Epistemology focuses on the very foundation of knowledge

– that is, its form, nature, mode of acquisition and how it can be transferred to others

(Burrell & Morgan 1979). Or as posited by Schwandt (1997), epistemology is the study and

justification of the nature of knowledge. A researcher can look to answer questions like What

counts as knowledge?, What relationship exists between me, as a researcher and acquired

knowledge?, Can knowledge be personally experienced or needs to be acquired from one point

of view? What relationship exists between the knower and the unknown?. Answers to these

sort of questions help researchers discover what is new with respect to what is already known

(Kivunja & Kuyini 2017). It is essential to have an in-depth understanding of available

epistemological assumptions in order to examine the weakness and cogency of subsequent

research findings. Gray (2013) has identified three epistemological positions on knowledge

gathering; namely Objectivism, Subjectivism and Constructivism

3.3.1.1 Objectivism

Objectivists believe that scientific methods require observable facts which are only accessi-

ble through unconcealed behaviours(Diesing 1966). From their point of view, objectivists

maintain that social and physical phenomena exist independently and therefore seek to un-

derstand the social world through quantifiable and observable facts that lead to theories

about social reality Thornhill et al. (2009). Objective researchers try as much as possible to
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detach themselves from their beliefs throughout the research process by not involving their

own sentiments and values. Nevertheless, Bunge (1993) highlight that objectivism is not en-

tirely against subjectivism and sometimes involves studying people’s subjective attitudes and

values through objective lenses. Positivism is a research paradigm linked with objectivism

(Gray 2013).

3.3.1.2 Constructivism

Constructivists argue that truth and meaning are not discovered but constructed based on

the participant’s association with the external world (Crotty 1998). Each participant for-

mulates their own meaning to the same phenomenon based on personal experience (Hendry

et al. 1999). As a result, this leads to a series of opposing but valid interpretations of the

subject matter. According to Raskin (2002) constructivism is divided into three main cat-

egories: social, radical and psychological constructivism, with all three assuming the same

epistemological stance that knowledge is not discovered but constructed by the human mind.

Interpretivism is a research paradigm linked with constructivism (Gray 2013).

3.3.1.3 Subjectivism

Unlike constructivists, subjectivists believe that interpretations are not a result of the sub-

ject’s interaction with the outside world but rather a result of the meaning obtruded on the

object by the subject (Crotty 1998). While an objectivist researcher attempts to uncover

facts and general laws regarding social happening, a subjectivist researcher is more concerned

about discovering knowledge that can help constitute diverse social realities for different sub-

jects (Thornhill et al. 2009). As opined by Rand (1990), subjectivists argue that conceptions

do not match referents in the world and are just definitions.
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3.3.2 Ontology

Ontology is the philosophical study of what constitutes reality (Scotland 2012). It focuses

on the assumptions made to confirm the existence or nature of a social phenomenon being

investigated. As opined by Scott & Usher (2010), ontology provides an interpretation of

entities that constitutes the world, making it essential to a research paradigm. Researchers

need to take a stance with regards their awareness of the reality of things and how they

work (Scotland 2012). According to Rowland (1995), certain ontological assumptions lead

to certain epistemological beliefs and vice versa. As argued by Bunge (1993), realism is an

ontological assumption of the world as an independent entity which exists irrespective of our

volition or formation of ideas about it, and that it can be known. Thornhill et al. (2009)

identified two variants of realism: critical realism and direct realism. While critical realists

assert that whatever we experience are not actual representations of the world and we may be

deceived by our senses, direct realist argue that what we experience is the reality. Relativism,

another ontological supposition, on the other hand, believes that reality is subjective and

is effectuated by our senses (Guba et al. 1994). Idealism argues that reality is mentally

constructed or immaterial. Idealists believe that the foundation of reality lies in the mind’s

perceptions and ideas. For idealists, our consciousness or subjective experiences don’t just

interpret a pre-existing world; they actually constitute it. Essentially, the very existence

or essence of objects in the world depends on being perceived or conceptualised (Guyer &

Horstmann 2015).

3.3.3 Axiology

Axiology addresses ethical issues that should be considered the process of research. Accord-

ing to Finnis (1980), axiology takes into consideration the philosophical approach to right

decision making which is of value. Heron (1996) argues that human values guide all his ac-

tions. Furthermore, he explains that researchers with axiological skills are able to effectively

attribute their values to research judgements and how research is being carried out. Axiology
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tackles questions such as How can participants’ rights be protected?, How can psychological,

physical or legal risks be prevented or minimised?, What moral concerns should be considered?

(NHMRC et al. 2007). Guevara-López et al. (2015) highlights that the axiological foundation

is based on values such as beneficence, compassion, autonomy, non-maleficence and justice.

3.4 Research Paradigms

The word paradigm is derived from the Greek/Latin word ’paradigma’ meaning a model or

pattern and has been used in educational research to mean a researcher’s perspective of in-

terpreting research data (Mackenzie & Knipe 2006). Guba et al. (1994) further describes the

word to mean a set of guides or perspectives to govern research investigations. A research

paradigm indicates a researcher’s philosophical inclination and describes the study interest,

process of study and presentation of research results. As highlighted by Lincoln & Guba

(1985), every research paradigm has four critical components: methodology, epistemology,

ontology and axiology, which constitutes the values and beliefs each paradigm presents. In

this section, three research paradigms, namely positivist, interpretivist and pragmatism, will

be briefly introduced with the aim of justifying the paradigm choice. Adequate compar-

isons will be made between the three paradigms and the stance for each paradigm on the

aforementioned critical components will be highlighted.

3.4.1 Positivism

This form of research paradigm was first proposed by Auguste Comte when he sought to

apply the scientific method of investigation to a study involving the natural and social world

(Cohen et al. 2002). Comte (1856) posited that experimentation and observation should be

the standard for better comprehension of human behaviour. Research established on this

paradigm draws conclusions through theory formulation and testing as well as the derivation

of mathematical equations. A Positivist’s methodology seeks to identify causal relation-

ships in research outcomes and is considered value-neutral (Creswell 2009). However, this
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value-neutral ideology has been argued to be false as positivists tend to make value-laden

conclusions in their choice of variables, observed actions and final interpretations (Salomon

1991). Considering the four critical elements of a research paradigm, the Epistemological

position for positivism is objectivism, its ontological position is realism, its methodology is

experimental (Kivunja & Kuyini 2017) and finally, its axiology is beneficence – meaning con-

ducted research should be aimed at optimising research outcomes for participants and the

general public (Mertens 2014)

3.4.2 Interpretivism

Interpretivism, unlike positivism, is centralised around gaining insights into the subjective

perspective of humans (Guba & Lincoln 1989). A major effort is placed in understanding the

point of view of the individual being observed instead of that of the researcher. Therefore, the

key principle of this paradigm is that reality is formulated based on social interactions (Bog-

dan & Biklen 1998). Research-based on this paradigm involves data gathering in an approach

congruent with the grounded theory (Straus & Corbin 1990). The subjectivist epistemologi-

cal position of interpretivism indicates that the researcher’s understanding of accrued data is

subjective and is based on interactions with observed subjects (Grix 2004). Interpretivism’s

relativist ontological position suggests that the researcher considers the investigated scenario

to be composed of several realities and that these realities can be better understood through

interactions with research participants (Chalmers et al. 2009). A naturalist methodology and

balanced axiology is assumed for an interpretivism paradigm.

3.4.3 Pragmatism

Philosophers who did not agree with either the positivist idea of accessing the truth about

the actual world through scientific methods or the determination of social reality as proposed

by interpretivism postulated the pragmatic paradigm (Peirce 1997). Teddlie & Tashakkori

(2003), Biesta (2010) contend that a perspective that would allow research methods that are
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most appropriate for investigating a phenomenon of interest should be considered as against

the mono-directional approach of interpretivists and positivists. Hence, a more practical ap-

proach that uses a pragmatic approach to combine multiple methods and help comprehend

the behaviour and beliefs of participants was postulated. The pragmatic approach follows a

relational epistemology which allows the researcher to decide what relationships are suitable

for his study as he deems fit (Bird-David 1999). Also, its non-singular or relative ontology

means that a single reality does not exist and every participant can have his own understand-

ing of reality (McCaslin 2008). A mixed-methods methodology is adopted by pragmatists,

and it allows for a combination of quantitative and qualitative methods of data collection

(Morgan 2014). Lastly, the pragmatic axiology is value-laden and allows the researcher to

adopt an objective or subjective point of view (Thornhill et al. 2009)

3.5 Data Collection Methods

It is common for studies to categorise the terms quantitative and qualitative as data collec-

tion methods or research methods due to the misconception of researchers being informally

referenced sometimes as qualitative or quantitative researchers (Mackenzie & Knipe 2006).

However, as suggested by O’leary (2004), cited in the study of Mackenzie & Knipe (2006),

one way of defining these terms is to associate each term as adjectives to different kinds of

data and modes of analysis. For example, qualitative data should be associated with data

representing words and pictures with thematic analysis and quantitative data should be as-

sociated with numeric data with a statistical form of data analysis. This definition describes

both terms as modes of data collection as well as for analytic and reporting methods. Quan-

titative research derives conclusions through objective realisations from collected data while

qualitative research involves subjective analysis of collected data (Creswel 2009).
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3.5.1 Qualitative Research

Majority of the data for qualitative research are as a result of fieldwork (Patton 2005).

As Barnes (1992) elucidates, there are three reasons why researchers opt for qualitative

research rather than quantitative. Firstly, these researchers admit that they are unable to

set aside their knowledge about the social world with the goal of being objective. Secondly,

they presume that statistical and experimental methods are not sufficient in explaining and

studying our everyday life. Thirdly, they claim the views of objective researchers are not

analytically valid because researchers are occupied with the different perceptions of the world.

Qualitative research focuses more on beliefs, motives and interpretations which relates more

occurrences or happenings, which cannot be implemented through variables (Maxwell 2012).

This research type deals with unquantifiable data. (Winter 2000).Leedy & Ormrod (2005)

cited in the study of Williams (2007) has identified five methods of qualitative research

namely: Content analysis, case studies, ethnography, phenomenology and grounded theory.

All of these methods are applicable in different qualitative research cases (Creswel 2009).

3.5.2 Quantitative Research

Yanow & Schwartz-Shea (2015) in their study emphasised that quantitative data instigates

the derivation of quantifiable information through statistical analysis with the aim of sup-

porting or disproving “knowledge claims”. In its raw form, quantitative data convey little or

no meaning to a researcher until analytic techniques are used to provide more information.

Newman et al. (1998) highlights that quantitative research approach is used when reality is

being observed and interpreted with intentions of developing a theory. According to Leedy

& Ormrod (2005), quantitative research uses specific experimentation methods to improve

existing theories. Quantitative researchers are inclined towards using mathematical models

for the analysis of data collected using a predetermined apparatus. The conclusions drawn

from quantitative research can either be justifying, descriptive or predictive (Williams 2007).

83



Figure 3.1: Philosophical Perspective For This Study

3.6 Research Choices for This Study

Figure 3.1 outlines the research choices for this study, with detailed justifications for each

choice provided in the following subsections.

3.6.1 Deductive Research Method

This research does not propose a new theory; instead, it clearly utilises a deductive research

method, evident from several hallmark characteristics of this approach. The study begins

with established theories about traffic pollution, which guide the formulation of specific hy-

potheses. These theories recognise that traffic pollution is mainly caused by vehicle emissions,
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including exhaust, brake, and tire wear, and that meteorological conditions and other high-

way parameters such as traffic flow significantly influence the concentration and dispersion of

pollutants. Based on these theories, hypotheses are developed that predict the relationships

between these highway parameters and pollutant levels, and how these relationships can be

monitored and forecasted using modern technology.

A key feature of deductive research is testing these hypotheses through empirical data

collection and analysis (Casula et al. 2021). In this context, the deployment of IoT sensors to

gather real-time data on traffic and pollution levels serves as a practical application of empir-

ical methods to test theoretical predictions. The study employs quantitative data analysis,

utilising Big Data analytics to process extensive datasets and identify patterns or relation-

ships as dictated by the initial hypotheses. This analytical approach facilitates statistical

testing to either confirm these theories or suggest modifications. Furthermore, the research

adheres to a structured and objective methodology typical of deductive approaches, ensuring

that the results are reliable and replicable. This methodological rigour is in line with the

scientific realism ontology, which underscores that objective and systematic scientific meth-

ods are essential for effectively measuring and analysing real-world phenomena (Mukumbang

2023). This structured approach not only strengthens the validity of the research findings

but also enhances their applicability in practical settings, particularly in the development of

traffic pollution management strategies.

3.6.2 Experimental and Case Study Research Design

The choice of research design is typically driven by the research objectives and the specific

challenges they present. In the context of this study, a mix of the experimental and sim-

ulation research design has been identified as the suitable choice of research design. After

careful consideration of available research design options, this choice of design approach is

considered fitting for the experimental nature of this research. Poor air quality mitigation
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studies are commonly based on experimental research since it is usually impossible to ma-

nipulate the variables of interest. The dependent variable y in this study is the highway

air quality forecasts and the matrix of independent variables X are pollutant concentration

for gases as well as meteorological data on temperature, humidity, pressure, amongst others.

Similarly, the case study research design is essential as it allows the thorough exploration

and understanding of specific and closely related cases identified in this study. This depth of

analysis is often not possible with other research methods. Cross-sectional research design

is unsuitable because it will fail to account for the varying pollutant concentration levels

over time. Similarly, other research design approaches, such as comparative and descriptive

methods, do not directly align with the objectives of our research.

3.6.3 Epistemological Stance

In the context of this study, the epistemological stance can be identified as objectivism. This

stance reflects a belief in the possibility of obtaining objective knowledge about the world

through empirical observation and scientific methodology. Objectivism in epistemology holds

that reality exists independently of human thoughts and beliefs, and that it is possible to

understand this reality through observation, measurement, and logical analysis. The objec-

tivist stance in this research supports the use of quantitative methods for data analysis. This

is consistent with the belief that numbers and statistical outcomes represent objective truths

about the world. Through these methods, the study aims to produce reliable, reproducible,

and universal knowledge about how traffic-related pollutants behave and can be controlled.

This knowledge is expected to be valid across different contexts and settings, adhering to the

objectivist view that scientific knowledge is universally applicable.

Furthermore, the objectivist epistemology aligns with the study’s goal of developing pre-

dictive models. These models are based on the premise that the patterns and relationships

identified through data analysis can be used to make accurate predictions about future con-
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ditions. In essence, objectivism here supports the development of tools that can objectively

forecast pollution levels based on empirical data, reinforcing the view that through rigorous

scientific methods, we can gain a true understanding of natural phenomena and use this

knowledge to make informed decisions and interventions.

3.6.4 Ontological Stance

The ontological position for this study is that of a critical realist. This approach assumes

that pollutants such as nitrogen oxides and particulate matter exist independently of human

perceptions and that their properties and effects are objective realities that can be empiri-

cally measured and analysed. Critical realism supports the idea that these pollutants and

their interactions with environmental factors, such as meteorological conditions and traffic

volumes, are discoverable through scientific methods. In adopting critical realism, the study

inherently trusts that empirical data collection, whether through IoT sensors or other mon-

itoring technologies, accurately captures real-world phenomena. It also presupposes that

the causal relationships identified through data analysis—such as the impact of traffic flow

on pollutant levels—are real and consistent, regardless of human observation. This stance

justifies the use of advanced computational models and statistical techniques to forecast fu-

ture pollutant levels based on observed data, under the belief that these models can reliably

simulate real-world conditions.

Moreover, a realist ontology in this context underlines the development of predictive

models and supports their application in crafting effective traffic management and pollution

control strategies. It implies that interventions based on model forecasts can lead to tangible

improvements in air quality. Therefore, the study’s alignment with scientific realism not

only enhances its methodological rigour but also reinforces its relevance and applicability to

policy-making and practical environmental management
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3.6.5 Positivist Research Paradigm

The research paradigm guiding this study is grounded in positivism. This paradigm be-

lieves that the world can be objectively observed and measured. In this study, this manifests

through the deployment of IoT sensors to collect quantifiable data on air pollutants — data

that are seen as objective truths about the state of the environment. These sensors mea-

sure specific, observable phenomena, adhering to the positivist principle that reality exists

independently and can be empirically verified. The study’s approach also strongly empha-

sises hypothesis testing. It begins with theoretical assumptions based on existing knowledge

about air pollution, which are then tested through empirical data collected via sensors. This

data is processed and analysed using Big Data analytics, allowing the research to confirm

or refute the initial hypotheses based on statistical evidence. This methodological rigour is

characteristic of the positivist approach, which values systematic, scientific inquiry to achieve

certainty and predict future conditions.

Moreover, the positivist paradigm in this research is aimed at establishing causal relation-

ships and generalising findings beyond the specific conditions under study. By identifying

how variables such as traffic volume and weather conditions affect pollutant levels, the study

seeks to apply these findings to similar urban environments, thereby broadening the appli-

cability of the results. The ability to generalise findings and the emphasis on replicability

across different contexts highlight the study’s commitment to providing actionable insights

that are not only scientifically valid but also practically applicable in real-world settings.

This structured and objective approach underscores the study’s alignment with the positivist

paradigm, which prioritises observable, measurable outcomes over subjective interpretations.

Such a framework is particularly effective in environmental studies where precise data and

clear causal links are crucial for developing effective policy and management strategies to

mitigate pollution.
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3.6.6 Quantitative Data Collection Method

According to Hulin et al. (2012), exposure evaluation based on quantitative-measurement

is more practical in estimating the health effects of human exposure to pollutants. It is

also useful for executing preventive policies to help mitigate the hazards involved. Also,

Piedrahita et al. (2014) elucidates the importance of quantitative measurements of pollutants

to apply procedures to ensure no intrusion from other pollutants. This requirement can only

be met through quantitative research. Although this study involves a lot of fieldwork data

collection; most of the data collected are quantitative, and studies have shown that fieldwork

data can be largely quantitative (Brannen 2005). Also, real-time measurements of pollutants

are quantitative and qualitative data gathered through surveys and questionnaires cannot

serve the purpose of this study. For example, human participants are not able to give precise

details on their daily car emissions on the highway. This sort of analysis is seemingly tricky

to be carried out qualitatively due to the abstractness of air pollutants.

3.7 Sampling Method

Case study research strategy has been continuously criticised as being one of the social re-

search methods that lack rigour and objectivity when compared to other methods (Rowley

2002). Nevertheless, studies have been conducted in fields such as nursing, sociology, tech-

nology and education that have all adopted the case study method of evaluation (Zucker

2001, Grassel & Schirmer 2006, Sadik et al. 2006, Hamilton & Corbett-Whittier 2012). Case

study utilises quantitative and qualitative data obtained through the observation and in-

vestigation of different cases to demonstrate the outcome of a phenomenon (Gerring 2006).

According to Yin (1984), the case study research method is defined as an empirical approach

of inquiry aimed at investigating an event within a bounded context while employing sev-

eral sources of evidence. Furthermore, Yin highlights that case study can be categorised

into three, namely: exploratory, explanatory and descriptive. While exploratory case study
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attempts to explore hidden phenomenon within data, descriptive case study describes this

phenomenon and explanatory case studies provides a more in-depth explanation for the phe-

nomenon. Also, McDonough & McDonough (2014) in their study provided two additional

categories of case study research. The interpretive case study interprets data by supporting

or criticising predefined assumptions while evaluative case study provides conclusions on the

phenomenon within the data. Tellis (1997) identified two case study designs which are the

single and multiple case study designs.

In this study, the evaluative type of case study is adopted as it enables the testing and

evaluation of the proposed intervention in a real-life scenario. A multiple case study rather

than a single case study design is employed since it involves studying several cases, often with

variations in context, characteristics, or conditions. This approach permits the identification

of commonalities and differences across cases, leading to more robust and generalised findings

that can be applied to a wider range of contexts. The findings from multiple case studies are

typically more applicable to real-world situations due to the diversity of cases studied. This

enhances the external validity of the research, making the results more relevant and mean-

ingful to a broader audience. By analysing multiple cases, the study can identify patterns,

trends, and variations that might not be apparent in a single case study.

The choice of highways for this study rather than local roads is based on two reasons -

1) Highways typically experience much higher traffic volumes compared to local roads. This

increased traffic will provide this study with a larger and more diverse sample of vehicles,

drivers, and behaviors to observe and analyse. This diversity can enhance the representa-

tiveness of the data collected, leading to findings that are more applicable to a wider range

of driving populations. 2) Highways often involve longer travel distances compared to local

roads. This extended duration of travel will provide the study with continuous data streams

that cover various driving conditions, such as merging, lane changes, and steady-state cruis-
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ing. Continuous data collection allows for a more comprehensive understanding of pollution

patterns and will lead to more nuanced insights and accurate analysis of these patterns and

trends. However, It is crucial to acknowledge that selecting highways as case study subjects

for this research entails specific challenges, including addressing safety concerns, securing

the required permissions for data collection, and managing the complexities of high-speed

environments. Consequently, to ensure an effective approach, a set of criteria was initially

established based on factors like accessibility to the selected highways and ethical considera-

tions. Among the numerous highways in the UK, four key highways were identified that best

aligned with the predetermined criteria, aligning seamlessly with the study’s objectives. Fol-

lowing a careful analysis of existing systems through literature review, the following criteria

were used to select suitable highways for this study are the identified criteria for a suitable

case study for this research:

• Traffic variation: An optimal case study scenario necessitates consistent traffic flow

throughout both peak and off-peak hours, facilitating significant fluctuations in pollu-

tion levels. To illustrate, an exemplary road would experience substantial congestion

during rush hours and notably lighter traffic during other periods.

• Power source: The chosen trial site must offer viable resources for powering the IoT

device, either through solar energy or electrical means.

• Device Installation and Cellular data connectivity: IoT sensors should be mounted

on lamp posts at a height of 1.5 to 2 meters above the ground, strategically positioned

on both sides of the highway and, if possible, near the center to monitor emissions

from all traffic lanes. The selected trial location should have numerous lamp posts to

ensure extensive coverage and be characterised by reliable cellular coverage for seamless

connectivity to the cloud infrastructure.

• Highway Length: The strategic placement of sensors mandates a reasonable spacing

between them. Consequently, the length of the road should permit the deployment of
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numerous sensors at suitable intervals.

• Success Metric For Deployment: The deployment of sensors for the study depends

on the resources available for the project. Nevertheless, it is necessary to install multiple

sensors along the case-study highways to collect pollution data effectively. The data

collection phase is expected to span 8-12 months, and this duration will be clearly

specified in the requests for site access.

Based on the above criteria, necessary site access was sought from Costain Plc, a UK high-

way contractor and collaborator providing case studies for this research. A non-probability

sampling method, driven primarily by site availability and ease of access, was employed to

select the final case-study highways. When collecting data from the entire population is im-

practical, sampling becomes essential. Non-probability sampling was chosen because it allows

for case study selection based on the researcher’s subjective decisions, necessary when factors

like accessibility and collaborative agreements influence site selection. This approach is well-

documented in research methodology literature, such as in Thornhill et al. (2009), which

discusses the implications and utility of non-probabilistic case study selection in practical

research scenarios.

Unlike probability sampling, determining the sample size in non-probability sampling can

be ambiguous and often relies on the research aims and objectives. Various non-probability

sampling techniques, such as quota sampling, purposive sampling, snowball sampling, self-

selection sampling, and convenience sampling, exist (See Figure 3.2). After careful consid-

eration, convenience sampling was deemed most appropriate for this study. This conclusion

was based on the location choice being driven by the collaborator’s availability, providing

easily obtainable and accessible highways considering bureaucratic procedures. This method

of selection is a feature of convenience sampling (Etikan et al. 2016).
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Figure 3.2: Sampling Techniques, Source: (Thornhill et al. 2009)

3.8 Chapter Summary

This chapter provides a detailed insight into the research methodology adopted in this study.

The research methodology incorporates both experimental and case study research designs,

catering to the study’s experimental nature. The positivist research paradigm ensures an

objective and unbiased analysis of data, while quantitative data collection is chosen for its

precision in air quality monitoring. The case study research design, particularly the evaluative

and multiple case study types, offers a comprehensive assessment of IoT-based air quality

monitoring systems. Convenience sampling facilitates the selection of suitable highways for

case studies, aligned with the availability of highway locations offered by the collaborator on

this study, Costain Plc. This systematic methodology aims to investigate the effectiveness

of IoT sensors in monitoring and forecasting highway air quality, with a focus on emissions

and pollution, ensuring the collection of reliable and applicable results. The selection of

highways for the case studies adheres to predefined criteria, further enhancing the diversity

and viability of the chosen sites. Site access requirements have been duly requested to support

the study’s robust data collection and analysis.
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Chapter 4

A Scalable Framework for TRAP

Monitoring and Forecasting

4.1 Chapter Overview

In this chapter, a cost-effective framework designed for monitoring and forecasting pollutant

levels along UK highways is presented. This framework serves as a pivotal step in achiev-

ing the first research objective and lays the foundation for the fourth objective through the

deployment of the REVIS system. This comprehensive framework encompasses hardware,

data storage solutions, and predictive tools, all of which are applied in practical scenarios in-

volving selected highways as case studies. Additionally, the chapter explores the framework’s

scalability and its capacity for real-time monitoring in scenarios involving more sensors and

highways than those considered in this study. Figure 4.1 shows an illustration of the workflow

for the entire process of framework design and validation
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Figure 4.1: Pipeline diagram for framework design and validation

4.2 Framework Design Methodology

Layering is an established application design strategy that simplifies the management of

complex software systems by dividing them into distinct, manageable modules. This modu-

lar approach not only facilitates easier development and maintenance but also enhances the

scalability and flexibility of system design. In the proposed framework, layering is strate-

gically used to organise critical components that ensure the system’s functionality. These

components are distributed across various layers, including libraries that provide specific

functionalities, programming languages that dictate the implementation of these functionali-

ties, and services that are crucial for performing monitoring and forecasting of environmental

data. By organising the framework in this way, each layer can be developed and refined in-

dependently while maintaining a cohesive overall system architecture, essential for effectively

managing the complex processes involved in traffic pollution monitoring.

The design of the framework was significantly influenced by a comprehensive market anal-

ysis of “grey literature” and an in-depth review of academic publications. This research was
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instrumental in selecting several sensor components and programming languages that were

integrated into the framework following literature recommendations. Searches conducted

through Google Scholar and scientific databases such as Scopus and ScienceDirect were cru-

cial in identifying relevant academic publications, while Google’s search engine uncovered

additional sensor development approaches. This process ensured a robust selection of the

latest and most effective technologies.

Further investigation into relevant integration libraries and big data frameworks provided

insights into addressing the challenges of data integration and storage within the framework.

A variety of enterprise frameworks were evaluated, with selections made to facilitate the

integration of data from both existing legacy systems and new constructions. Additionally,

a range of algorithms known for their effectiveness in air quality forecasting was reviewed,

with both academic and industry use considered. For this study, a scalable machine learning

approach, specifically deep learning, was selected due to its demonstrated success in dis-

tributed computing environments, as highlighted by recent research cited in studies such as

those by Sergeev & Del Balso (2018) and Chen et al. (2019). This approach ensures that the

framework is not only robust in handling complex data but also adaptable and effective in

providing accurate and timely environmental forecasts.

4.3 Framework Components

The framework design is a four-layered architecture composed of the hardware layer, data

storage layer, integration layer and analytics layer as depicted in figure 4.2. This section

introduces these layers and their functionalities.

4.3.1 Hardware Layer

This layer serves as the entry point for the entire framework. It initiates the monitoring and

analytics process by ensuring that real-time data are captured and subsequently transferred
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Figure 4.2: Scalable Framework for Highway Air Quality Monitoring and Prediction
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to a cloud platform for data aggregation. A typical real-time sensing device in this layer

would push data at an interval of 30secs-1min and be able to sense multiple pollutants

and capture weather data. Other device functionalities such as self-powering capability, edge

computing and on-board intelligence are desirable but not entirely mandatory for monitoring.

Multiple gateways and a cloud platform are essential for this layer to function as required.

The cloud platform will store captured data, but on-device storage will also be helpful to

avoid data loss when data transfer fails. Additional data on vehicle categories and traffic

flow in this layer will provide more insights into the ’culprit’ vehicle that contributes the

most to highway pollution. Advanced computer vision and edge computing technologies can

enable this functionality in monitoring devices through embedded ML models. Development

technologies relevant to this layer include VHDL, Verilog, FPGA, and Arduino.

4.3.2 Data Storage Layer

This layer stores pollution data and model weights. Readings captured from deployed sens-

ing devices are either sent immediately to this layer or stored temporarily and pushed later

through HTTP post requests. The data storage layer is responsible for ensuring data consis-

tency, security and integrity. According to Ahmed et al. (2017), it is best practice to have the

unified prediction service (UPS) reside close to the historic pollution data to reduce latency.

Hence, this layer also houses weights and parameters from training pollutant concentration

forecasting models. Data stored in this layer are bound to increase exponentially, and neces-

sary technologies to configure big data storage must be put in place. Relevant technologies

such as hadoop, spark and hive are possible open-source options to consider in this config-

uration. Data streaming frameworks like Apache Kafka or ActiveMQ are also available for

real-time sensing of changes in this layer and to send alerts in the event of data transfer fail-

ures. Triggers, procedures and packages are useful to automate most of the required database

tasks such as populating tables, generating logs or automatically generating SQL for data

aggregation.
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4.3.3 Integration Layer

The data integration layer ingests data from third-party sources into a central repository.

The layer handles this data ingestion using the extract, transform and load (ETL) process.

External data can include pollution data captured by other monitoring stations, highway

geographical data, meteorological data and traffic data. The essence of this layer is to ensure

that data not captured in the hardware layer by the monitoring devices can be integrated

into the system to improve the performance of developed estimation models. If the suggested

functionalities of the hardware layer are too expensive to implement, this layer can grab

open-source or paid data from available online sources. Data can be downloaded in different

formats such as TXT, JSON, XML and CSV or exposed as external links. The data from this

layer should be stored as separate tables in the data storage layer for unique identification

and also to avoid mix-ups with existing data.

4.3.4 Analytics Layer

The analytics layer handles exploratory and inferential analysis of historic highway pollution

data to estimate future air quality. The layer extracts data from the data storage layer for

model training and validation. Essential data pre-processing steps such as data consistency

verification, target attribute transformation, feature extraction, data encoding and data im-

putation are carried out in this layer as part of the first stages of training. A machine learning

approach suitable for tabular or time-series data such as the historic pollution data is required

for estimation. Deep learning is one of many machine learning approaches that has stood

the test of time (Akinosho et al. 2020). Frameworks and libraries such as fastai, scikit-learn,

PyTorch and TensorFlow make it relatively easy to train a baseline model. Additional func-

tionalities that are beginning to gain traction and could be included in implementing this

layer is MLOps - model maintenance in the production environment. MLOps encompasses

automation and monitoring steps such as continuous integration, deployment and training

on data collected in production.
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4.4 Development and Deployment of the REVIS System Proto-

type

In this section, the proposed framework is validated for practicality through the implemen-

tation of a Real-Time Highways Emission Visualisation (REVIS) platform use case. The

framework was tested for scalability and performance through different stages of data collec-

tion, exploratory data analysis and predictive model development.

4.4.1 REVIS Highway Monitoring Devices

The development and evaluation steps of the monitoring devices and the deployment strategy

adopted are highlighted in this section.

Table 4.1: Sensor Specifications and Accuracy

Measured Quantity Units Sensor used Accuracy Comments

Temperature ◦C Texas: HDC2010 ±40 Could be affected by direct
sunlight, depending on how
well airflow works within the
unit - may require additional
physical shading.

Relative Humidity % Texas: HDC2010 ±3 start of life
±0.25/yr drift

As above

Pressure hPa ST: LPS22HB ±1

PM2.5 and PM10 µg/m3 Sensirion: SPS30 ±10µg/m3

±10%
Over 0-100 µg/m3 range
Over 100-1000 µg/m3 range

NO2 ppb Alphasense: NO2-
B43F

Approx. ±20 Careful design and several
stages of calibration are re-
quired when measuring tiny
gas concentrations

4.4.1.1 REVIS Device Development and Evaluation

REVIS demonstrates the hardware layer through the development and calibration of devices

with built-in sensors to measure the atmospheric composition of NO2, PM2.5 and PM10,
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alongside weather parameters - pressure, temperature and relative humidity. Table 4.1 below

summarises details of manufacturers of the chosen sensors and their accuracy figures. Each

REVIS device required an excellent design of both analogue and digital circuitry around it

and several stages of calibration. The Alphasense NO2 sensor for example, showed during

experimentation that it was best suited for fixed sensing installations and urban air monitor-

ing since varying meteorological conditions had a significant influence on it’s readings. The

sensor’s cross-interference with the PM2.5 SPS30 sensor and detection range limits (DRL)

were also evaluated using equation 4.1

DRL = 3.3σ/S (4.1)

where S denotes the calibration curve’s slope, and σ denotes the standard deviation of the

sensor response in the absence of air (Shrivastava et al. 2011). The nearest AURN stations to

the monitoring devices were identified for field evaluation. The selected stations were deemed

suitable for calibration since they were close to deployed sensors and mainly provided missing

weather data and also hourly measurement of the pollutants of interest. Data from the REVIS

devices were averaged over an hour for appropriate comparison with the reference data.

Figure 4.3a shows PM2.5 and NO2 readings on one of the REVIS devices after calibration.

Aside from the occasional underestimated measurement of the NO2 sensors, other sensors

that measured PM2.5 and PM10 showed close estimates to the reference measurements with

correlation coefficient r > 0.8.
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(a) PM2.5 field readings after calibration

(b) NO2 field readings after calibration

Figure 4.3: Calibrated NO2 and PM2.5 readings from field. Vertical units are in µg/m3 for
PM2.5 and ppb for NO2. Even with the calibration, NO2 readings sometimes record negative
readings.
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4.4.1.2 Device Deployment in Case Study Regions

The research focuses on major highways in London (A2209, A302), Newport (M4), and

Chepstow (A48). London, with a population of 9 million and a density of 5,598 persons

per square kilometre, poses significant traffic congestion challenges, especially with 74.9%

of its inhabitants falling within the 16-64 age group (ONS 2021). A study by TFL (2019)

revealed that 59% of Londoners use buses weekly, while car commuting remains popular

among the younger demographic. Newport and Chepstow, situated in southeastern Wales,

accommodate 1.53 million residents with a density of 546 persons per square kilometre ONS

(2018). Monmouthshire, within this region, exhibits the highest life expectancy in Wales.

Statistically, 74.3% of the employed population in the area prefer motorcycles, vans, or cars

for commuting, whereas 8.8% opt for buses or trains (Statswales 2020). The M4, A48, and

A466 highways serve as vital connectors between neighbouring cities in this region.

Figure 4.4 depicts the distribution of REVIS devices in these cities. In London, twelve

devices were distributed on sections of the A302 and A2209 highways. One device was

placed 92.79m from Junction 25 of the M4 highway in Newport and another device was

positioned close to The A48 motorway in Chepstow. The deployment approach that was

adopted during the distribution of these devices ensured three key requirements: (1) sufficient

highway length (2) cellular data connectivity and (3) electrical/solar power availability. It

was also necessary that device installation required minimum technical skills and data was

captured for a minimum of 6-8 months.

4.4.2 Exploratory Analysis of Pollution and Weather Data

It is important to verify data consistency before commencing model training in ML regression

tasks such as the one being considered. The minimum recommendation is to confirm the total

number of rows and columns within the data, as this may have been compromised during data

transfer (Bilal & Oyedele 2020). This section analyses the impact of weather parameters and
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(a) Sensors distribution is Lewisham A2209 highway.

(b) Sensors distribution in Southwark A302 highway.
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(c) Sensors distribution in Chepstow A48 highway.

(d) Sensors distribution in Newport M4 highway.

Figure 4.4: Maps showing the distribution of 14 REVIS devices across four UK regions: New-
port (1), Chepstow (1), Lewisham (6), and Southwark (6). For the Southwark and Lewisha
locations in London, devices captured readings from the A302 and A2209 highways, while
those in Newport and Chepstow were deployed near the M4 and A48 highways, respectively.
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the case-study region on pollutant levels. Although data was captured between November

2020 and August 2021, missing data in the early stages of deployment (shown in Figure 14

below) influenced the decision to analyse data between February 2021 and August 2021 when

missing data was minimal.

4.4.2.1 The Impact of Weather on PM2.5, PM10 and NO2

Weather parameters significantly impact the dispersion rates of pollutants (Barrera-Animas

et al. 2022). Given the seemingly similar attributes of some weather data parameters, such

as “feels like,” “temp min,” and “temp max,” it was crucial to examine the correlations be-

tween these parameters to be able to identify whether certain parameters provide redundant

information. Figure 4.6 presents a correlation matrix used to identify the hierarchical sim-

ilarities among these parameters, revealing a strong correlation between temp, temp min,

temp max, and feels like.

To understand the effects of temperature on four pollutants, seasonal trends were plotted,

as shown in figure 4.7. The average temperature for all four regions ranged between 8.6

and 12.56◦C in winter, 9.73 and 19.76◦C in spring, and 19.41 and 21.78◦C in summer.

Regression analysis of temperature against each pollutant, presented in Table 4.2, indicates

a positive correlation between PM2.5 and PM10 and temperature in Newport, Southwark, and

Lewisham during the spring and summer seasons. Chepstow showed no correlation in winter

due to the lack of temperature readings and a negative correlation in spring and summer.

NO2 exhibited a negative correlation with temperature in all regions during winter and

spring, but a positive correlation in Southwark and Lewisham in summer. These findings

support studies suggesting that concentration levels are highest when the temperature is

elevated (Pearce et al. 2011, Analitis et al. 2014).
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(a) Average monthly readings captured by deployed REVIS devices.

(b) This plot illustrates the number of readings captured per region.

Figure 4.5: Total monthly readings captured by deployed sensors between November 2020
and August 2021. These plots illustrate the amount of missing data in the first two months
when some devices were offline. Chepstow had the lowest monitored readings overall.

Figure 4.6: Distance matrix of weather parameters using Pearson’s correlation. A
strong correlation can be noticed between “temp”,“temp min”,“temp max”,“wind speed”,
“wind degree” and “feels like”. There is also a discernible correlation between “clouds all”
and “humidity”/“windspeed”.
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Table 4.2: Regression analysis of weather parameters vs pollutant concentration

Regions
Winter Spring Summer

temp(◦C) NO2(r
2) PM2.5(r

2) PM10(r
2) temp(◦C) NO2(r

2) PM2.5(r
2) PM10(r

2) temp(◦C) NO2(r
2) PM2.5(r

2) PM10(r
2)

Newport 8.60 -0.53 -0.03 -0.46 9.73 -0.56 0.59 0.48 19.58 -0.32 0.61 0.51

Southwark 12.68 -0.40 -0.10 -0.32 10.44 -0.33 0.23 0.18 19.41 0.11 0.24 0.26

Lewisham 12.56 -0.46 -0.13 0 11.80 -0.41 0.38 0.10 20.77 0.33 0.35 0.09

Chepstow - - - - 19.76 -0.44 -0.38 -0.33 21.78 -0.19 -0.20 -0.17

(a) Correlation between regional temperature and pollutants in spring, winter and summer

Regions
Winter Spring Summer

pressure NO2(r
2) PM2.5(r

2) PM10(r
2) pressure NO2(r

2) PM2.5(r
2) PM10(r

2) pressure NO2(r
2) PM2.5(r

2) PM10(r
2)

Newport 1014 -0.10 0.42 0.38 1022.50 -0.06 0.12 0.31 1012.90 -0.13 0.33 0.55

Southwark 1018.50 0.22 0.10 0.13 1026.10 -0.15 -0.17 -0.22 1015.30 0.26 0.08 0.03

Lewisham 1018.80 0.07 0.03 0.11 1026.30 -0.01 -0.10 -0.18 1014.20 0.19 0.16 0.15

Chepstow - - - - 1009.50 0.44 0.22 0.15 1007.20 0.19 0.10 0.09

(b) Correlation between regional pressure and pollutants in spring, winter and summer

Regions
Winter Spring Summer

humidity(%) NO2(r
2) PM2.5(r

2) PM10(r
2) humidity(%) NO2(r

2) PM2.5(r
2) PM10(r

2) humidity(%) NO2(r
2) PM2.5(r

2) PM10(r
2)

Newport 90.96 0 -21 -18 73.54 2 -11 -3.40 70.85 1.30 -13.70 -4.80

Southwark 66.27 7 -1 -15 65.85 13 -6.50 -8.90 73.30 6.80 -3 -2.20

Lewisham 72.93 3 -8 -5 64.04 11 -15.20 -4.20 70.98 17.6 -17 -5.60

Chepstow - - - - 53.95 8 -1.70 -6 64.95 13.30 -3.4 -11.20

(c) Correlation between regional humidity and pollutants in spring, winter and summer
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(a) Average winter temperature for all four regions

(b) Average spring temperature for all four regions

(c) Average summer temperature for all four regions

Figure 4.7: The seasonal trends for temperature in Newport, Southwark, Lewisham and
Chepstow. Newport has the lowest temperature of 8.6◦C in winter as there was also no
reading recorded for Chepstow, as illustrated in plot (a). Chepstow had the highest average
temperature of 19.76◦C in spring and 21.78◦C in summer, as shown in plots (b) and (c)
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For pressure, the lowest readings were recorded in Chepstow during Spring and Summer

seasons while Lewisham and Southwark recorded the highest pressures in spring. Table 4.2b

summarises the pressure readings during these seasons and the correlation figures with the

pollutants. The PM2.5 and PM10 concentrations in Newport and Chepstow were positively

correlated with pressure, indicating that an increase in atmospheric pressure will increase the

concentration levels of these highway pollutants. All three pollutants negatively correlate

with pressure in Southwark and Lewisham in spring but positive in winter and summer.

The conclusion drawn from this result is a strong correlation between pressure and PM2.5

and PM10 but a significant negative correlation with NO2. Figure 4.8 illustrates the average

seasonal humidity across the regions with the lowest humidity value was recorded in Chepstow

during summer and the highest in Newport during winter. It can be deduced from Table

4.2c that PM2.5 and PM10 were negatively correlated with humidity for winter, spring and

summer seasons. In particular, both pollutants are prone to be absorbed in the atmosphere

as humidity increases. Naturally, rain results in higher relative humidity and soaks up these

particles, resulting in a lower level of particulate in winter. (Odat 2009).

4.4.2.2 The Impact of Region on PM2.5, PM10 and NO2

Each region has its unique attributes which can influence the concentration level of pollu-

tants measured over the experimentation period. Aside from the weather, other attributes

such as the highway gradient, region terrain, residential development, background coefficient

and traffic flow can also contribute to the concentration levels across regions (Sayegh et al.

2016, Pasquier & André 2017). Although some of these attributes were not captured in this

research, their effects on the captured concentration levels remain to be seen. This section

presents some primary insights across the four regions in the data set.

Table 4.3 shows that the average concentration levels across regions vary significantly.

Chepstow and Southwark seemed to have the most practical NO2 averages, with Southwark
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(a) Average winter humidity for all four regions

(b) Average spring humidity for all four regions

(c) Average summer humidity for all four regions

Figure 4.8: The seasonal trends for humidity in Newport, Southwark, Lewisham and Chep-
stow. Similar to temperature and pressure, no reading was captured for Chepstow in winter.
However, the region recorded the least humidity of 53.95% in spring, as illustrated in plot
(b). Newport had the highest average humidity of 90.96% in winter and 73.54% in spring,
as shown in plots (a) and (b)
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(a) Monthly NO2 average for all four regions

(b) Monthly PM2.5 average for all four regions

(c) Monthly PM10 average for all four regions

Figure 4.9: Plots highlighting the varying monthly averages for the three monitored pollu-
tants. These averages varied significantly and are an indication that some influential factors
may have affected the concentration levels
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Table 4.3: Pollutant summary statistics based on region

Regions
NO2 PM2.5 PM10

count mean min max count mean min max count mean min max

Newport 40326 -6.85 -602.37 111.99 40326 11.41 0.28 745.45 40326 12.49 0.28 746.04

Southwark 38757 4.35 -714.97 1094.81 38757 10.27 0.55 4384.20 38757 11.35 0.60 6888.54

Lewisham 32986 -15.168 -1406.17 93.06 32986 12.42 0.60 277.02 32986 13.98 0.60 424.42

Chepstow 9138 7.33 -190.18 180.30 9138 7.31 0.43 127.45 9138 12.11 0.431 179.02

having the highest. Lewisham has the highest PM2.5 and PM10 average of 12.42µg/m3 and

13.98µg/m3, respectively. This analysis and the plot in Figure 4.9 reveal some prevalent

calibration issues within the recorded values, which were sometimes exaggerated, as in the

case of the maximum values for PM2.5 and PM10. Nevertheless, a one-way ANOVA variance

test carried out to check the variance in NO2, PM2.5 and PM10 by region resulted in p values

of 2.36e−4, 1.45e−3 and 1.68e−4, respectively. This result indicates that the impact of regions

on the concentration levels of these three pollutants is notable.

4.4.3 Forecasting Model Training and Evaluation

Fastai was used for data pre-processing and model training. The library is built on the

PyTorch framework and allows quick analysis using its readily encoded best practices. The

aim was to develop a model capable of efficiently making hourly predictions of the pollutant

of interest. This section introduces the data processing procedure, the network’s architecture

used for training and the validation method.

4.4.3.1 Data Description

The dataset provides an extensive collection of weather parameters essential for understand-

ing and modelling traffic-related air pollution. Key features include geographical coordinates,

timestamp, temperature metrics (temp, temp min, temp max, feels like), atmospheric con-

ditions (pressure, humidity), wind metrics (wind speed, wind dir), cloud cover, and precipi-

tation metrics (Rain 1h, Rain 3h, Snow 1h, Snow 3h). Table 4.4 shows a summary statistics
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of the dataset with temperature averaging around 51◦ F with moderate variability, ranging

from 21.33◦ F to 87.15◦ F. Perceived temperature, considering factors like wind chill and

humidity, averages at 44.17◦ F. Rainfall and snowfall metrics indicate occasional precipita-

tion events, with high variability in 1-hour rainfall. Atmospheric pressure is relatively stable,

averaging 1014.02 hPa, while humidity levels are generally high, averaging 81.47%. Wind

speed shows significant variability, with an average of 10.47 m/s, and wind direction covers

a wide range with a mean of 181.82 degrees. Cloud cover averages 50.47%, indicating varied

sky conditions.

Table 4.4: Descriptive statistics for the dataset

lat lon date Rain 1h(mm) Rain 3h(mm) Snow 1h(cm) Snow 3h(cm) temp(F) temp min(F) temp max(F) feels like(F)

count 991662 991662 991662 18000 650 200 400 991662 991662 991662 991662

mean 51.454 -2.587 15511 1.057 0.841 2.030 0.425 50.966 48.301 53.566 44.174

std 1.789 0.2935 2.100 2.318 0.554 0.000 0.510 10.120 10.227 10.164 12.214

min 51.454 -2.587 15142 0.110 0.130 2.030 0.130 21.330 18.000 23.000 5.310

25% 51.454 -2.587 15329 0.250 0.310 2.030 0.175 43.920 43.900 46.400 35.185

50% 51.454 -2.587 15511 0.510 1 2.030 0.190 49.690 46.900 52.000 42.480

75% 51.454 -2.587 15690 1.150 1 2.030 0.440 58.190 50.100 60.800 53.445

max 51.454 -2.587 15870 42.930 2.690 2.030 1.190 87.150 84.550 90.000 86.540

pressure(hPa) humidity wind speed(knots) wind dir(degrees) clouds all(%)

count 991662 991662 991662 991662 991662

mean 1014.024 81.471 10.471 181.816 50.469

std 11.664 14.981 5.472 93.663 36.235

min 968 13 0.360 0 0

25% 1007 73 6.930 100 8

50% 1015 86 9.170 210 68

75% 1022 93 13.870 260 90

max 1049 100 38.030 360 100

4.4.3.2 Meteorology Data Integration and Data Set Pre-Processing

Weather data such as wind speed and direction, precipitation, visibility, pressure, cloud cover,

dew point, and wind gust which were not captured by the REVIS devices, were integrated
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from OpenWeather (sample data available at 1). Also, ozone data from the AURN stations

were integrated into the data set to be analysed and used for training. These integration

exemplify the integration capabilities of the framework while enriching the data needed to

train an estimation model. Appendix A presents a complete list of the columns, their descrip-

tion and data types before processing. An SQL procedure for automatically generating SQL

codes such as the one illustrated in Figure 4.10 was implemented to summarise the pollution

data. This generated hourly, 3-hourly and 6-hourly average of the pollutant concentration

levels with the aim of capturing periodicity within the training data (sample of integrated

data shown in Figure 4.11).

Figure 4.10: Auto-SQL generation to pre-process the data set. An SQL command which
generates 3-hour and 6-hour pollutant averages from the preceding readings is depicted.

Figure 4.11: Sample of integrated weather dataset after pre-processing.

1https://doi.org/10.17632/b8dw3w868h.1
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Three key data pre-processors: categorify, fillMissing and normalize from fastai were

adopted for additional data pre-processing. These pre-processors map categorical columns to

distinct categories, replaces null values with column median values and normalises continuous

columns by subtracting the mean and dividing by the standard deviation. The “add datepart”

helper function of the library allows the specification of the date column which generates ad-

ditional predictors such as “Year”, “DayofWeek”, “DayOfYear”, “Is Month End” and so on.

Appendix B provides a detailed list of independent/dependent and categorical/continuous

variables in the data set after processing.

4.4.3.3 Validation Set Creation and Training Architecture

Model training typically begins by splitting the dataset into training, validation, and test sets.

The training data is used to train the model, while the validation data helps in selecting the

best-performing model, which is then verified using the test data. When dealing with target

imbalance, it is customary to randomise the dataset before splitting, known as stratification.

However, since this problem resembles a time-series problem where the chronological order

is crucial, the validation and test sets cannot be randomly selected. Instead, the common

practice is to use the most recent weeks or months of data for validation and testing Duan

et al. (2023). In this case, the dataset, comprising approximately 991,662 rows and 34

columns, showed no significant target imbalance for the three pollutants, making stratification

unnecessary. Therefore, the last 45 days of the dataset, covering July and August, were chosen

for validation (15 days) and testing (30 days), representing 10% of the dataset. Fastai’s

TrainTestSplitter class was employed to implement this division.

Suitable optimisers, loss functions and activation functions had to be selected from an

array of available options. Series of experimentation were carried out on popular optimisation

functions such as SGD, RMSProp, LAMB, LARS and Adam and regression loss functions like

BCELossflat, MSELossFlat and L1LossFlat before deciding the most suitable. Eventually,

116



Adam optimiser and MSELossFlat were chosen for model training. Bayesian-optimization

library was used to test and optimise the number of architecture layers, the size of each layer

and dropout rates for the network. The final architecture used to train the model was made

up of 14 embedding layers, 3 dropout layers, 3 batchnorm1d layers, 3 linear layers and 2

ReLU activation functions. The embedding layer was adopted for improved performance as

inspired by the architecture proposed in Guo & Berkhahn (2016). Finally, the learning rate

finder (lr find) function of TabularLearner class was used to determine the best learning rate

to be used for training. This resulted in a minimum value of 2.5e−4, and steep value of 1.3e−4.

Figure 4.12 below shows the plot of the learning rate against the loss. Experts recommend

selecting the learning rate at the point where the plot starts to dip. (i.e., 10−4).

Figure 4.12: The model’s training loss against the learning rate to determine the appropriate
learning rate. The learning rate was fixed at the point where the plot started dipping (i.e.,
10−4)

4.4.3.4 Model Evaluation

In this section, the results of the deep learning model developed are presented. The model

was trained to make day-ahead predictions of the three pollutants, but first, an appropriate

evaluation metric had to be selected. The top metrics for regression problems are mean

squared error/root mean squared error(MSE/RMSE), mean absolute error(MAE) and R
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Square. The fastai library has two variants of RMSE: rmse and exp rmse. The mean absolute

error and root mean squared error (exp rmse variant), defined as shown in equations 4.2 and

4.3 below, were selected as the metrics for evaluating the developed model.

MAE =
1

n

n∑
i=1

|yi − ŷi| (4.2)

RMSE =

√√√√ 1

n

n∑
i=1

|yi − ŷi|2 (4.3)

Figure 4.13 illustrates the model training and validation losses after 20000 epochs. It is

noteworthy that the training loss gradually as the number of epoch increased. The validation

loss took a slightly different pattern and dropped significantly after 2500 epochs but became

steady for the remaining training epochs. The final MAE and exponential RMSE after

training were 0.350 and 1.591 respectively. Figure 4.14 captures the actualNO2 concentration

levels (highlighted in blue) and the model’s day ahead prediction(highlighted in red). The

difference in the model’s predicted NO2 and actual values is slight, and the predicted values

were close to the actual.
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Figure 4.13: A plot showing the model’s training and validation losses against the number
of epochs. It is worth noting that there was a gradual decrease in both losses as the training
epochs increased which indicates that the model was learning. Further training beyond 20000
epochs would have either resulted in overfitting or no further drop in both losses

Figure 4.14: An illustration of captured NO2 pollutant readings (blue highlight) and the deep
learning model predictions (red highlight). These results were derived from an evaluation
using the validation data set. It should be pointed out that the model’s predictions are not
too far off the actual readings.
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Table 4.5: Hardware specifications of the two oracle cloud instances used to test scalablity

Name Instance
Type

Processor GPU
type

CPU
cores

CPU
memory

GPU
memory

Compute – Ampere
A1 – OCPU

Bare Metal OCPU - 6 32GB -

VM.GPU2.1 GPU Pascal 1 NVIDIA
P100

12 72GB 16GB

4.4.4 Evaluating the Scalability Performance of the REVIS System

The REVIS system was tested for scalability using the IoT asset monitoring tool and database

performance hub of two different oracle cloud instances. The fourteen REVIS devices were

deployed sequentially to capture both system’s response time and throughput. The first

experiment was run on a bare metal cloud instance with specifications as shown in Table

4.5. Figure 4.15a shows the performance of this cloud instance as it could not scale past 8

devices and exploded at 3 and 4 devices for EDA and deep learning analysis. However, the

GPU cloud instance performed better due to its auto-scale feature. Figure 4.15b shows a

plot of the CPU cores utilised for exploratory data analysis, data storage and deep learning

analysis as the number of deployed devices increased. It can be observed that the number of

CPU cores increased gradually for each task and then stabilised at some point. The system

was able to scale up its resources according to the computation/storage requirements. For

the database performance, the test was run between November 2020 and Jan 2021 on the

GPU instance and evaluated for utilisation, execution count, number of running statements

and number of sessions metrics as shown in Figure 4.16. The maximum GPU utilisation was

under 20% even with over 1.5 million execution queries.
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(a) System performance of the bare metal instance as the number of
REVIS devices increased.

(b) System performance of the GPU instance as the number of REVIS
devices increased.

Figure 4.15: Plots of bare metal vs GPU instance as number of devices increased
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Figure 4.16: Plots of scalability metrics showing database performance as the number of
devices increased
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4.5 Chapter Summary

This chapter introduced a cost-effective framework for ubiquitous monitoring and predicting

pollutant concentration levels on highways in the UK. The practical implementation of this

framework is also demonstrated through the utilisation of the REVIS (Real-time Emission

Visualisation System) system. This demonstration showcases comprehensive insights into the

development of IoT hardware for data collection, the configuration of advanced big data tools

for efficient data storage, and the presentation of results obtained from trained deep learning

forecasting models. In addition, the chapter also highlights the scalability aspect of the

framework, as demonstrated by its deployment on two distinct cloud instances equipped with

varying computational resources. This chapter effectively illustrates that the realisation of

real-time monitoring and forecasting capabilities is within reach when supported by adequate

computational resources.
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Chapter 5

Multi-target Regression for TRAP

forecasting

5.1 Chapter Overview

This chapter delves into an innovative expansion of the deep learning-based air quality fore-

casting method adopted in Chapter Four by integrating crucial highway information with

traditional meteorological and pollution data. This integration provides an improved under-

standing of the multifaceted factors influencing air quality, marking a significant contribution

to the field. A novel approach is proposed in which a single Multi-Target Regression (MTR)

model trained on the integrated data set is used to predict multiple traffic-related pollu-

tants simultaneously, streamlining forecasting processes and potentially performing better.

The chapter also explores the use of categorical embeddings within tabular data models and

compares their performance against established time series and regression algorithms using

cutting-edge libraries. This comparison provides valuable insights into the most effective

modelling techniques for air quality prediction. To comprehensively interpret these models,

the feature importance within the data set is evaluated, identifying key contributors to air

quality, which not only aids in model interpretation but also guides future data collection

endeavours.

124



5.2 Monitoring Site and Integrated Third-Party Data

The data collection sites remains consistent with those described in the preceding chapter,

but it now incorporates additional highway data. Supplementary weather data, which was

not captured by the REVIS devices were integrated from the AURN stations nearest to the

highways of interest. Publicly accessible background mapping data was used to augment this

study’s analysis and obtained from the Department for Environment, Food and Rural Affairs

(DEFRA) website 1. Similarly, their emissions factor toolkit was employed to estimate traffic

exhaust emissions across various vehicle categories. Highways England’s webtris application

2 provided essential data on traffic congestion, average vehicle speed, and traffic volume.

Lastly, terrain information for the case study sites was extracted using the Google Earth

application. Detailed descriptions of these data sets are provided in the subsequent sections.

5.3 Data Description

The approach used to collect data in this study was to imagine the highways as consisting of

multiple segments. Deployed devices were mapped to different segments of the highway and

data captured for each device represented that highway segment. This way, it was easier to

match device measurements with other data set such as background concentration that are

represented by 1x1km grids. This section describes the data set specification which is also

summarised in Appendix C.

5.3.1 Pollution Data

NO2, PM10, and PM2.5 data captured every five minutes by the REVIS devices were included

in the data set. After collocating the NO2 readings of the devices with the nearest AURN

1https://uk-air.defra.gov.uk/data/laqm-background-home
2https://webtris.highwaysengland.co.uk/
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stations in Chepstow 3, Newport 4 and London (Lewisham 5 and Southwark 6) it was clear

that the NO2 readings were inaccurate with the average correlation of 0.07. This inaccuracy

was linked to the analogue NO2 sensors used on the REVIS devices, which responded strongly

to changes in temperature and relative humidity, to get negative readings sometimes. As a

result, NO2 measurements from AURN stations were used in place of the REVIS NO2 data.

The REVIS data for PM10, and PM2.5 were retained since there was a good correlation of

0.73 and 0.8 with the AURN data. To ensure efficient data mapping, the REVIS data had to

be summarised into hourly aggregates to match the hourly readings in the integrated AURN

data (see Figure 5.1).

Figure 5.1: Snapshot of pollution data.

5.3.2 Traffic Data

Traffic information was integrated from Highways Englands’ traffic monitoring unit (TMU)

sites. The data which can be downloaded through an API or a web interface includes counts

for vehicles less than 5.2m or greater than 11.6m in length, counts for each vehicle type, total

traffic volume and average traffic speed. The measurements only included descriptions of

vehicle lengths so it was necessary to map different vehicle types to the appropriate lengths

for easy comprehension. Cars were mapped to 0-520cm, buses to 521-660cm, light goods

vehicle (LGV) to 661-1160cm and heavy goods vehicle (HGV) to 1160cm+ (Bálint et al.

3https://uk-air.defra.gov.uk/networks/site-info?site id=CHP
4https://uk-air.defra.gov.uk/networks/site-info?site id=NPT3
5https://uk-air.defra.gov.uk/networks/site-info?site id=LW1
6https://uk-air.defra.gov.uk/networks/site-info?site id=SK5
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2014). TMU data are captured every minute so just like the historic pollution data, this

data was also summarised into hourly aggregates(see Figure 5.2).

Figure 5.2: Snapshot of traffic data.

5.3.3 Weather Data

The temperature, humidity and pressure for the four highways of interest were measured in

real-time along with pollution data. However, previous studies have shown the impact of

other meteorological parameters such as wind speed and wind direction in aiding pollutant

dispersion (Chen & Ye 2019). The modelled wind speed and direction data were therefore

integrated from same AURN stations used for NO2 while data from REVIS devices were

aggregated to match. Wind direction across the four regions ranged between 16◦ and 360◦

and the wind speed was between 0 and 16 knots (see Figure 5.3).

Figure 5.3: Snapshot of weather data.
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5.3.4 Elevation Data

Research into emission modelling in recent years has shown that vehicle exhaust outputs

varies in uphill and downhill situations (Zhai et al. 2020, Xu et al. 2020). The vehicle’s

engine is under more pressure as it goes uphill and under less pressure downhill. It is unknown

whether capturing this sort of highway information would result in an improved estimation

accuracy. More importantly, highway terrain data such as elevation and gradient data are

required to compute the vehicle emissions factor for different vehicle types. Google Earth’s

desktop application was used to capture this information. The elevation data for a designated

road trajectory was obtained by drawing the path on the application and selecting “Show

Elevation Profile” from the right-click menu. This generated a graph displaying the elevation

along the path. Specific elevation points were then manually recorded from the profile, as

direct data export is not supported (see Figure 5.4).

Figure 5.4: Snapshot of elevation data.

5.3.5 Emissions Factor Data

Version 11.0 of DEFRA’s emission factor toolkit (EFT) was used to compute the source

apportionment of particulate matter and NO2 for the different vehicle categories. EFT

allows the specification of parameters such as the year of interest, road type, vehicle speed

and vehicle type from the onset and automatically computes the required output based on

COPERT 5 specifications (COPERT is the standard EU vehicle emissions calculator). The

traffic was selected as ‘Detailed Option 2’ since the traffic data that was collected did not
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include information on vehicle types as either petrol, diesel or hybrid. This option allows

non-detailed vehicle counts for cars, buses, LGVs and HGVs to be used as traffic flow input

for EFT. The highway gradient information from Google earth was also fed into the tool

while the ‘flow direction’ was determined from the elevation chart in the application. As

a result, the Newport, Lewisham and Southwark highways were specified as ‘Up Hill’ while

Chepstow was specified as ‘Down Hill’ flow direction due to the single direction by which

vehicles travelled. Finally, the below equations were used to verify the estimations from the

toolkit and the values were close.

For Uphill: EF2 = EF1(1 +G× [C1 × V + C2]) (5.1)

For Downhill: EF2 = EF1(1−G× [C1 × V + C2]) if G ≤ 2.5%

EF2 = EF1(1− 0.025× [C1 × V + C2]) if G > 2.5%

(5.2)

where EF1 and EF2 denote emission factor for vehicles travelling at speed V on a level

and uphill/downhill road respectively, G is the highway gradient and C1 and C2 are the

gradient coefficients based on vehicle type and pollutant of concern (CERC 2019)(see Figure

5.5).

Figure 5.5: Snapshot of emission factor data.
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5.3.6 Background Air Pollution Concentration Data

Background concentration maps for a particular pollutant provide data on contributions from

various sources, including natural, local sources such as household coal burning, industries,

and other means of transportation, mixed with contributions from the source of interest—in

this case, road transport. It is crucial to consider and eliminate these other sources to avoid

double counting, where the pollutant concentration is unknowingly repeated. Therefore, in

this study, the highway contribution was subtracted from the background concentration to

address this issue. Publicly available background pollution maps from the DEFRA UK AIR

resource website (UKAIR 2018) were used to capture this information for the four case study

locations. It is important to note that these were 2018 background maps covering the years

2020 and 2021, and they do not account for the long-term or short-term impacts of COVID-19

lockdowns on local sources. The data provides grid-based modeled background concentrations

for PM2.5, PM10, NOx, and NO2 from 2018 to 2030. The background concentrations for

2020 and 2021, as indicated in Table 5.1, include only rail, domestic, industrial, and point

sources. Minor road and motorway background concentrations were excluded to prevent

double counting. This approach is consistent with the method proposed in the study by

Arunachalam et al. (2014) (see Figure 5.6).

Table 5.1: Pollutant background concentration for the four regions of interest in the year
2020 and 2021

Regions
Grid ref x Grid ref y NO2(ppb) PM2.5 (µg/m3) PM10 (µg/m3)

2020 2021 2020 2021 2020 2021

Newport 332500 189500 17.711 16.761 10.386 10.278 15.785 15.648

Chepstow 353500 193500 8.409 8.067 7.986 7.883 12.069 11.941

Lewisham 537500 177500 24.698 23.827 12.090 11.941 18.560 18.347

Southwark 531500 178500 28.954 27.997 12.706 12.555 19.768 19.552
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Figure 5.6: Snapshot of background concentration data.

5.4 Machine learning approach

This section describes the approach taken in this study to address the multi-target prediction

problem. The pseudo-code for the proposed approach is highlighted below while the entire

workflow is summarised in Figure 5.7.
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Algorithm 1: Multi-target algorithm for predicting NO2,PM10 and PM2.5.

Input: data set D(X,Y ), Fastai tabular model F , Prophet model P, Multioutputregressor model

M, epochs ε, learning rate η, batch size β, estimators n, max depth d

Output: (ŷ1, ŷ2, ŷ3)

Initialize: ε, η, β

Categorify(D)

FillMissing(D)

Normalize(D)

Split D into trainSet, testSet and validationSet

for e = 1, ..., ε do

train F using trainSet, η and β

validate(F , validationSet)

end

Return: Trained tabular model Ftrained

Initialize: P

for xi, ..., xn do

P.addRegressor(x)

end

train P using trainset

validate(P, validationSet)

Return: Trained model Ptrained

Initialize: n, d, M

train M using trainSet, n and d

validate(M, validationSet)

Return: Trained model Mtrained

for model ∈ (Ftrained,Ptrained,Mtrained) do

for t = 1,..., 24 do

Get: xt

if t 6= 1 then

Predict: (ŷ1, ŷ2, ŷ3)t using (model, (ŷ1, ŷ2, ŷ3)t−1,xt)

else if t = 1 then

Predict: (ŷ1, ŷ2, ŷ3)t using (model,xt)

Return: F : (ŷ1, ŷ2, ŷ3)t,P: (ŷ1, ŷ2, ŷ3)t,M: (ŷ1, ŷ2, ŷ3)t

end

end
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Figure 5.7: Multi-target model training architecture using the newly curated data set. Fea-
ture engineering steps including normalisation and log transformation were carried out before
training on three different algorithms used for experimentation.
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5.4.1 Multi-target regression and RNNs

Neural Networks have become a familiar term among the artificial intelligence (AI) and

machine learning research community. The ML approach which became more popular in 2012

as a result of its performance at the imagenet classification competition, has since grown into

a widely adopted method for not just classification but also regression problems. Multi-target

models in general refers to models that are able to automatically detect relationships between

target variables, thereby resulting in better predictions (Korneva & Blockeel 2020). A multi-

target regression neural network differs from its single-target counterpart by the number of

predicted outputs. As illustrated in figures 5.8a and 5.8b, single-target predicts just one

output using the set of features characterising the data set while multi-target can predict

multiple outputs simultaneously. In terms of performance, multi-target outputs are simpler

and faster to train than an ensemble of single-target models (Kocev et al. 2009). Multi-target

models are more widely adopted for classification problems such as object classification, face

recognition and sporadically used for regression problems (Spyromitros-Xioufis et al. 2012).

Recurrent neural networks are mainly associated with research involving time-series, se-

quence labelling and classification using visual, audio or text data. This class of neural

networks and its variants - Gated Feedback Recurrent Neural Network (GRU) and Long-

Short term memory (LSTM) are suitable for time-series problems since they are capable of

keeping track of the temporal information within input data. Other neural network archi-

tectures like CNN and GANs struggle with these kind of data (Yu et al. 2019). Despite

the competitiveness of RNNs over other architectures, its application to domains such as air

quality forecasting is limited due to the inadequate understanding of its internal mechanisms

(Shen et al. 2020). Fortunately, several libraries and frameworks have been introduced in

recent times to take away the intricacies of the RNN implementation.
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(a) Single-target neural network. (b) Multi-target neural network.

Figure 5.8: Multi-target vs single-target neural networks.

5.4.2 Fastai, prophet and multioutputregressor methods

Fastai was first introduced in 2016 as a library built with a high level of abstraction to

help AI enthusiasts with limited maths background to quickly develop deep learning models.

With as little as 10 lines of codes, the complexities of developing such models are handled by

fastai’s customisable low, mid and high level APIs (Howard & Gugger 2020). The library is

put forward as being capable of achieving state-of-the-art results in computer vision, natural

language processing, collaborative filtering, and time-series problems. Another key attribute

of the library which has caught the eye of researchers is the library’s implementation of entity

embeddings for encoding categorical features to achieve state-of-the-art results.

Prophet, on the other hand, is a library developed by Facebook to strategically intro-

duce some modifications to traditional time-series algorithms. The library uses the idea of

“changepoints” to generate additive regression models capable of automatically detecting and

adapting to sudden changes in time-series trajectories (Taylor & Letham 2018). This implies

a reduction in the efforts required to manually specify data shifts before training a model.

The library is designed to be robust against missing data and is originally built for univariate

daily, weekly and yearly time-series forecasting. However, with a few modifications to the
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library, such as the use of multiple regressors, multivariate prediction is possible. The default

configuration in prophet is known to produce estimates similar to professional forecasters and

therefore encourages quick experimentation. The library is famously used for sales as well as

weather forecasting. The easiest way to install prophet is through its python or R package

on PyPI and CRAN repositories.

Scikit-learn (Sklearn) is one of the most useful python library that houses different re-

gression, classification and time-series algorithms. One of the wrapper regressor classes in

sklearn is the MultiOuputRegressor class which permits the definition of one regressor from

any of the available regression algorithms and then creates an instance for each output. One

key advantage of the class is that it can be used to identify outputs that are independent of

each other and also used to evaluate the performance of other multioutput models.

The adoption of these libraries and frameworks in this study is based on their distinct

advantages tailored to the needs of traffic-related air pollution forecasting. Fastai was chosen

for its ability to simplify the integration of complex neural networks and efficiently handle

large datasets, which are typical in traffic and air quality monitoring. Prophet was selected

for its capability to facilitate quick experimentation while still producing reliable results,

particularly beneficial for managing the irregularities and sudden changes inherent in traf-

fic patterns. Lastly, Sklearn was employed for its versatility in quickly implementing and

comparing different modelling approaches, ensuring that the most effective model is selected

to match the specific characteristics of the dataset. These tools collectively enhance the

robustness and accuracy of the forecasting models used in this study.

5.4.3 Data preprocessing

All the available data were first pulled together and merged into a single csv file using Oracle

SQL procedures before preprocessing was initiated. It was important that these procedures
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were used to extract the data into separate database tables since they were generated as

JSON strings directly from the IoT devices. The tables were joined using matching columns

such as region or highway id and then loaded into a jupyter notebook for pre-processing

and data cleansing. This data fusion technique is known as the early multi-view integration

approach where the data sets are first joined together into a vector using a matching feature

before training on a machine learning algorithm (Noble et al. 2004, Li et al. 2018, Guarino

et al. 2022). The matching feature in this case is the region/highway id. Two versions of the

data were created to adapt to the needs of the algorithms that were explored. The feature

engineering steps that were taken are as follows:

• Data straight from the database had 232,553 rows and 10 columns. Each row repre-

sented a single reading for particular pollutant or weather data at 5 min intervals. One

of the columns captured the trend type id, an integer which indicates the type of mea-

surement (weather, pollutant, emission factor etc) that was measured. A dictionary

was then created to convert these ids into meaningful and more descriptive strings.

Pandas library was used for data manipulation and its pivot function was used to turn

rows with matching dates into one single row while retaining the measurement type

as columns. Missing measurements for a particular time point was represented with

‘Nan’. The shape of the data set after this preprocessing step was 11,990 rows x 44

columns

• Next was to create the first version of the data set which includes extracted date infor-

mation. Additional date attributes such as day, month, year, dayofweek, ismonthend

etc were added to this data set. This step makes it easier for the algorithm to extract

the date information from the datetime object. The second version of the data had

just the date and pollutants data like a typical time series data set.

• Inspecting the data for missing values revealed 1111 missing data for the REVIS PM2.5

and PM10 while the integrated AURN NO2 had none. The missing values were replaced
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with data from the previous day using the last observation carried forward (LOCF)

method which is one of the famous imputation methods for time series data (Hadeed

et al. 2020). The same approach was used to fill missing values in other weather and

traffic attributes.

• It was difficult to identify the underlying distribution of the pollutants since their min

and max has a smaller scale of values as shown in Table 5.2. Hence, the log transform

of all three pollutants was taken to make the distributions less skewed. The resulting

plot of the distribution is shown in figure 5.9.

• Finally, the features were split into categorical and continuous features based on the

type of values they hold as shown in Appendix C. This step facilitates the use of tabular

models.

Table 5.2: Descriptive statistics of the pollutants data

Variable count mean std min 25% 50% 75% max

NO2 (ppb) 11990 21.954 16.405 0.631 9.753 16.910 30.379 132.370

PM2.5 (µg/m3) 10879 9.711 14.922 0.699 3.717 5.932 10.205 401.012

PM10 (µg/m3) 10879 11.801 17.882 0.778 4.828 8.042 12.587 617.351
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Figure 5.9: Data distribution for all three pollutants.

5.5 Experimentation and Model Training

This section highlights the experiments and optimisation techniques carried out in this study

while results of each experiment are presented in subsequent sections. Figure 5.10 shows the

difference between two sets of experiments carried out using fastai, prophet and multiout-

putregressor algorithms. Each experiment was carried out using separate jupyter notebooks

and a dedicated high performance computer with 64gb RAM and Nvidia RTX 3080 GPU.

5.5.1 Experiment 1 - Comparing Fastai, Prophet and MultiOutputRegressor

defaults

The first experiment involved training models with different combinations of data sets and

methods. The aim was to initially try out the default configurations of the choice libraries and

see how they perform with hourly, 3-hourly and 6-hourly MTR predictions before attempting

any hyperparameter tuning. Out of the box, fastai permits the customisation of the number

of features to predict and this can be set to as many as possible if a custom loss function is
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Figure 5.10: Summary of experiments carried out in this study.

Table 5.3: Hyperparameters used for experiment 1 - default configurations

Algorithm Hyperparameter
name

Hyperparameter
value

Fastai

Number of layers 2

First layer neurons 200

Second layer neurons 100

Dropout probability 0.04

Learning rate 1e−1

Prophet
Period 365

Changepoint prior
scale

0.001

MultiOutputRegressor
Number of estimators 100

Learning rate 0.1

Max depth 3

Minimum samples
split

2

Minimum samples leaf 1

Alpha 0.9
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configured alongside. The default design of fastai’s tabular learner (a class within its mid-

level API) is a two-layered neural network with 200 neurons in the first layer and 100 in the

second layer. Other fastai default parameters and values are shown on Table 5.3.

Prophet uses a conventional time-series method of forecasting and requires just the

date column and one dependent variable (y). However, for this experiment, the library’s

add regressor function was used to include the other features but this required that the his-

toric and future values of these additional regressors be included during training. Since

prophet does not support multi-output forecasting by default, another package called multi-

prophet was used which allowed the prediction of all three pollutants simultaneously. Also,

UK holiday effects were captured using the built-in country holidays feature.

Randomforestregressor, gradientboostingregressor and kneighboursregressor were explored

with the multioutputregressor estimator classes to see which performed better. The best

performing regressor with the default configurations was to then be used for subsequent ex-

periments. Gradientboostingregressor produced the best result when compared in terms of

the mean absolute error (MAE). The default configuration used is shown in Table 5.3. The

result of experiment 1 is reported in section 6.6 but overall, it showed that most of the models

did not perform too well and more experimentation or parameter optimisation was required.

5.5.2 Hyperparameter tuning with optuna and gridsearchcv

Following the not-so-impressive results of experiment 1, it was essential that the training

parameters were optimised. Optuna is a mildly famous parameter optimisation framework

for deep learning models. It was chosen for the purpose of this study due to its ease of

use and also its recently introduced integration module for fastai. Optuna requires the

definition of an objective function to be optimised, and in this case was defined as the

model’s prediction of the three pollutants. Table 5.4 shows the search space for each of the
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Table 5.4: Details of Hyperparameters optimised using Optuna and GridSearchCV

Optimiser Hyperparameter Search space Result

Optuna

Number of layers (1,7) 3

Neurons per layer (50,200) 200,162,134

Weight decay (0.01,0.1) 0.01

Learning rate (1e−5,1e−1) 1e−3

Dropout probability (1e−3,1e−1) 0.2

GridSearchCV

Number of estimators (10,300) 250

Learning rate (1e−5,1e−1) 1e−1

Max depth (1,40) 12

Minimum samples
split

(0.01,1) 0.6

Alpha (0.1,2) 1.3

optimised hyperparameter and the associated value after 50 optuna trials. GridSearchCV is

an estimator within the sklearn library used to carry out brute force parameter search on

regression algorithms such as the one being explored in this study. The technique uses cross-

validation for this purpose while fitting and scoring each fold independently. GridSearchCV

was used to optimise the number of estimators, learning rate, max depth, minimum sample

split and alpha values for the gradientboostingregressor algorithm. Table 5.4 also shows the

selected hyperparameter values after optimisation.

5.5.3 Experiment 2 - exploring lagged dependent variables (LDVs)

This experiment sought better model performance through the introduction of lagged vari-

ables. Introducing lagged variables in regression analysis is not new as discussed in the study

of Wilkins (2018). The concept has been explored in several studies including air quality

research with some scholars arguing that it may introduce bias in the data set if not defined

properly (Grubb & Symons 1987). In this study the concept was implemented by carefully

creating a structured data set which contained actual readings from previous time points

leading to the current time point to be predicted. Each of these time points were depicted as

142



separate columns and fed into each model to be trained. The effect of this experiment was

that information of the previous time points needed to be provided for any future time point.

This was the sensitive bit that could easily lead to data leakage. A function was therefore

written to implement this idea while sequentially predicting all the timing points leading to

the current one. Results of experiment 2 are also reported in section 6.6 and it shows an

improvement from the previous experiment.

5.6 Model Validation and Results

This section highlights results of the experiments carried out in this study. Details of the

choice evaluation metrics and the methods used to select a suitable validation data are also

highlighted.

5.6.1 Performance Metrics

Evaluation metrics are used to check the performance of models during and after training.

Hence, it was necessary that suitable metrics for MTRs were first chosen even before training

was started. More importantly, the metrics were also used to validate the developed models

to make sure they were actually learning. Existing regression studies adopt metrics such as

mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage

error (MAPE) and mean square error (MSE) for model evaluation. Equations 5.3 to 5.5

illustrate the MAE, RMSE and MAPE metrics that were chosen as performance measures

where y is the actual value and ŷi is the predicted value. For fastai, a custom loss function

that could compute the model’s performance for each pollutant, average it and then update

the model’s weights accordingly was implemented. This was an important step to force the

model to learn appropriately and not perform exceptionally on one pollutant and poorly on

another.

MAE =
1

n

n∑
i=1

|yi − ŷi| (5.3)

143



MAPE =
100%

n

n∑
i=1

|yi − ŷi
yi
| (5.4)

RMSE =

√√√√ 1

n

n∑
i=1

|yi − ŷi|2 (5.5)

5.6.2 Test and Validation Data

Seventy percent of the entire dataset was used for training, while the remaining 30% was split

into validation (20%) and test (10%) sets. To preserve the seasonality within the data, the

dataset was first sorted by date and then split by index, ensuring no randomisation occurred.

Consequently, 8,953 rows were used for training, 2,398 rows for validation, and 1,199 rows

for testing. In terms of days, this translated to 39 days for validation and 27 days for

testing. Each data point represents hourly readings for all 44 features, with some data, such

as highway elevation and emission factors, being constant for each region. The validation

set was used to optimise the models’ parameters after each training loop, while the test set

was employed to evaluate the performance of the final model. Cross-validation, specifically

K-fold cross-validation, is a widely adopted validation method in regression analysis (Morin

& Davis 2017). K-fold cross-validation works by partitioning the dataset into ’k’ equal-sized

subsets or folds, then iteratively training and validating the model ’k’ times, using a different

fold as the validation set each time. This ensures that every data point is used for both

training and validation, providing a comprehensive assessment of the model’s performance.

This method was chosen to validate and test the accuracy of the trained models.

The implementation of K-fold cross-validation in this study involved combining the train-

ing and validation data sets (8,953 + 2,398 = 11,351) into 5 chunks of approximately 2,270

rows each. In the first step, the first chunk was used for validation while the other chunks

were used for training. In the second step, the second chunk was used for validation and
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the other chunks for training. This process was repeated until all chunks had been used for

cross-validation. Sklearn’s cross val score helper function was used to facilitate this cross

validation process for the fastai and multioutputregressor models. For the Prophet model,

this chunk is referred to as the period, while the number of days to be predicted is referred

to as the horizon. The horizon was set at 1 hour, 8 hours, 16 hours, and 24 hours based on

the model that was being trained and validated. This method ensured a robust evaluation

of the models’ performance across different time frames and data segments.

Table 5.5: Experiment 1 results of MTR models prediction for different timesteps

Pollutant & Timestep
Fastai Multioutputregressor Prophet

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

NO2 (ppb)

1hr 15.760 1.256 27.420 10.452 0.952 19.145 13.128 0.811 17.142

8hr 16.321 1.076 31.329 17.334 1.772 21.768 14.372 0.816 20.099

16hr 18.167 1.321 34.771 21.982 2.306 24.911 14.714 0.852 23.146

24hr 21.159 1.442 35.682 23.057 2.512 21.156 15.591 0.994 26.044

PM2.5 (µg/m3)

1hr 33.051 1.858 31.341 18.036 1.452 27.588 15.103 1.623 12.304

8hr 34.111 2.328 33.142 23.911 1.641 33.612 19.145 1.815 18.142

16hr 38.440 2.416 36.189 27.105 1.952 35.145 10.232 2.012 22.356

24hr 40.099 2.512 38.146 26.830 1.835 36.875 15.344 2.458 23.198

PM10 (µg/m3)

1hr 32.130 14.063 29.156 14.798 1.568 19.376 21.403 1.434 28.599

8hr 37.156 7.342 31.002 18.233 1.734 22.157 20.123 2.583 32.048

16hr 38.360 10.222 35.158 21.156 1.912 28.523 22.041 5.168 37.145

24hr 33.127 8.066 36.360 24.076 1.820 32.142 23.487 3.443 33.640

5.6.3 Experiment 1 Results

Models trained in the first experiment were evaluated over hourly, 8-hourly, 16-hourly, and

24-hourly timesteps, chosen for their practical relevance to stakeholders’ needs and con-

sistency with previous air quality studies (Bui et al. 2018, ?). These intervals allow for

immediate operational responses, alignment with work shifts and daily cycles, and support

day-ahead planning. Evaluating at multiple intervals captures various temporal patterns, en-

suring robust and effective models across different forecasting horizons. This comprehensive
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approach provides a thorough assessment of model performance, highlighting their strengths

and weaknesses, and ensuring versatility and reliability in various scenarios. Figure 5.11a

shows the training and validation loss for fastai after 1,500 epochs. From the plot, it can

be seen that the training loss reduced progressively but this was not indicative of the final

evaluation results shown in Table 5.6. The table shows the scores recorded for each algo-

rithm in each timestep. It is evident that all the models struggled with the 24hr and 16hr

predictions and performed slightly better with the hourly and 8hr predictions. The overall

minimum MAE, MAPE and RMSE 1hr scores for NO2 in this experiment was 10.452, 0.952,

19.145 respectively with the multioutputregressor model. Likewise, the best performance

for PM2.5 was on the prophet model with 15.103, 1.623 and 12.304 scores. For the most

part, fastai recorded the worst performance in this experiment with scores as high as 40.099,

2.512 and 38.146. To further strengthen the assumptions that the scores recorded on these

models were too high, a graphical plot of the actual readings and models’ predictions were

made as illustrated in figures 5.12-5.14. None of the models were able to perform well on all

three pollutants simultaneously. An ensemble of predictions from the two better performing

models - multiouputregressor and prophet was also explored but there was no improvement

with the achieved scores.
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(a) Experiment 1 - Fastai’s training and validation loss after 1500 epochs.

(b) Experiment 2 - Fastai’s training and validation loss after 3000 epochs.

Figure 5.11: Training and validation losses on Fastai after 1500 and 3000 epochs for experi-
ments 1 and 2 respectively.
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(a) Predicted vs Actual hourly NO2 readings.

(b) Predicted vs Actual hourly PM2.5 readings.

(c) Predicted vs Actual hourly PM10 readings.

Figure 5.12: Experiment 1 - Fastai’s model predictions.
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(a) Predicted vs Actual hourly NO2 readings.

(b) Predicted vs Actual hourly PM2.5 readings.

(c) Predicted vs Actual hourly PM10 readings.

Figure 5.13: Experiment 1 - MultiOutputRegressor’s model predictions.
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(a) Predicted vs Actual hourly NO2 concentration levels.

(b) Predicted vs Actual hourly PM2.5 concentration levels.

(c) Predicted vs Actual hourly PM10 concentration levels.

Figure 5.14: Experiment 1 - Prophet’s model predictions.
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Table 5.6: Experiment 2 results of MTR models prediction for different timesteps

Pollutant & Timestep
Fastai Multioutputregressor Prophet

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

NO2

1hr 5.333 0.412 8.312 9.132 1.012 15.325 10.122 0.931 14.122

8hr 7.182 0.676 9.042 13.562 1.622 19.328 13.306 0.826 19.059

16hr 6.325 0.521 8.763 20.152 2.133 22.541 14.334 0.782 22.326

24hr 8.058 0.731 10.324 22.034 2.262 20.331 15.591 0.924 24.134

PM2.5

1hr 3.062 0.258 5.341 16.506 1.243 23.124 14.332 1.589 11.752

8hr 4.251 0.328 4.142 21.121 1.476 33.612 18.032 1.629 16.302

16hr 4.430 0.399 5.189 23.105 1.432 35.145 9.112 1.892 20.126

24hr 5.639 0.435 6.146 22.498 1.835 36.875 13.763 2.298 21.156

PM10

1hr 3.124 0.267 5.443 13.332 1.228 18.069 20.313 1.254 27.169

8hr 4.022 0.354 4.783 18.023 1.734 21.100 19.523 2.383 30.124

16hr 4.129 0.378 5.034 19.326 1.912 26.613 20.376 4.198 32.225

24hr 5.123 0.462 6.343 21.312 1.820 31.298 21.809 3.213 31.004

5.6.4 Experiment 2 Results

There was an immediately noticeable improvement in the results obtained in experiment 2.

The metrics scores dropped considerably for the fastai model while the multioutputregressor

and prophet models also saw some improvements. The best scores were recorded by fastai

in this round of experiment for all three pollutants simultaneously. Although the model

in this experiment was run for 1,500 more epochs than experiment 1, this was not the

reason for the improved scores. The first experiment was only run for shorter epochs to

avoid overfitting since the validation and training losses were not reducing as the epochs

increased. A plot of the validation loss illustrated in figure 5.11b shows that the loss from

this experiment was lower from the beginning and reduced in a stable manner as compared

to experiment 1. The model’s worst performance was on NO2 24hr predictions with MAE

as high as 8.058. However, this result still outperforms the previous NO2 results for all

the models in experiment 1. From Table 5.6, it is hard to determine the model’s best

prediction performance since the results for PM2.5 and PM10 were quite similar on 1hr
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timestep predictions. The best average MAE, MAPE and RMSE scores was recorded as

3.062, 0.258 and 5.341 respectively. This improvement in the performance of the fastai model

can be associated with the introduction of lagged variables as well as the hyperparameter

tuning in this round of experiment. As illustrated in figures 5.16 and 5.17 and also Table

5.6, the prophet and multioutputregressor models also performed slightly better in this as

a result of these changes but the improvement was not as significant as fastai’s (see Figure

5.15).

5.6.5 Statistical significance of results

To further strengthen the confidence in the results achieved with fastai, it was necessary that

statistical hypothesis tests were carried out to weigh its performance against the two other

models. The non-parametric Friedman and the Wilcoxon signed-rank test were selected with

a null hypothesis (Ho) that there is no statistical difference between the predictions from

the three models. This hypothesis would be rejected if the chi-square was > 3.84 for the

Friedman test and p-value was below 0.05 for both tests. Both tests were performed on 20

MAE, MAPE and RMSE error readings from cross-validation in experiment 2. The Friedman

test for the 3 models resulted in a chi-square score of 6.45 and p-value of 0.03. Table 5.7

shows the result of the Wilcoxon test for pair-wise comparisons of the models. Just like the

Friedman test, all the p-value scores were less than 0.05. The result of both statistical tests

indicates that the hypothesis can be rejected and the predictions from fastai are statistically

different from the multiouputregressor and prophet models.

Table 5.7: Statistical significance and model evaluation using Wilcoxon signed rank test

Pair-wise comparison P-value Significance

Fastai and Prophet 0.02 Yes

Multioutputregressor and
Prophet

0.03 Yes

Fastai and Multioutputregressor 0.02 Yes
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(a) Predicted vs Actual hourly NO2 concentration
levels.

(b) Predicted vs Actual hourly PM2.5 concentra-
tion levels.

(c) Predicted vs Actual hourly PM10 concentra-
tion levels.

Figure 5.15: Experiment 2 - Fastai MTR predictions for NO2,PM2.5 and PM10.
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(a) Predicted vs Actual hourly NO2 concentration
levels.

(b) Predicted vs Actual hourly PM2.5 concentra-
tion levels.

(c) Predicted vs Actual hourly PM10 concentra-
tion levels.

Figure 5.16: Experiment 2 - MultiOutputRegressor’s MTR predictions for NO2,PM2.5 and
PM10. 154



(a) Predicted vs Actual hourly NO2 concentration levels.

(b) Predicted vs Actual hourly PM2.5 concentration levels.

(c) Predicted vs Actual hourly PM10 concentration levels.

Figure 5.17: Experiment 2 - Prophet’s model predictions.
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5.6.6 Results comparison with related work

Although numerous studies have focused on traffic-related air pollution prediction, very few

have explored multi-target prediction of pollutants or utilised the specific combination of

datasets employed in this study. To validate the performance of the algorithm proposed

in this study, a number of closely related studies conducted in locations similar to those

used for experiments in this research were selected. These studies were chosen not only for

their geographical relevance but also for their adoption of artificial neural network variants

similar to the deep learning algorithms applied in this research. For instance, the studies by

Suleiman et al. (2019) and Cabaneros et al. (2017) were conducted in London and focused on

forecasting roadside concentrations ofNO2, PM2.5, and PM10 using artificial neural networks.

We replicated the data cleaning processes reported in these studies and used their datasets

to train and evaluate models using our proposed algorithm. This approach ensured a fair

comparison by maintaining consistency in data preprocessing and modelling techniques.

The results of the proposed method in this research, compared with those reported in

the selected studies, are presented in Table 5.8. The resulting models from each retrain-

ing processs consistently outperformed the benchmarks, achieving a minimum improvement

of 5% in RMSE scores. This enhanced performance can be attributed to several factors.

Firstly, the use of additional training data enriched our model’s learning process, enabling

it to capture more complex patterns and variations in the data. Secondly, the adoption of

categorical embeddings allowed the developed models to handle categorical variables more

effectively, leading to more accurate predictions. This validation underscores the robustness

and effectiveness of the proposed approach, making it a valuable tool for urban air quality

management. The consistent performance gains across different locations further validate

the generalisability and reliability of the approach.
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Table 5.8: Comparison of prediction results with existing studies based on RMSE score

Reference Data Source Method Pollutant RMSE
(lowest)

MTR
RMSE
(This
study)

Cabaneros et al. (2017) Marlyeborne Road Monitoring sites Hybrid Artificial Neural Networks NO2 22.05 17.03

Suleiman et al. (2019)
Monitoring sites Artificial Neural Network, SVM, BRT PM2.5 4.67 2.13

PM10 10.05 8.23

Li et al. (2020)
Hong Kong Roadside station SVM, GAM, XGBoost, RF, BRT PM2.5 7.90 6.10

NOx 30 28

Jida et al. (2021)
Aeroqual AQ sensor Artificial Neural Network PM2.5 8.45 7.11

PM10 12.42 11.09

Wu et al. (2022) Shanghai Roadside stations Neural Networks - LSTM NO2 9.61 8.54

Mengara Mengara et al. (2022)
South Korea Roadside stations LSTM, Auto Encoder, Convolutional Neural Networks PM2.5 7.40 6.12

PM10 9.81 8.33

5.6.7 Experiment 3 - verify model’s performance on missing data

An additional test was carried out to evaluate the performance of the fastai model from

experiment 2 in a real-life scenario where some of the integrated data might be missing. It

is suggested that as much data as possible is sourced to get optimum performance, but this

may not always be the case. To replicate this scenario, the values for the intended missing

data were replaced with zeros in the test data before model inferencing. It was important

to not drop the columns entirely since the model was originally trained on 44 features and

dropping them would result in errors. Similarly, replacing with Nan instead of zeros results

in errors too. The model’s predictive performance when traffic, weather, emissions factor,

background concentration or elevation data are missing can be seen on figures 5.18-5.22. The

illustrations indicate varying predictive accuracy depending on the missing data. The model’s

performance is worse when weather data is missing and poor when elevation or background

concentration data are missing. NO2 prediction is the most affected in these missing data

scenarios. This performance variation with certain missing data begs the question - What

are the most important features that must be captured for a reasonable prediction accuracy?
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(a) NO2 hourly predictions missing traffic data.

(b) PM2.5 hourly predictions missing traffic data.

(c) PM10 hourly predictions missing traffic data.

Figure 5.18: Fastai model’s performance when missing traffic data.
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(a) NO2 hourly predictions missing weather data.

(b) PM2.5 hourly predictions missing weather
data.

(c) PM10 hourly predictions missing weather
data.

Figure 5.19: Fastai model’s performance when missing weather data
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(a) NO2 hourly predictions missing elevation data.

(b) PM2.5 hourly predictions missing elevation data.

(c) PM10 hourly predictions missing elevation data.

Figure 5.20: Fastai model’s performance when missing elevation data
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(a) NO2 hourly predictions missing emissions factor data.

(b) PM2.5 hourly predictions missing emissions factor data.

(c) PM10 hourly predictions missing emissions factor data.

Figure 5.21: Fastai model’s performance when missing emissions factor data
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(a) NO2 hourly predictions missing background concentration data.

(b) PM2.5 hourly predictions missing background concentration data.

(c) PM10 hourly predictions missing background concentration data.

Figure 5.22: Fastai model’s performance when missing background concentration data
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5.7 Feature importance on best model results

Following the improvement of fastai model’s performance in experiment 2, further investiga-

tion was carried out to understand which of the input parameters were the most influential

in the model’s predictions. This section highlights the outcome of this analysis.

5.7.1 Experiment 4 - fewer features, same accuracy

Machine learning models developed with advanced algorithms such as deep learning are con-

sidered black box models (Akinosho et al. 2020). This is as a result of the complexities

involved in understanding what happens behind the scenes for most of these models. It is

particularly important in the air quality domain to highlight the main contributors to pollu-

tion through this kind of understanding. Thankfully, various tools are now available to make

models explanable and fastai’s Interpretation classes further facilitate this task. A feature

importance plot as shown in figure 5.23 was plotted using one of these tools and this gave

many insights into which of the 44 input parameters were the least and most contributing.

From the plot it is observable that ‘LGV Count’, ‘Other Avg speed’, ‘Bus Count’, ‘Wind Di-

rection’, ‘Car Count’, ‘HGV Count’, ‘NO2 emission factor’ and ‘DATETimeHour’ were the

most influential features. These are mainly traffic parameters except the ’Wind Direction’

and ’DATETimeHour’ features. All the additional date variables that were added to the

data set had none to little impact with some even recording negative importance. Similarly,

‘highway elevation’, ‘background NO2’ and other weather parameters were not important

for the model’s predictions. The fastai model was retrained while dropping these low and

negative influencing parameters to see if its performance would be any different and if the

feature importance will be reshuffled.

Figure 5.24 shows the feature importance after retraining on just the top 12 features from

experiment 2. The model’s accuracy remained similar to what was achieved in experiment

2 but the feature importance was reorganised. It can be noticed that most of the traffic
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parameters maintained the top spot with only car count dropping behind. The date param-

eter were also influential with the hour of the day having the highest influence. The wind

direction and NO2 emission factor features dropped to the bottom of the list in this round.

However, it is worth reiterating that these least influential features are only not so important

for this minimised data set but had significant impact in the overall data set

Figure 5.23: Feature importance from experiment 2. Traffic features including ‘LGV count’
and ‘car count’, ‘average speed’ were in the top list with the hour of the day, ‘wind direction’,
‘PM emission factor’ and ‘NO2 emission factor’ also part of this list. Some of the least
influential parameters were ‘bike count’, minute of the day and similar date parameters.

Figure 5.24: Feature importance after retraining on the top twelve features from experiment
2. All the traffic features except ‘car count’ maintained the top spot while ‘wind direction’
and ‘NO2 emission factor’ dropped further down the importance list.
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5.7.2 Experiment 5 - features ablation test

The result of running an ablation test on the fastai model to further corroborate the im-

portance of the training features is illustrated in figure 5.25. The test was carried out by

dropping each feature one at a time and then retraining the model on the remaining features

to predict all three pollutants. The RMSE score on the test data for each pollutant was

recorded once the model retraining process was complete and the model was cross validated.

This score was then compared to the RMSE score when all the features were used. The

x-axis on the figure represents each feature that was dropped while the y-axis represents the

recorded RMSE score. It can be observed that the impact of dropping most of the additional

date parameters was almost non-significant except for the hour parameter. Similarly, drop-

ping the weather parameters, background pollution data and traffic parameters all resulted

in a significant increase in the RMSE score to a level that is almost similar to experiment

1. Removing the other features had less impact on the model’s performance. The result of

this ablation test corresponds with the feature importance from the previous section where

traffic and weather parameters were highlighted as important.
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Figure 5.25: Feature ablation test to reveal features with the most impact on fastai model’s
predictions. The x-axis contains the feature list with each tick representing the feature that
was removed when the model was retrained and RMSE score recalculated. The RMSE scores
are represented on the y-axis. This chart indicates the importance of traffic and weather
data as the RMSE scores increased when these features were removed from the data set.
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5.8 Chapter Summary

This chapter builds on the forecasting model developed in the previous chapter. Uncon-

ventional training data, including terrain information, background pollutant concentrations,

and emissions factors, was integrated with conventional data such as traffic flow, weather

conditions, and historical pollution levels. Multi-target prediction models were trained for

NO2, PM2.5, and PM10, with the results indicating the effectiveness of the models, albeit re-

quiring extensive hyperparameter tuning. The best performance was achieved with fastai for

simultaneous hourly predictions of all three pollutants, excelling with PM2.5 and PM10 but

encountering challenges in accurately predicting NO2 spikes, particularly those caused by lo-

calised pollution. Key contributors to model performance were identified as traffic, weather,

time of day, and emission factors. This chapter underscores the potential improvement in

prediction accuracy by incorporating additional highway features, while acknowledging the

persistent challenge of unusual spikes, prompting further investigation into such scenarios.
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Chapter 6

Algorthmic Audit and Model

Integration In Journey Planner

6.1 Chapter Overview

In this chapter, a comprehensive exploration of the constraints and shortcomings of the de-

veloped MTR model is conducted, particularly focusing on its challenges in handling peak

scenarios for pollutant levels. The primary objective is to discern the underlying factors con-

tributing to these limitations while seeking avenues for enhancing the model’s performance.

Additionally, this chapter sheds light on the practical aspects of integrating and deploying

the model within a mobile journey planning application, highlighting the steps involved in

this process.

6.2 Baseline Model Evaluation

6.2.1 Multi-target regression deep learning model

This study builds upon the MTR-1 model developed in the previous chapter. MTR-1 was

designed to simultaneously predict concentration levels of PM2.5, PM10, and NO2 at time-

points - 8hrs, 16hrs, and 24hrs. To develop this model, an innovative approach was employed,
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leveraging the capabilities of fastai, a robust deep learning framework. The model’s architec-

tural design features a 3-layered Recurrent Neural Network (RNN) with 200 neurons in the

initial layer, 162 neurons in the second layer, and 134 neurons in the third layer.

The process of gathering training data occurred between November 2020 and November

2021, employing REVIS sensors strategically placed along dedicated sections of the four high-

ways. While historical pollution and meteorological data were acquired through these sensors,

additional data such as pollution levels, geographical factors, emission indicators, and traffic

flow statistics were integrated from external sources using an integration approach proposed

in an earlier study (Akinosho et al. 2022). The incorporation of novel highway parame-

ters, previously unexplored in traditional Traffic-Related Air Pollution (TRAP) prediction,

yielded promising outcomes, enabling the model to unveil the intricacies of pollution dynam-

ics along the studied highways. However, the model encountered challenges during specific

peak events, prompting this study’s exploration into the underlying causes and potential

avenues for enhancing efficiency, particularly concerning infrequent occurrences.

Table 6.1: Boundary values for outlier detection in the target pollutants

Pollutant Boundary Value (Lower Threshold) Boundary Value (Upper Threshold)

NO2 -27.26 71.17

PM2.5 -35.05 54.47

PM10 -41.84 65.44

6.2.2 Identifying outliers from original data set

The MTR-1 model was audited using the framework proposed by the study of Raji et al.

(2020) to spot and describe inaccuracies. According to their study, these inaccuracies refer

to any artificial intelligence system results that don’t match accuracy expectations and with

the potential of derailing outputs if not detected. To achieve this, an exploratory error
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analysis was carried out to understand the reasons behind the model’s failures and to identify

potential outliers. For outlier detection, the z-score method was adopted, chosen based

on the observed data distribution, which closely adheres to a normal distribution. The z-

score technique allowed the effective identification and isolation of data points that exhibit

substantial deviations from the data set’s central tendency. The z-score method gauges the

extent to which each data point deviates from the data set’s mean in terms of standard

deviations. Those data points exceeding a specified threshold, typically set at around ±2 to

±3 standard deviations, are categorised as outliers. This approach proves to be particularly

suitable for the data set, as it enables us to pinpoint those values that may signal uncommon

events or reflect measurement errors. In the process, a total of 447 outliers were identified

within the data set. Figure 6.1 shows these outliers consisting of 168 associated with NO2,

150 PM2.5, and 129 PM10 outliers. These findings provide valuable insights into the data

set’s unique characteristics and help in understanding which pollutants or variables exhibit

the most significant deviations from the norm. To offer a comprehensive overview of these

findings, Table 6.1 summarises the boundary values for the three pollutants which were

computed using equation 6.1, and indicates the thresholds that determined outlier status for

each pollutant in the analysis.

z =
x− µ
σ

, z ∈ {−3,+3} (6.1)

6.2.3 Model’s performance on outliers

A comprehensive assessment of the MTR-1 model’s performance was conducted in the pres-

ence of outliers. To achieve this, cross-validation techniques were employed while the model’s

results were compared on both outlier-prone and outlier-free subsets of the data set. This ap-

proach provided valuable insights into the model’s generalisation capabilities, shedding light

on its robustness in handling challenging data points. For performance evaluation, tradi-

tional regression metrics such as Mean Squared Error (MSE) and Root Mean Squared Error
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Figure 6.1: Outliers detected within target pollutants: A total of 447 outliers detected,
comprising 168 NO2 outliers, 150 PM2.5 outliers, and 129 PM10 outliers.

(RMSE) were adopted to gauge overall predictive accuracy. Special attention was given to

the potential impact of outliers on these metrics, as extreme values can inflate error mea-

surements. To mitigate this, other alternative metrics like Mean Absolute Error (MAE) were

considered and the use of robust regression techniques known for their reduced sensitivity to

extreme values was also explored. In addition, visualisation plots were used to offer a more

in-depth examination of the MTR-1 model’s performance. These plots illustrated the model’s

predictive accuracy by comparing predicted values against actual outlier values, providing a

clear visual representation of its performance, as depicted in Figure 6.2. This multi-faceted

approach allowed us to thoroughly assess the model’s ability to handle outliers and provided

a comprehensive evaluation of its predictive capabilities.

6.2.4 Synthetic data generation from outliers

Following the identification of outliers, the next step was to generate synthetic data sets using

the GaussianCopula method from the sdv.tabular library. This step was important for fine-

tuning the MTR model to get a better performance on unique scenarios where it struggled.
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(a) Actual vs predicted NO2 outliers using the MTR-1 model.

(b) Actual vs predicted PM2.5 outliers using the MTR-1 model.

(c) Actual vs predicted PM10 outliers using the MTR-1 model.

Figure 6.2: Plots of MTR-1 model’s performance on predicting NO2,PM2.5 and PM10 outliers
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The GaussianCopula method is a useful approach for creating realistic and representative

data for various data science tasks. It uses a copula-based generative model that captures

the dependencies between variables in the data, making it suitable for preserving complex

multivariate relationships. To generate a synthetic data set, the first step is to define the

metadata and constraints of the target data set, such as column data types, primary keys,

and unique constraints. Once the metadata is set up, the GaussianCopula model can then

be used to sample data. The GaussianCopula method works by transforming the data into a

multivariate Gaussian distribution with specified correlations, and then sampling from this

distribution. This ensures that the generated data preserves the statistical characteristics and

dependencies present in the original data set. Figure 6.3 illustrates the gaussian distribution

of the outliers that was used to generate 12000 (4000 per pollutant) additional training data

and the distribution of the generated data which is quite similar.

(a) Distribution of original outlier data set (b) Distribution of generated outlier data set.

Figure 6.3: Distribution of outlier data sets (a) and generated training data set using the
GaussianCopula method (b). Both plots depict normal distributions for both data sets, a key
characteristic and prerequisite for employing the GaussianCopula data generation technique.
Notably, a similarity is also evident in the distributions of both data sets
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6.3 Experimentation

The MTR-1 model underwent fine-tuning on the newly generated data set, resulting in the

creation of the MTR-1E(Enhanced) model. While retaining the original fastai architecture

for model training, a hyperparameter search was carried out to optimise its performance.

This section provides a detailed overview of the model training and experimentation steps

that were undertaken in this process.

6.3.1 MTR-1E Model Training and Validation

The initial phase of experiments involved standard data cleaning procedures aimed at en-

suring the reliability and accuracy of the data set for subsequent analyses and machine

learning tasks. Duplicate records were identified and subsequently removed to mitigate any

potential data distortions. In addition, data points with missing target data were addressed

through careful data imputation techniques. Inconsistent data formats, such as date formats

or categorical variables, were looked for and standardised for uniformity. The data set was

segregated into categorical and continuous variables as required by the subsequent modelling

process. Rather than conducting a complete retraining, the initial model underwent fine-

tuning when exposed to the new data set. This approach was chosen to leverage MTR-1’s

existing knowledge about the target pollutants. To facilitate this, slight modifications were

made to the training architecture. Specifically, the last layer of the pre-trained model was

frozen to prevent it from being updated during fine-tuning, while keeping the rest of the ar-

chitecture largely unchanged. The architecture comprised three fully connected layers with

200, 162, and 134 nodes, a weight decay of 1e−2, a learning rate of 1e−3, and a dropout

probability of 0.2.

The data set, consisting of 12,000 data points, was split into training (70%, 8,400), val-

idation (20%, 2,400), and test (10%, 1,200) sets. The resulting model, now referred to as

MTR-1E was trained for 1300 epochs. Figure 6.4 illustrates the validation and training loss
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trends following the training process. For model evaluation, two separate test sets were used:

Test set A was derived from the synthetic dataset created in section 5.4.2 and was used to

evaluate the model’s performance under controlled conditions. This test set is designed to

mimic realistic but systematically varied data, ensuring that the model’s ability to generalise

to typical scenarios is rigorously assessed. Test set B, on the other hand, comprised out-

liers from the original dataset. The purpose of using Test set B is to evaluate the model’s

robustness and resilience when faced with anomalous or unexpected conditions. By testing

the model on these outliers, we can assess its ability to maintain accuracy and reliability in

real-world scenarios where data may not always conform to typical patterns. This dual test-

ing approach ensures a comprehensive evaluation of the model’s performance, covering both

standard and extreme conditions.one from the synthetic dataset (Test set A) and another

containing outliers from the original dataset (Test set B).

Figure 6.4: Training and validation loss after 1300 epochs training a model with the synthetic
data set.

6.3.2 Model Performance Evaluation and Results

Model evaluation and validation are essential steps in assessing the performance of machine

learning models. Two commonly used metrics for this purpose are Root Mean Squared
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Table 6.2: Comparing results of MTR-1 vs MTR-1E’s performance on Test set A and B

MTR-1 MTR-1E

Pollutant Test set A Test set B Test set A Test set B

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

NO2 8.74 10.57 7.32 9.83 7.77 9.19 6.22 8.84

PM2.5 6.42 8.14 5.13 7.11 5.58 7.08 4.36 6.32

PM10 7.83 9.77 6.98 8.15 6.81 8.30 6.29 7.09

Error (RMSE) and Mean Absolute Error (MAE). RMSE provides a measure of the average

magnitude of prediction errors, taking into account both the size and direction of deviations

between predicted and actual values. Lower RMSE values indicate better model accuracy,

and it is particularly useful when large errors should be penalized more heavily. On the other

hand, MAE measures the average absolute magnitude of prediction errors, disregarding their

direction. MAE is more robust to outliers and provides a straightforward interpretation as it

represents the average prediction error in the same units as the target variable (Morley et al.

2018). Combining these metrics in model evaluation offers a comprehensive view of predictive

performance, with RMSE providing insight into error magnitude and MAE offering a more

interpretable measure of average error. Both MAE and RMSE were used as evaluation metrics

for the MTR-1E model. In comparison to MTR-1, which the experiment sought to enhance,

Table 6.2 presents the evaluation scores when the model was tested on two distinct test sets.

It is noteworthy that MTR-1E exhibited significant improvement, recording approximately

10-15% enhancement over MTR-1. Additionally, a visual plot of predicted versus actual

values, as shown in Figure 6.5, further illustrates a closer alignment than what was initially

depicted in Figure 6.2.
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(a) Actual vs predicted NO2 outliers using the MTR-1E model.

(b) Actual vs predicted PM2.5 outliers using the MTR-1E model.

(c) Actual vs predicted PM10 outliers using the MTR-1E model.

Figure 6.5: Plots of MTR-1E model’s performance on predicting NO2,PM2.5 and PM10

outliers
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6.4 Model Deployment and Journey Planner Integration

The improved MTR-1E model was deployed on Oracle Cloud to predict pollution levels along

road segments using weather data, traffic data, and other relevant highway parameters. This

section explains the deployment process of the model and its integration into a route planning

mobile application.

6.4.1 Oracle Cloud Deployment

Deploying a fastai model on Oracle cloud involves a series of steps to ensure a seamless tran-

sition from model development to real-world usage. Initially, the MTR-1E model needed to

be prepared for deployment. This typically involved exporting the model in a format compat-

ible with the Oracle cloud environment. Common choices include exporting it as a PyTorch

’.pth’ file or converting it to ’ONNX’ format, which ensures compatibility with different de-

ployment platforms. With the model ready, the next step was to set up the deployment

environment on Oracle cloud. This involved creating a compute instance that includes the

necessary dependencies, such as Python, PyTorch, fastai, and any additional libraries used

in the model. Oracle cloud provides flexible options for setting up this environment, whether

through virtual machines or containerisation using services like Oracle container engine for

Kubernetes.

After configuring the environment, the model was then deployed as a serverless function

orchestrated through Oracle Functions to serve predictions. Oracle Functions is primarily

used for building event-driven applications. One can write functions that respond to various

types of events, such as HTTP requests, messages from messaging systems, changes in data

storage, and more. These functions execute in response to specific triggers, reducing the need

for manual intervention. In this instance, the function loads the model, handles incoming

data, and returns predictions via http responses. Oracle cloud’s infrastructure provided a

scalable and reliable hosting options to accommodate varying levels of traffic and demand.

178



Before deploying the model in production environment, rigorous testing and quality assurance

were carried out. This includes comprehensive testing to ensure that the model performs as

expected, handling input data correctly, and meeting performance benchmarks. Monitoring

and logging mechanisms were also put in place to keep track of the model’s behaviour in the

production environment and facilitate troubleshooting when issues arise.

Finally, continuous monitoring, maintenance, and updates were integral to the successful

deployment of the prediction model. Regular monitoring of the model’s performance, apply-

ing necessary updates to its dependencies, and being prepared to retrain and redeploy the

model when new data becomes available was necessary. Continuous integration and contin-

uous deployment (CI/CD) pipelines were implemented to streamline this process, making it

easier to manage and update the deployed fastai model on Oracle Cloud.

6.4.2 Development of REVIS Travel Planner (RTP)

REVIS Travel Planner (RTP) is a multifunctional travel planning application tailored to

assist users in making well-informed and efficient travel decisions. It simplifies the process

of planning journeys by offering users various essential features and capabilities. Android

and iOS versions of RTP were developed as part of this study to enhance availability to

users. The Android version of the app was developed using Java programming language

and Android SDK, while the iOS version was developed using Swift programming language

and Xcode. Figure 6.6 shows screenshots of both versions. One main function of RTP is

traffic and emission-based route planning which allows users to decide how to chart out their

journeys from a starting point to their desired destination. The app uses a location search

feature that simplifies the task of finding start and end locations using postcodes or street

addresses. Users of the app can select between cycling, walking and driving travel modes and

also choose pollution or traffic-based route suggestions. RTP also provides comprehensive

journey details including the total distance to be covered and the estimated duration of their
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journey.

(a) RTP iOS automatic
user location detection
and emission-based route
suggestion.

(b) RTP Android automatic
user location detection and
emission-based route sugges-
tion.

(c) RTP Android colour-
coded map display.

Figure 6.6: Screenshots demonstrating key features of the RTP iOS and Android app: user
location detection, travel modes, emission-based route planning, and colour-coded route dis-
play on maps

6.4.3 Integration of Mapbox Software Development Kit

Mapbox was first introduced in 2010. It was founded by Eric Gundersen and provides a

platform for customizing maps and geospatial data visualization, making it a valuable tool

for developers and businesses to integrate location-based services into their applications (Zas-

trow 2015). Since its inception, Mapbox has gained popularity and is widely used for various

mapping and location-based applications, including navigation, gaming, and data visualisa-

tion. Integrating the Mapbox SDK for emission-based route planning involves a systematic

process. Firstly, it was important to ensure the correct configuration was in place including
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the integration of API keys. Next was to harness the power of the Mapbox Directions API.

This API allows for dynamic and traffic-aware route planning by making requests that fetch

real-time traffic information, road closures, and estimated travel times. The functionality of

this API was extended by integrating emission data from the MTR-1E prediction model. The

aim was to tailor route planning options to meet specific user preferences, such as selecting

the quickest or shortest route, optimising routes for various modes of transportation or se-

lecting least polluted routes. Mapbox provided the possibility of creating visually appealing

and user-friendly maps that not only display routes but also provide additional context, such

as nearby points of interest, landmarks, and terrain information.

6.4.4 Integrating Model Forecasts into RTP

The model was integrated into RTP through web service invocations. The process took

two iterations to determine the best integration approach. In the first iteration, the route

between two points, A and B, was split into segments, and a prediction was made by the

model for each segment. For example, if the route had 50 road segments, the model had

to be invoked 50 times. This approach was time-consuming and took too long for the user

to get the results. In the second approach, the app utilised historical pollution predictions

for common routes. The prediction for frequently queried routes and road segments were

stored and readily available in a cache on the user’s device, making it less computationally

demanding. This approach offered a faster and more resource-efficient solution for the users

of RTP. For app visualisation, each road segment was assigned a colour code based on the

standard UKAIR daily air quality index (DAQI). Each pollutant had its associated DAQI

band on each segment, and the overall DAQI band (computed by averaging these bands) for

the route was used to determine the air quality situation on the route.
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6.5 Chapter Summary

In this chapter, an audit of the multi-target regression model designed for predicting NO2,

PM2.5, and PM10 concentrations on highways is carried out. To accomplish this, an ex-

ploratory error analysis was conducted, uncovering previously undetected outliers that had

an impact on the model’s predictive accuracy. These identified outliers were subsequently

used to generate additional training data with the aim of enhancing the model’s perfor-

mance. In addition, the chapter also demonstrated the deployment process of the model

and its practical utilisation in real-world scenarios by integrating it into a mobile journey

planning application. This application allows users to plan their routes based on emission

levels from their starting point to their destination.
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Chapter 7

Conclusion and Recommendations

7.1 Chapter Overview

This concluding chapter encapsulates the findings of this study, emphasising its practical im-

plications in technology, society, and economics. It also addresses the challenges encountered

during the research and the corresponding mitigation strategies. Lastly, recommendations

for future research directions are provided to guide upcoming scholarly pursuits in this field.

7.2 Summary Of The Study

Air Quality has been an age-long issue in the UK and around the world since the industrial

revolution of the mid-19th century with its effects significantly felt in the mid-20th century,

such as the great smog of London in 1956. Subsequently, there has been tremendous efforts

in the UK to eliminate or reduce the impact of air pollution, especially on highways through

highway standards and air quality policies. A major problem with developing these standards

and policies is the absence of informed decision-making through the acquisition of accurate

data and derivation of relevant insight about air quality challenges and opportunities. This

study aimed to propose a scalable deep learning framework for monitoring and forecasting

pollutant concentration levels on UK highways. A mixed method approach was adopted

to understand the necessary aspects of the proposed framework, develop and evaluate a
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prototype system (REVIS) in a bid to implement the framework and address the identified

gaps in air quality management on highways.

The REVIS system was used to demonstrate the possibility of optimising the cost, effi-

ciency and environmental impact of hardware IoT devices through the development, calibra-

tion and deployment of monitoring units to capture real-time pollution data on highways.

The devices were developed through an excellent design of both analogue and digital cir-

cuitry around it and an iterative approach of calibration and performance optimisation. For

data modelling and air quality forecasting, it is important to note that sensors data alone

are not sufficient for ensuring accuracy in these models. There are a number of air quality

data sources, which exist separately but can provide better insights about air quality if well

explored and integrated. An important aspect of this study is to integrate missing or in-

accurate data from heterogeneous sources to enhance forecasting accuracy of the developed

deep learning model. The essence of this layer is to ensure that data not captured in the

hardware layer by the monitoring devices can be integrated into the system to improve the

performance. Similarly, an exploratory analysis on the captured and integrated data was

conducted to evaluate the impact of different parameters on pollutant concentration. It is

well established in literature that weather parameters such as rainfall and temperature in-

fluence the dispersion rates of pollutants (Barrera-Animas et al. 2022). Hence, there is need

for a more coordinated approach such as the one proposed in this study to manage multiple

data sources, which are relevant for accurately forecasting air quality on highways through

common data environment and data integration.

Finally, this study contributes to existing body of air quality monitoring knowledge by in-

vestigating how additional data which are rarely integrated in TRAP forecasting could help

improve accuracy. Unconventional training data for AI models such as terrain data, pol-

lutants background concentration and emissions factor were integrated with the traditional
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traffic flow, weather and historic pollution data and used to train multi-target prediction mod-

els for NO2, PM2.5 and PM10. The results of the experiments demonstrate the efficacy of the

MTR models albeit with a lot of hyperparameter tuning required. The best performance was

achieved with fastai on simultaneous hourly predictions for all three pollutants. The model

performed well with PM2.5 and PM10 and was able to capture peak episodes but struggled

with similar spikes for NO2. In addition, evaluating the feature importance revealed key

contributors to the model’s performance, with traffic, weather, hour of the day and emission

factor being the most significant. The limitations of this baseline model prompted further

investigation in form of an algorithmic audit into why the model’s performance was not too

good with unique peak events. An exploratory error analysis revealed previously undetected

outliers that negatively affected the model’s predictive accuracy. These identified outliers

were subsequently used to generate additional training data with the objective of enhancing

the model’s performance. Standard data processing techniques, including data imputation,

aggregation, and transformation, were employed to preprocess the data before model train-

ing. The resultant model showed an improvement of approximately 10-15% when tested

against both the outlier data set and a subset of the newly generated data set. This out-

come highlights the potential for improving underperforming deep learning models through

algorithmic audits.

7.3 Reflections on the Quantitative Results

The quantitative results presented in this study demonstrate the effectiveness and limita-

tions of various models in TRAP forecasting across different pollutants and time-frames. By

employing multiple performance metrics — MAE, MAPE, and RMSE — the study ensures

a comprehensive evaluation of model accuracy and robustness. In the first experiment re-

ported in Chapter Five, models were evaluated over hourly, 8-hourly, 16-hourly, and 24-hourly

timesteps. The results revealed that all models performed better on shorter timeframes, with

the MultiOutputRegressor model achieving the lowest errors for NO2 at 1-hour intervals
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and the Prophet model excelling in PM2.5 predictions. The Fastai model, however, recorded

the highest errors across most metrics, indicating it struggled with capturing the intricate

dynamics of TRAP. The significant disparity in performance across different pollutants and

timeframes highlights the challenge of developing a universally effective model for TRAP

forecasting.

For the second experiment, after increasing the number of epochs and introducing lagged

variables and hyperparameter tuning, there was a noticeable improvement in the Fastai

model’s performance. It outperformed the other models across all pollutants, especially in

shorter timeframes. This improvement underscores the importance of model tuning and the

inclusion of relevant temporal features in enhancing predictive accuracy. The reduction in

validation loss over extended epochs indicates a better generalization capability of the Fastai

model in this setup. Statistical significance tests, including the Friedman and Wilcoxon

signed-rank tests, confirmed that the performance improvements of the Fastai model were

statistically significant compared to the MultiOutputRegressor and Prophet models. These

tests reinforce the reliability of the improved results obtained in the second experiment.

The comparison with existing studies shows that the proposed method, particularly with

the refined Fastai model, achieves lower RMSE scores for NO2, PM2.5, and PM10, outper-

forming most of the reviewed approaches. This superior performance can be attributed to

the use of categorical embeddings and a comprehensive dataset integrating traffic, weather,

and environmental factors. Experiment 3, which tested the model’s robustness to missing

data, revealed that the Fastai model’s accuracy significantly drops when critical features

like weather data and background concentrations are missing. This finding emphasises the

necessity of comprehensive and continuous data collection to maintain high forecasting accu-

racy.Results of the feature importance analysis and ablation testing also validated the critical

role of traffic and weather parameters in the model’s predictions. The insights gained from
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these analyses highlight the importance of specific features in TRAP forecasting and suggest

directions for optimising data collection efforts to improve model performance.

In summary, the experiments demonstrate that while deep learning models, particularly

Fastai, can significantly enhance TRAP forecasting accuracy, their effectiveness is highly

dependent on comprehensive data and appropriate feature engineering. The study’s find-

ings provide valuable insights into the optimisation of model parameters and the critical

importance of continuous, high-quality data collection for accurate air pollution forecasting.

7.4 Challenges

While this study effectively tackled energy interference and cross-sensitivity issues in the

developed sensing devices, it encountered certain inconsistencies in the NO2 data, which

could be directly attributed to the chosen pollutant sensor. Further investigation revealed

that the sensor’s performance was influenced by various factors, including its sensitivity to

temperature fluctuations and potential interference from other gases in the atmosphere. To

resolve these NO2 data inconsistencies, an exploration of potential solutions was initiated.

Key strategies included the selection of sensors specifically designed to resist environmental

cross-sensitivities and implementing hardware filters to shield and protect the sensors from

unwanted frequencies and noise. Additionally, environmental compensation algorithms were

planned to adjust readings based on known impacts such as temperature or humidity, aiming

to enhance the reliability and accuracy of the NO2 measurements.

In addition to these sensor-related challenges, the study involved the integration of data

from various sources, which presented its own set of difficulties. While some data, including

historic pollution and certain weather data, were publicly available, access to the remaining

data required additional research authorisation requests. Traffic flow data, in particular,
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posed accessibility challenges. Data integration also had to contend with the disparity in

data formats from different sources, which was resolved through the creation of data in-

tegration maps. These integrated data sets were subsequently used to train models with

three prominent algorithms: deep learning, time-series, and linear regression. The goal was

to demonstrate how well AI models performed with the newly curated data compared to

conventional air quality modelling tools.

The results from this study show that just like any other machine learning task, sufficient

hyperparameter tuning is required when training these models irrespective of the quality or

type of data being used. Despite fastai’s default incorporation of new deep learning tech-

niques such as ‘entity embeddings for categorical variables’, the library’s training parameters

still needed to be tweaked for better results. The trained model was able to capture general

pollution levels including rise in pollution and drop off but was not able to capture unpre-

dictable peak events that could have been caused by specific occurrences such as an extra

congestion. This is an indication that more features or peak events data can still be captured

in the data set in order to model the specific causes of these peaks. Another approach is to

tackle the prediction as a classification problem rather than a regression one. This will enable

the use of advanced loss functions like focal loss which are designed to force an algorithm to

learn rare trends in the data.

Some challenges were encountered during model integration and development of the RTP

app. First was the issue of latency which impacted the app’s responsiveness until a solution

was found. Platform compatibility was also an issue which led to the development of Android

and iOS applications separately. Ideally, this study should have adopted newer technologies

such as Flutter or Ionic which allows the development of Programmable Web Apps (PWAs)

that are able to run on multiple platforms. Similarly, ensuring the security and privacy of user

data was another constraint. Handling sensitive location and pollution-related information
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required stringent security measures and compliance with data protection regulations, adding

complexity to the development process. Real-time data and connectivity issues occasionally

affected the app’s performance. Dependence on up-to-the-minute data, including traffic

and weather conditions, meant that limited connectivity or data delays could impact the

app’s real-time functionality. Finally, User engagement and trust were important but often

difficult to establish. Convincing users to adopt the app and place confidence in its pollution

predictions required clear explanations of the AI model’s workings and its limitations.

7.5 Implication For Practice

The study’s timing aligns perfectly with the growing global mandate for regular air qual-

ity assessment in major cities (Zeng et al. 2019). From a social perspective, the approach

proposed here holds the promise of mitigating traffic-related pollution risks faced by citizens

worldwide. It addresses the environmental justice concerns, especially in developed countries,

where vulnerable communities often lack adequate resources and are disproportionately af-

fected by traffic pollution (Barnes et al. 2019). The improved air quality management system,

supported by accurate forecasting, empowers governmental agencies to implement targeted

traffic restrictions, provide early warnings of peak pollution episodes, and allocate resources

more effectively to the most affected areas. Economically, the cost of air pollution in terms of

healthcare expenses and reduced agricultural yields has led to substantial economic losses in

many nations (Pandya et al. 2022). While the prediction system proposed in this study can-

not single-handedly resolve these economic issues, it plays a significant role when integrated

into existing air quality systems, aiding informed decision-making.

From a technological perspective, this study offers a path for streamlining the production

of air quality models for practical applications. The multi-target regression models devel-

oped in this study provide a solution to the challenge of deploying separate models for each

pollutant of interest. Tools such as AWS Lambda, Oracle ADS, and MLflow can automate
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this process, offering opportunities for real-time predictions. However, it’s crucial to remain

vigilant about potential “model drift”, where the model’s performance can deteriorate as the

environment deviates from the training scenarios. A possible remedy involves implementing

automatic drift detection and model retraining using updated data, followed by performance

comparison with the deployed model.

Conducting an audit of an air pollution prediction algorithm, as demonstrated here, bears

profound social and technological consequences. On a social level, it enhances transparency

and trust in algorithmic systems, assuaging fears of bias or unaccountability. These audits

promote social equity by mitigating biases, ensuring pollution predictions treat diverse de-

mographic groups equally, and contributing to better-informed decisions that may reduce

health risks associated with air pollution. This is particularly vital for vulnerable communi-

ties. From a technological standpoint, these audits drive advancements in algorithm develop-

ment, encouraging the creation of more accurate and reliable prediction models. They also

ensure compliance with legal regulations, guaranteeing algorithm adherence to environmen-

tal standards and data quality requirements. Furthermore, algorithm audits raise awareness

about the importance of accurate pollution predictions and educate the public about their

potential health and environmental impacts. They can result in substantial cost savings by

optimizing pollution control measures and strategies. Lastly, these audits foster international

collaboration in addressing global environmental challenges, promoting cooperation among

nations to effectively combat air pollution and its consequences.

The study also addresses ethical concerns in AI. Publicised scandals related to biased

outcomes, lack of transparency, and data misuse have eroded trust in AI systems and led

to calls for mandatory algorithmic ethical assessments (Alon-Barkat & Busuioc 2023). This

research bridges the gap between high-level ethical principles and technical fairness and

transparency guidelines. It introduces a practical audit approach that promotes transparency
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and trust.

7.6 Directions For Future Research

The findings and insights gained from this study open up promising avenues for future re-

search in the realm of air quality monitoring and prediction. One noteworthy direction for

further investigation lies in the realm of sensor technology. Given the significance of sensors

in capturing air quality data, continued research can focus on the development of more robust

and versatile sensors, capable of addressing issues such as cross-sensitivity and temperature

variations. Researchers can delve into novel sensor materials and designs, exploring inno-

vative approaches to enhance accuracy and reliability. Expanding on the theme of sensor

technology, future research may also explore the integration of advanced sensor networks,

including distributed sensor systems and remote sensing technologies. These networks can

provide comprehensive, real-time data coverage over broader geographical areas, contributing

to more accurate and detailed air quality predictions. Developing sensor networks that can

adapt to dynamic environmental conditions and account for various pollutant sources would

be a challenging yet rewarding pursuit.

Additionally, ethical considerations in air quality prediction represent a critical research

domain. As AI and machine learning models continue to influence environmental and health-

related decisions, research can delve into the development of ethical frameworks and audit

mechanisms for these algorithms. The aim is to ensure fair, transparent, and unbiased

predictions while safeguarding individuals’ privacy and rights. From a global perspective,

international collaboration and data sharing can foster the development of a unified air quality

monitoring system. Future research can explore ways to establish international standards and

protocols for data sharing, ensuring consistent and accurate air quality information across

borders. This collaborative approach can lead to more effective strategies for combating

air pollution, which often transcends geographical boundaries. Finally, further research can
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concentrate on the social and economic impacts of improved air quality prediction. Analysing

the financial benefits, healthcare savings, and the socio-economic implications of enhanced air

quality prediction systems can provide governments and stakeholders with tangible incentives

for investing in advanced monitoring and prediction technologies. Addressing environmental

justice issues and enhancing the equitable distribution of air quality monitoring resources

could also be a significant area of exploration.

In summary, the research conducted in this study acts as a stepping stone towards a com-

prehensive understanding of air quality dynamics and prediction. Future research endeavours

can build upon these foundations to develop innovative sensor technologies, advanced pre-

diction models, ethical frameworks, and decision support systems, ultimately contributing to

a cleaner, healthier, and more sustainable environment.
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Appendix A: Data summary for pollutant estimation before pro-

cessing

S/No Column Column Description Non-Null Count Data type

1 city name The name of the city of interest 991662 non-null object

2 lat The geographic coordinate of the city of interest

(Latitude)

991662 non-null float64

3 lon The geographic coordinate of the city of interest

(Latitude)

991662 non-null float64

4 date The observation time to include date, time, hour and

second

991662 non-null datetime64[ns]

5 rain desc Description of measured precipitation 5975 non-null object

6 rain 1h Integrated average hourly precipitation measure-

ment (mm)

5658 non-null float64

7 rain 3h Integrated precipitation measurement averaged over

3 hrs preceding the observation time (mm)

65 non-null float64

8 snow 1h Integrated average hourly snow depth measurement

(cm)

77 non-null float64

9 snow 3h Integrated snow depth measurement averaged over 3

hrs preceding the observation time (cm)

4 non-null float64

10 drizzle desc Description of measured drizzle 244 non-null object
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11 fog desc Description of measured fog 193 non-null object

12 clouds desc Description of measured clouds 72395 non-null object

13 haze desc Description of measured haze 46 non-null object

14 mist desc Description of measured mist 312 non-null object

15 clear desc Description of measured clear 11342 non-null object

16 snow desc Description of measured snow 103 non-null object

17 storm desc Description of measured thunderstorm 1 non-null object

18 temp Captured average hourly temperature (◦C) 991662 non-null float64

19 temp min Captured minimum temperature over a 24-hr period

(◦C)

991662 non-null float64

20 temp max Captured maximum temperature over a 24-hr period

(◦C)

991662 non-null float64

21 feels like Integrated measurement of human impression of

weather (K)

991662 non-null float64

22 pressure Captured average hourly pressure (hPa) 991662 non-null int64

23 humidity Captured average hourly relative humidity (φ) 991662 non-null int64

24 wind speed Integrated average hourly wind speed (knots) 991662 non-null float64
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25 wind direction Integrated average hourly wind direction (true de-

grees)

991662 non-null int64

26 clouds all Integrated hourly measurement of cloudiness (%) 991662 non-null float64

27 ozone Integrated average hourly ozone (µg/m3) 181233 non-null float64

28 ozone avg6h Integrated ozone readings averaged over 6 hrs pre-

ceding the observation time (µg/m3)

181233 non-null float64

29 NO2 Captured average hourly NO2 (ppb) 121207 non-null float64

30 NO2 avg6h Captured NO2 readings averaged over 6 hrs preced-

ing the observation time (ppb)

121207 non-null float64

31 PM10 Captured average hourly PM10 (µg/m3) 121207 non-null float64

32 PM10 avg6h Captured PM10 readings averaged over 6 hrs preced-

ing the observation time (µg/m3)

121207 non-null float64

33 PM2.5 Captured average hourly PM2.5 (µg/m3) 121207 non-null float64

34 PM2.5 avg6h Captured PM2.5 readings averaged over 6 hrs pre-

ceding the observation time (µg/m3)

121207 non-null float64

Appendix B: List of Attributes After Processing, Including Classi-

fication as Categorical, Continuous, Independent, and Dependent

Variables
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S/No Attribute Name Attribute Type

1 city name Categorical, Independent

2 lat Categorical, Independent

3 lon Categorical, Independent

4 year Categorical, Independent

5 month Categorical, Independent

6 week Categorical, Independent

7 day Categorical, Independent

8 dayofweek Categorical, Independent

9 dayofyear Categorical, Independent

10 is month end Categorical, Independent

11 is month start Categorical, Independent

12 is quarter end Categorical, Independent

13 is quarter start Categorical, Independent

14 is year end Categorical, Independent

15 is year start Categorical, Independent
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16 rain 1h Continuous, Independent

17 snow 1h Continuous, Independent

18 temp Continuous, Independent

19 temp min Continuous, Independent

20 temp max Continuous, Independent

21 feels like Continuous, Independent

22 pressure Continuous, Independent

23 humidity Continuous, Independent

24 wind speed Continuous, Independent

25 wind direction Continuous, Independent

26 clouds all Continuous, Independent

27 ozone Continuous, Independent

28 ozone avg6h Continuous, Independent

29 no2 Continuous, Dependent

30 no2 avg6h Continuous, Independent

31 pm2.5 Dependent
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32 pm2.5 avg6h Continuous, Independent

34 PM10 Continuous, Dependent

34 PM10 avg6h Continuous, Independent

Appendix C: List of attributes captured for MTR pollutant con-

centration forecasting

S/No Column Column Description Range Non-Null Count Variable

type

1 datetimehour Hour variable extracted after preprocess-

ing of datetime column

0-23 11990 non-null Categorical

2 datetimeminute Minute variable extracted after preprocess-

ing of datetime column

0-59 11990 non-null Categorical

3 datetimesecond Second variable extracted after preprocess-

ing of datetime column

0-59 11990 non-null Categorical

4 datetimeelapsed Time elapsed variable extracted after pre-

processing of datetime column

1.60e+9-1.63e+9 11990 non-null Continuous

5 datetimeyear Year variable extracted after preprocessing

of datetime column

2020-2021 11990 non-null Categorical

6 datetimemonth Month variable extracted after preprocess-

ing of datetime column

1-11 11990 non-null Categorical

7 datetimeweek Week variable extracted after preprocess-

ing of datetime column

1-47 11990 non-null Categorical

8 datetimeday Day variable extracted after preprocessing

of datetime column

1-31 11990 non-null Categorical
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9 datetimedayofweek Day of week variable extracted after pre-

processing of datetime column

0-6 11990 non-null Categorical

10 datetimedayofyear Day of year variable extracted after pre-

processing of datetime column

8-322 11990 non-null Categorical

11 datetimeis month end Boolean variable to indicate if the day is

month end

0/1 11990 non-null Categorical

12 datetimeis month start Boolean variable to indicate if the day is

start of the month

0/1 11990 non-null Categorical

13 datetimeis quarter end Boolean variable to indicate if the day is

the end of a quarter

0/1 11990 non-null Categorical

14 datetimeis quarter start Boolean variable to indicate if the day is

the start of a quarter

0/1 11990 non-null Categorical

15 datetimeis year end Boolean variable to indicate if the day is

the start of the year

0/1 11990 non-null Categorical

16 datetimeis year start Boolean variable to indicate if the day is

the end of the year

0/1 11990 non-null Categorical

17 road name The name of the highway of interest - 11990 non-null Categorical

18 region name The name of the region where the highway

is located

- 11990 non-null Categorical

19 segment name The name of the highway segment where

the IoT device is located

- 11990 non-null Categorical

20 NO2 Integrated average hourlyNO2 (ppb) read-

ing from AURN station

0.63-132.37 11990 non-null Continuous

21 PM2.5 Captured PM2.5 (µg/m3) reading from

REVIS IoT devices

0.69-401.01 10879 non-null Continuous

22 PM10 Captured PM10 (µg/m3) reading from

REVIS IoT devices

0.77-617.35 10879 non-null Continuous
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23 air quality index The AQI for the highway segment of inter-

est computed from the pollutant concen-

tration readings

0-6.5 11990 non-null Continuous

24 background NO2 The background NO2 concentration for

the highway segment of interest

8.06-27.99 11990 non-null Continuous

25 background PM2.5 The background PM2.5 concentration for

the highway segment of interest

7.88-12.55 11990 non-null Continuous

26 background PM10 The background PM10 concentration for

the highway segment of interest

11.94-19.55 11990 non-null Continuous

27 NO2 emission factor Calculated NO2 emission factor based on

different vehicle types on the highway at

that time point

0-14823 11990 non-null Continuous

28 PM emission factor Calculated PM10 emission factor based on

different vehicle types on the highway at

that time point

0-19982 11990 non-null Continuous

29 bike count Captured bike count from REVIS IoT de-

vices

- 6 non-null Continuous

30 bike avg speed Captured bike avg speed - 6 non-null Continuous

31 car count Integrated car count from TMU sites 0-3515 10949 non-null Continuous

32 car avg speed Captured car avg speed from REVIS IoT

devices

- 6 non-null Continuous

33 bus count Integrated bus count from TMU sites 0-412 10949 non-null Continuous

34 bus avg speed Integrated bus avg speed - 6 non-null Continuous

35 lgv count Integrated LGV count from TMU sites 0-245 10949 non-null Continuous

36 lgv avg speed Captured LGV avg speed from REVIS IoT

devices

- 6 non-null Continuous

37 hgv count Integrated HGV count from TMU sites 0-383 10949 non-null Continuous
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38 hgv avg speed Captured HGV avg speed from REVIS IoT

devices

- 6 non-null Continuous

39 other avg speed Integrated average travelling speed from

TMU sites

0-76.25 10949 non-null Continuous

40 humidity Captured average hourly relative humidity

from REVIS IoT devices (φ)

23.65-99.99 11990 non-null Continuous

41 wind speed Integrated hourly modelled wind speed

(knots) from AURN station

0-16.2 11990 non-null Continuous

42 wind direction Integrated hourly modelled wind direction

(true degrees) from AURN station

0-360 11990 non-null Continuous

43 temperature Captured average hourly temperature (◦C)

from REVIS IoT devices

-2.95-44.07 10879 non-null Continuous

44 pressure Captured average hourly pressure (hPa)

from REVIS IoT devices

979.31-1042.72 10879 non-null Continuous
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