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 Abstract
Genetic Algorithms are a class of powerful, robust search techniques based on genetic

inheritance and the Darwinian metaphor of “Natural Selection”. These algorithms maintain

a finite memory of individual points on the search landscape known as the “population”.

Members of the population are usually represented as strings written over some fixed al-

phabet, each of which has a scalar value attached to it reflecting its quality or “fitness”. The

search may be seen as the iterative application of a number of operators, such as selection,

recombination and mutation, to the population with the aim of producing progressively fit-

ter individuals.

These operators are usually static, that is to say that their mechanisms, parameters, and

probability of application are fixed at the beginning and constant throughout the run of the

algorithm. However there is an increasing body of evidence that not only is there no single

choice of operators which is optimal for all problems, but that in fact the optimal choice of

operators for a given problem will be time-variant i.e. it will depend on such factors as the

degree of convergence of the population. Based on theoretical and practical approaches, a

number of authors have proposed methods of adaptively controlling one or more of the op-

erators, usually invoking some kind of “meta-learning” algorithm, in order to try and im-

prove the performance of the Genetic Algorithm as a function optimiser.
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In this paper we describe the background to these approaches, and suggest a framework

for their classification based on the learning strategy used to control them, and what facets

of the algorithm are susceptible to adaptation. We then review a number of significant piec-

es of work within this context, and draw some conclusions about the relative merits of var-

ious approaches and promising directions for future work.

1: Introduction
1.1: A Background to Adaptation in Genetic Algorithms

Genetic Algorithms [Holland (1975)] are a class of population based randomised search

techniques which are increasingly widely used in a number of practical applications. Typ-

ically these algorithms maintain a number of potential solutions to the problem being tack-

led, which can be seen as a form of working memory - this is known as the population.

Iteratively new points in the search space are generated for evaluation and are optionally

incorporated into the population. Attached to each point in the search space will be a unique

fitness value, and so we can usefully envisage the space as a “fitness landscape”. It is the

population which provides the algorithm with its power by providing a means of defining

a non-uniform probability distribution function (p.d.f.) governing the generation of new

points on the landscape. This p.d.f. reflects possible interactions between points in the pop-

ulation, arising from the “recombination” of partial solutions from two (or more) members

of the population (parents). This contrasts with the globally uniform distribution of blind

random search, or the locally uniform distribution used by many other stochastic algo-

rithms such as simulated annealing and various hill-climbing algorithms.

The genetic search may be viewed as the iterated application of two processes. Firstly

Generating a new set of candidate points. This is done probabalistically according to the

p.d.f. defined by the action of the chosen reproductive operators (recombination and muta-
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tion) on the original population. Secondly Updating the algorithms working memory (pop-

ulation). This usually done by evaluating each new point, then applying some kind of

selection algorithm to the union of these and the parent population in order to produce a

new one.

The efficiency of the algorithm can thus be seen to depend on two factors, namely the

maintenance of a suitable working memory, and quality of the match between the p.d.f.

generated and the landscape being searched. The first of these factors will depend on the

choices of population size and selection algorithm. The second will depend on the action

of the reproductive operators and their associated parameters on the current population.

Naturally, a lot of work has been done on trying to find suitable choices of operators

and their parameters which will work over a wide range of problem types. The first major

study [DeJong (1975)] identified a suite of test functions and proposed a set of parameters

which it was hoped would work well across a variety of problem types. However later stud-

ies using a “meta-ga” to learn suitable values [Grefenstette (1986)] or using exhaustive test-

ing [Schaffer et al. (1989)] arrived at different conclusions. Meanwhile theoretical analysis

on optimal population sizes [Goldberg (1985)] started to formalise the (obvious?) point that

the size of the population on the basis of which decisions could be reliably made depends

on the size of the search space.

The next few years of research saw a variety of new operators proposed, some of

which (e.g. Uniform Crossover [Syswerda (1989)]) forced a reappraisal of the Schema

Theorem (the decision theoretic background formulated in Holland’s early work). This led

to the focusing on two important concepts.

The first of these, “Crossover Bias” [Eshelman et al. (1989)], refers to the differing ways
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in which the p.d.f.’s arising from various crossover operators maintain information about

the fitness of hyperplanes of high estimated fitness. This is a function of the suitability of

the p.d.f. induced by the recombination operator to the landscape induced by the problem

encoding. The empirical findings have been confirmed by more formal analysis on the rel-

ative merits of various recombination mechanisms [DeJong and Spears (1990,1992),

Spears and DeJong (1991)].

The second concept was that of “Safety Ratios” [Schaffer and Eshelman (1991)] This is

the probability that a new point generated by the application of reproductive operators

would be fitter than its parent(s). These ratios were shown empirically to be different for

the various reproductive operators, and also to change over time. Again these reflect the

match between the p.d.f.s induced by given operators on the current population to the fit-

ness contours of the landscape.

These considerations, when coupled with interactions with other Evolutionary Algo-

rithm communities who were already using adaptive operators (e.g. the (1+1) [Rechenberg

(1973)] and (m l) [Schwefel (1977), Schwefel (1981)] Evolutionary Strategies) has led to

an ever increasing interest in the possibilities of developing algorithms which are able to

adapt one or more of their operators or parameters over time. The aim is to match the p.d.f.

induced by the algorithm to the fitness landscape.

As soon as we allow for variation in the processes of Generating or Updating we effec-

tively increase the size of the problem since we are now not only traversing the problem

space but also the space of all variants of the basic algorithm. This traversal may take sev-

eral forms, depending on the scope of change allowed and the nature of the learning algo-

rithm. It may vary from the simple time-dependant decrease in the value of a single
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parameter according to some fixed rule, e.g [Fogarty (1989)], to a complex path which po-

tentially occupies any position in the latter space and which is wholly governed by the Up-

dating process, e.g. [Smith and Fogarty (1996a)].

1.2: A Framework for Classifying Adaptation in Genetic Algorithms
In this paper we shall construct a framework for categorising various proposed methods

of incorporating adaptation into Genetic Algorithms. This is based on three principles,

namely What is being adapted (operators, parameters etc.), the Scope of the adaption (i.e.

does it apply to all the population, just individual members or just sub-components) and the

Basis for change (e.g. externally imposed schedule, fuzzy logic etc.). In the following sec-

tions we will describe these principles in more depth, and within the various categories we

shall describe some examples of each types of adaptation.

2: What is being Adapted?
As has been described above, the genetic algorithm may be viewed as the iterated appli-

cation of two processes; Generating new points in the landscape (via probabalistic applica-

tion of recombination and/or mutation operators to the previous population), and Updating

(via selection and resizing) to produce a new population based on the new set of points cre-

ated and (possibly) the previous population.

In general most of the proposed variants of the simple genetic algorithm only act on a

single operator, and furthermore it is true to say that most work has concentrated on the re-

productive operators i.e. recombination and mutation. Whilst considerable effort has been

expended on the question of what proportion of the population should be replaced at any

given iteration, the mechanisms for updating the population, once chosen, tend to be static.

Broadly speaking most adaptive algorithms work with the settings of either a Genera-

tional GA (GGA) or a “Steady State” GA (SSGA) [Whitley and Kauth (1988)] which rep-
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resent the two extremes of i) generating an entirely new population and discarding the

previous population in the selection process or ii) only generating and replacing a single

individual at each iteration. Much theoretical analysis of GA’s has focused on the twin

goals of exploration of new regions of the search space and exploitation of previously

learned good regions (or hyperplanes) of the search space. The two terms may be explained

by considering how the p.d.f.s governing generation of new points change over algorithmic

time, remembering that the p.d.f.s are governed jointly by the actions of the reproduction

and selection operators. An explorative algorithm is one in which a relatively high proba-

bility is assigned to regions as yet unvisited by the algorithm, whereas an exploitative al-

gorithm is one in which the p.d.f. represents rather accumulated information about

relatively fitter regions and hyperplanes of the search space. Thus the p.d.f. of an explora-

tive algorithm will change more rapidly than that of an exploitative one.

If reproductive operators are applied which produce offspring that are unlike their par-

ents, then the updating mechanisms of GGA’s and SSGA’s may be seen as favouring ex-

ploration and exploitation respectively. However the extent to which offspring differ from

their parents is governed not simply by the type of operator applied, but also by the proba-

bility of its application as opposed to simply reproducing the parents. Thus for a given pop-

ulation and reproductive operator, we can tune the shape of the induced p.d.f. between the

extremes of exploration and exploitation by altering the probability of application regard-

less of the updating mechanism.

It is this last point which has led to a focusing on the adaptation of the reproductive op-

erators, since by changing the amount of disruption induced by the operators it is possible

to indirectly adapt the proportion of the population which is replaced at each iteration



This paper has been accepted for publication in a revised form in the Issue Two of the

journal "Soft Computing"

whilst using simple and efficient selection mechanisms. This allows the tuning of the up-

dating mechanism to particular application characteristics e.g. the possibility of parallel

evaluations etc.

We can distinguish a number of different strands of research by considering what it is

that the algorithms adapt.

In some ways the simplest class are those algorithms which use a fixed set of operators

and adapt the probability of application of those operators. Perhaps the two best known ear-

ly examples of work of this type are Fogarty’s use of a time-dependant probability of mu-

tation [Fogarty (1989)] and Davis’ use of varying probabilities of application of a few

simple operators (uniform crossover, averaging crossover, mutation, “big creep” and little

creep”) depending on their performance over the last few generations [Davis (1989)]. Many

later authors have proposed variants on this approach, using a number of different learning

methods as will be seem later. A similar approach which changes the population updating

mechanism by changing the selection pressure over time can be seen in the Grand Deluge

Evolutionary Algorithm [Rudolph and Sprave (1995)].

An extension of this approach can be seen in algorithms which maintain distinct sub-

populations, each using different sets of operators and parameters. A common approach is

to use this approach with a “meta-ga” specifying the parameters for each sub-population-

e.g. [Grefenstette (1986), Kakuza et al. (1992), Friesleben and Hartfelder (1993)] to name

but three. Although the searches in different (sub)populations may utilise different opera-

tors, we can view each as having the full set available, but with zero probability of applying

most, hence we group these in the first category

A second class of adaptive GA’s can be distinguished as changing the actual action of



This paper has been accepted for publication in a revised form in the Issue Two of the

journal "Soft Computing"

the operator(s) over time. An early example of this was the “Punctuated Crossover” mech-

anism [Schaffer and Morishima (1987)] which added extra bits to the representation to en-

code for crossover points. These were allowed to evolve over time to provide a 2 parent N-

point recombination mechanism where N was allowed to vary between zero and the length

of the string. The LEGO and related APES mechanisms [Smith and Fogarty (1995, 96a,

96b)] evolve the “units of heredity” which determine recombination and mutation mecha-

nisms, through the use of genetic encoded “links” between loci on the representation. With-

in this category we can also place algorithms which alter the mechanisms governing the

updating of the working memory by changing its size (e.g.[Smith (1993), Smith and Smuda

(1995), Arabas et al. (1994), Hinterding et al. (1996)]).

Finally we should mention an alternative approach, which is to alter the representation

of the problem itself: this can be viewed as an attempt to make the landscape suit the p.d.f.s

induced by the operators rather than vice-versa. Goldberg’s work on “Messy GA’s” ([Gold-

berg et al. (1989)] and many subsequent publications) is based on finding appropriate link-

ages between genes, using a “floating” representation where the order of the variables is

not fixed. Since the “cut and splice” recombination operator tends to keep together adjacent

genes, this can be seen as moulding the landscape to suit the operators. Similarly Schaefer’s

ARGOT [Schaefer (1987)] strategy adaptively resizes the representation according to glo-

bal measures of the algorithm’s success. More recently work on co-evolving representa-

tions [Paredis (1995)] can be seen in this restructuring light, as can the Adaptive Penalty

Functions of [Eiben and van der Hauw (1996)].
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3: What is the Scope of the Adaptation?
We shall adopt the terminology of [Angeline (1995)] to define three distinct levels at

which adaptation can occur in evolutionary algorithms. Population-level adaptations make

changes which affect the p.d.f. contribution from each member of the current population in

the same way. Individual-level adaptations make changes which affect the p.d.f. contribu-

tion from each member of the population separately, but apply uniformly to each of the

components of the individuals’ representation. At the finest level of granularity are Com-

ponent-level adaptations, where the p.d.f. contributions from each component of each

member may be changed individually.

3.1: Population-Level Adaptation.
Recall from above that in most cases these operators in a GA are static (that is to say that

their forms and parameters are fixed) and apply uniformly to the whole population i.e. they

are global. Population-level adaptation algorithms can be typified as using a fixed set of

global operators, but allowing their parameters to vary over time. The most important pa-

rameter is of course the probability of application. The various “meta-ga” algorithms men-

tioned above, and the competing sub-populations of the breeder GA e.g. [Schlierkamp-

Voosen and Muhlenbein (1994)] belong firmly to this level.

There are a number of theoretical results which provide support for this kind of ap-

proach, e.g. regarding the time-variance of the optimal mutation rate [Muhlenbein (1992),

Hesser and Manner (1991)], as well as Schaffer & Eshelman’s experimental results regard-

ing the time dependencies of “safety ratios” for mutation and crossover.

In [Fogarty (1989)] an externally defined form is used to reduce the mutation rate over

time, in a similar fashion to the “cooling schedules” used in Simulated Annealing. However

a more common approach is to adjust one or more parameters dynamically in accordance
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with the performance of the algorithm or some measured quantity of the population.

A well known, and popular approach (e.g. [Davis (1989), Corne et al. (1994), Jul-

strom (1995)]) is to keep statistics on the performance of offspring generated by various

reproductive operators relative to their parents. Periodically “successful” operators are re-

warded by increasing their probability of application relative to less successful operators.

This approach requires extra memory, since it is usually found necessary to maintain family

trees of the operators which led to a given individual. This is done in order to escape from

credit allocation problems.

Other authors have proposed control strategies based on simpler measures. Eshelman

and Schaffer use the convergence of the population to alter the thresholds governing incest

prevention, and the time spent without improvement to govern the probability of restarting

the GA using vigorous mutation [Eshelman and Schaffer (1991)]. This latter is similar to

many strategies for tracking changing environments where a drop in the performance of the

best member of the current generation is used to trigger a higher rate of mutation e.g. [Cobb

and Grefenstette (1993)].

In [Lee and Takagi (1993)] fuzzy rules are learned and used to control various parame-

ters based on the relative performance of the best, worst and mean of the current population.

This concept of observing the fitness distribution of the population and then altering param-

eters according to a set of rules is also used in [Lis (1996)] where the mutation rate is altered

continuously in order to keep a fitness distribution metric - the “population dispersion rate”

within a desired range.

A more complex approach, and one which at first appears to belong to the component

level is that of [Sebag and Schoenauer (1994)] who maintain a library of “crossover masks”
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which they label as good or bad. Inductive learning is used to control the application of

crossover and the periodic updating of mask strengths. However the rules learnt are applied

uniformly to the whole population and so this belongs firmly in the category of population-

level adaptation.

Perhaps the most obvious method of achieving population-level adaptation is to dynam-

ically adjust the size of the population itself by creating or removing members according to

some global measurement. Two approaches have been recently reported. In [Smith (1993),

Smith and Smuda (1995)] the population is adjusted according to estimated schema fitness

variance, whereas in [Hinterding et al. (1996)] three populations of different sizes are main-

tained, with periodic resizing according to their relative successes.

Finally we should point out that many of the proposed methods of adapting representa-

tions mentioned above plainly fall into this category.

3.2: Individual Level Adaptation
An alternative approach to adaptation is centred on consideration of the individual mem-

bers of the population rather than the ensemble as a whole. Thus as a simple example, a

global level adaptation may vary the probability of mutation for the whole population,

whereas an individual level algorithm might hold a separate mutation probability for each

member of the population. If we consider the pd.f. governing generation as the sum of the

contributions from each member, then population level changes affect the way in which the

contributions are determined uniformly, whereas individual level adaptations affect the

p.d.f. contributions for each member separately.

A frequently claimed justification for this approach is that it allows for the learning of

different search strategies in different parts of the search space. This is based on the not un-

reasonable assumption that in general search space will not be homogeneous, and that dif-
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ferent strategies will be better suited to different kinds of sub-landscape.

As a crude metaphor, imagine a blind robot, equipped only with an altimeter, dropped

at random on the earth and trying to reach the highest point it can. If on a large flat region,

it would be better employed using a wider search (more uniform p.d.f. i.e. exploration),

whereas if dropped by chance in the Himalayas such as search might rapidly lead it out of

the mountain range. In the latter case a much more local search (i.e. exploitation) would be

far preferable.

Algorithms at this level have been proposed which fall into a number of different cate-

gories in terms of the basis and scope of adaptation.

Perhaps the most popular class are algorithms which encode some parameters for an op-

erator into the individual and allow these to evolve, using the updating process itself as the

basis for learning. An early example of this was the “Punctuated Crossover” mechanism of

[Schaffer and Morishima (1987)]. This added a mask to the representation which was used

to determine crossover points between two parents during recombination, and which was

evolved along with the solutions. The results reported were encouraging, but this may have

been due to the high number of crossover points evolved (compared to the algorithm used

for comparison). In [Levenick (1995)] a similar mechanism is investigated, but with the

added bits coding for changes in crossover probability at those points rather than determin-

istic crossing.

An alternative method of controlling recombination strategies was used in [Spears

(1995)] where a single bit was used to decide whether two-point or uniform crossover

would be used when an individual reproduced. This differs from the above mechanisms in

that they allow the form of the operator itself to change, whereas this effectively associates
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two operators with each individual and associates probabilities of 0 or 100% of application

with each. Interestingly, this was compared with a population level mechanism where the

relative proportion of bits encoding for the two operators was used to make a global deci-

sion about operator probabilities. Although these two alternatives should provide the same

ratio of usage of the two operators, the latter mechanism was found to work far less well,

suggesting that there is indeed a merit in attaching reproductive strategies to particular in-

dividuals. Certainly the two methods will yield different p.d.f.s for the next generation of

points.

Perhaps more widely used has been the “borrowing” of the idea of self adaptive muta-

tion rates from Evolutionary Strategies. This addition of extra bits to the genome to code

for the mutation rate for that individual was first investigated for GAs in [Back (1992)]

when it was found that the rates evolved were close to the theoretical optimum for a simple

problem (providing that a sufficiently rigorous selection mechanism was used). The second

level of adaptation in [Hinterding et al. (1996)] uses a similar encoding to control the stand-

ard deviation of the Gaussian used to mutate the genes in a real-coded G.A. In [Smith and

Fogarty (1996c)] self adaptive mutation was translated into a Steady State algorithm, with

the addition of a (l,1) “inner-ga”. This was necessary to provide the necessary selection

pressure for self adaptation, but also provides a kind of local search as well.

However not all algorithms using adaptation at the individual level rely on endogenous

control and self-adaptation. As with population level adaptations, a number of other mech-

anisms can be used to control the behaviour of individuals.

A typical example is found in [Srinivas and Patnaik (1994)] where the probabilities of

applying mutation or crossover to an individual depend on its relative fitness, and the de-
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gree of convergence (of fitnesses) of the population. This fitness-dependant control of the

p.d.f. contribution from each individual is used to control the global balance of exploitation

and exploration, so that the information in relatively fitter individuals is exploited whereas

exploration is achieved by associating more uniform p.d.f.s with the less fit members. An-

other approach based on relative local fitness in a structured population uses a pattern of

rules to control the reproduction strategy (replication, crossover or mutation) based on met-

aphors of social behaviour [Mattfeld et al. (1994)]. Similarly the Grand Deluge Evolution-

ary Algorithm of [Rudolph and Sprave (1995)] adapts the “acceptance” threshold

governing the updating process separately for each point based on relative local fitness over

a period of time.

Similarly measures of relative fitness and convergence are used to determine the

“lifespan” given to a newly created individual in [Arabas et al. (1994)]. This novel ap-

proach controls the contents and size of the working memory by assigning a fixed lifetime

to each individual after which it is removed from the memory. This is one of the very few

algorithms reported providing dynamic population sizing, and the results reported suggest

that this is a promising line of research.

3.3: Component-Level Adaptation
This is the finest level of granularity for adaptation: here algorithms allow different re-

production strategies for different parts of the problem representation. Again we could con-

sider these ideas to have be based in the Evolutionary Strategies community where

techniques have progressed over the years from a single parameter controlling the mutation

step size for the population, through individual step-sizes for each member, to having a sep-

arate mutation step size encoded for each component being optimised (remember Evolu-
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tionary Strategies work with a vector of real numbers).

We can consider this as a means of allowing the focus of search to be directed, and the

principal advantage is that it allows for a much finer degree of “tuning” of the p.d.f. contri-

bution associated with each individual.

This approach was tried in the Self-Adaptive mutation mechanism of [Back (1992)] and

compared with individual level adaptation. The results suggested that in certain circum-

stances the results were advantageous, but that on other landscapes the added learning over-

heads associated with all the extra mutation parameters slowed the search down. The

conclusions seemed to be that such a mechanism could be very effective if the components

were properly defined i.e. the level of granularity was chosen suitably.

An attempt to solve some of these problems can be seen in the LEGO mechanisms

[Smith and Fogarty (1995, 96b)]. These are somewhat similar to the “Punctuated Crosso-

ver” algorithms of Schaffer and Morishima in adding extra bits to the representation to de-

termine whether two adjacent genes may be broken by crossover. However the emphasis is

different, in concentrating on finding blocks of co-evolved linked genes. The recombina-

tion mechanism differs in that blocks of genes may be chosen from the whole population

(rather than just two parents) when a new individual is formed.This evolution of linkage

has to be seen therefore as an adaptation of recombination strategy at the component level,

since individuals have no meaning in the context of parents other than as contributing to a

“genepool” from which new individuals are assembled. This emphasis on evolving suc-

cessful components rather than individuals is taken further in the APES algorithm [Smith

and Fogarty (1996a)] which includes component level adaptation of mutation rates by at-

taching a mutation rate for each block, which is also self-adapted.
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4: What is the Basis for Adaptation?
We now turn to perhaps the most important distinction, namely the basis on which ad-

aptation is carried out. This in turn hinges on two factors, firstly the evidence upon which

adaptation is carried out, and secondly the rules or algorithm which define how changes are

effected.

More formally, what we are concerned with at this point is the way in which features of

the Generating and/or Updating processes are changed in an attempt to match the p.d.f.s

governing the transition between populations to the topography of the search landscape.

If we consider an “algorithmic space” within which we can locate any given variant of

the GA we can thus define adaptation as describing a traversal of this algorithmic space, in

much the same way as the GA’s population traverses the search space induced by the prob-

lem representation. For population level changes this trajectory will be a single path. For

individual level adaptations, we must consider the path of a cloud, as each member follows

a slightly different course. This cloud is composed of a number of traces which may appear

and disappear under the influence of selection. In either case, what we arte concerned with

is the mechanism that defines the trajectory.

Immediately, we can draw an important distinction between two types of algorithm.

These have been labelled as “Tightly Coupled vs. Uncoupled” by Spears, or “Empirical vs.

Absolute” update rules by Angeline. Essentially in the first type of algorithm, an external

mechanism is used to determine the trajectory, whereas in the second, the selection mech-

anism of the GA itself is used to determine the trajectory. This latter approach is more com-

monly known as Self-Adaptation.
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To clarify this point, in all algorithms a set of evidence is considered, on the basis of

which the trajectory of the algorithm is decided. In Self-Adaptive algorithms the evidence

is simply the relative fitness of the individual(s) with which that strategy is associated, and

the p.d.f. of the trajectory is defined by the selection mechanism of the algorithm itself. In

other adaptive algorithms, the evidence generally takes the form of statistics about the per-

formance of the algorithm, such as the fitness distribution of the population, “family trees”,

or simply the amount of evolutionary time elapsed. The important factor is that the mech-

anism used to generate the new strategies based on this evidence is externally provided in

the form of a learning algorithm or a set of fixed rules.

We have already noted many Self-Adaptive algorithms, and their reported success is

perhaps not surprising in the light of the considerable research into these topics in the fields

of Evolution Strategies and Evolutionary Programming. The rationale is essentially two-

fold, firstly that if strategies are forced to compete through selection, then what better proof

of the value of a strategy than its continued existence in the population? Secondly, and per-

haps less tritely, we can observe that the algorithmic space being searched has an unknown

topography, but is certainly extremely large, very complex and highly epistatic, since there

is a high degree of dependency between operators. Evolutionary Algorithms have repeat-

edly been shown to be good at searching such spaces.

This same rationale is used for many of the “meta-ga” strategies, the “competing sub-

populations” of the Breeder GA [Schlierkamp-Voosen and Muhlenbein (1994)], and the

population sizing adaptation described in [Hinterding et al. (1996)]. However it is more

correct to describe these as Uncoupled Adaptations since the strategies are not coded for

directly in the populations, and the evidence for change is the relative performance of (sub)
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populations of individuals in a given time period.

We can in fact extend this idea of relative performance to draw a second distinction be-

tween all kinds of adaptive algorithms on the basis of the evidence that they consider.

In one camp are all those algorithms which take as their evidence differences in the rel-

ative performance of strategies. These include Self-Adaptive and meta-GAs as just de-

scribed. Those algorithms which adjust operator probabilities based on records of

performance, such as those of Whitley, Julstrom and Corne et al. described above fall into

this category as their probabalistic nature allows the concurrent testing of multiple strate-

gies (the difference being that they use predefined rules to adjust the strategies). Also into

this category fall those algorithms which draw conclusion based on observations of strategy

performance such as Sebag and Schoenauer’s inductively learned Crossover Masks and

White and Oppacher’s Automata Controlled Crossover.

Into the other camp fall those algorithms which adapt strategies based on empirical ev-

idence which is not directly related to the strategy followed. This might be convergence sta-

tistics (in terms of the population fitness, or the allele distribution), observed relative

schema fitnesses etc. All of these algorithms feature Uncoupled Adaptation, and although

some use simple rules e.g. previously learned Fuzzy Rule-Sets [Lee and Takagi (1993)] or

predefined schedules [Fogarty (1989)], most base the derived trajectory on an attempt to

fulfil some criterion or maintain a population statistic. Examples of this latter are the “Pop-

ulation Dispersal” metric of [Lis (1996)], and “Schema Fitness Variance” [Smith and Smu-

da (1995)].

5: Discussion
In the discussion above we categorised the algorithms described according to what
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features of the algorithm are susceptible to adaptation, and the granularity at which this is

done. We have drawn a further important distinction according to the basis for change. This

took two forms, namely the type of evidence used as input to the strategy-deciding algo-

rithm, and that algorithm itself. There are a number of possible ways of representing this

categorisation. In Figure 1, a simplified taxonomic tree is shown to illustrate the main

branches of Adaptive Genetic Algorithms (algorithms are referred to by their first authors).

Algorithms involving a restructuring of the search space via representation changes are not

shown, but these are relatively uncommon. However this diagram illustrates the point that

the majority of the work published in this field can be distinguished by common strands of

thought.

The nature of the field, and the absence of a standard test suite of problems make it im-

possible to compare algorithms on the basis of reported results and declare a universal

“winner”. Indeed the very considerations that drive research into adaptive algorithms make

such statements meaningless. It is however possible to draw a few conclusions.

Firstly, it seems that in general those algorithms based on observing the relative per-

formance of different strategies appear to be most effective. This seems to follow naturally

from the fact that GA theory is currently not sufficiently advanced either to permit the spec-

ification of suitable goals in terms of other metrics, or (more importantly) how to achieve

them. It is ironic that perhaps the most widely quoted paper on adaptive strategies, the ex-

ternally defined time-decreasing mutation rate of [Fogarty (1989)] is also one of the most

wildly misquoted works in the field, since this was concerned specifically with initially

converged populations.

Secondly, there appears to be a distinct need for the maintenance of sufficient diversity
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with the population(s). It is the experience of several authors working with adaptive recom-

bination mechanisms that convergence makes the relative assessment of different strategies

impossible. Variety within the population is vital as the driving force of selective pressure

in all Evolutionary Algorithms, and will be doubly so in Self-Adaptive algorithms. This is

less of a problem for algorithms manipulating mutation rates as mutation is generally a

force for increased diversity.

Thirdly, there are powerful arguments and empirical results for pitching the adaptation

at an appropriate level. The success of individual level adaptive reproduction schemes ap-

pears convincing, and there is promise in the various methods proposed for identifying suit-

able “components” via linkage analysis which would allow adaptation at an appropriate

level. However as Angeline points out, and Hinterding demonstrates, there is scope for ad-

aptation to occur at a variety of levels with the GA

Finally we must consider the nature of adaptation in terms of searching the space of pos-

sible configurations for the GA This space is one about which little is known, and needless

to say the landscape will depend on what is being optimised (e.g. best solution in a given

time, mean performance etc.). However it is the fact that little is known about it which

makes it so similar to those problem landscapes which we are interested in exploring. All

the arguments used in favour of adaptive GA’s in the first section of this paper would ap-

pear to apply equally to the search of this space.

It is for this reason that the author’s personal experience leads them to believe that Self-

Adaptation at a variety of levels represents the most promising area for future research.
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