
An algebraic multigrid method

for high order time-discretization of

the div-grad and the curl-curl equations

Tim Boonen

Jan Van lent

Stefan Vandewalle

Report TW483, December 2006

Katholieke Universiteit Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)

An algebraic multigrid method

for high order time-discretization of

the div-grad and the curl-curl equations

Tim Boonen

Jan Van lent

Stefan Vandewalle

Report TW483, December 2006

Department of Computer Science, K.U.Leuven

Abstract

We present an algebraic multigrid algorithm for fully coupled
implicit Runge-Kutta and Boundary Value Method time discretiza-
tions of the div-grad and curl-curl equations. The algorithm uses a
blocksmoother and a multigrid hierarchy derived from the hierarchy
built by any algebraic multigrid algorithm for the stationary version
of the problem. By a theoretical analysis and numerical experiments,
we show that the convergence is similar to or better than the con-
vergence of the scalar algebraic multigrid algorithm on which it is
based. The algorithm benefits from several possibilities for imple-
mentation optimization. This results in a computational complexity
which, for a modest number of stages, scales almost linearly as a
function of the number of variables.

Keywords : div-grad equation, curl-curl equation, implicit Runge-Kutta meth-
ods, boundary value methods, algebraic multigrid
AMS(MOS) Classification : 65M55,65L06

An algebraic multigrid method
for high order time-discretization of

the div-grad and the curl-curl equations

Tim Boonen∗, Jan Van lent†, Stefan Vandewalle∗

Abstract

We present an algebraic multigrid algorithm for fully coupled implicit Runge-
Kutta and Boundary Value Method time discretizations of the div-grad and curl-
curl equations. The algorithm uses a blocksmoother and a multigrid hierarchy
derived from the hierarchy built by any algebraic multigrid algorithm for the sta-
tionary version of the problem. By a theoretical analysis and numerical experi-
ments, we show that the convergence is similar to or better than the convergence
of the scalar algebraic multigrid algorithm on which it is based. The algorithm
benefits from several possibilities for implementation optimization. This results in
a computational complexity which, for a modest number of stages, scales almost
linearly as a function of the number of variables.

1 Introduction

Implicit Runge-Kutta (IRK) and Boundary Value Method (BVM) time discretizations
have many appealing properties, such as high order of accuracy and good stability
[7, 9, 10, 6]. However, when applied to time-dependent partial differential equations,
they give rise to linear systems which are difficult to solve. First of all, the size of these
systems is a multiple of the size of the systems to be solved for the backward Euler
(BE) discretization of the same problem. Also, the efficiency of existing direct and
iterative solvers for BE discretizations usually significantly deteriorates when applied
to IRK or BVM discretizations.

In the case of IRK methods, the computational cost can be reduced significantly
by using diagonally implicit (DIRK) Runge-Kutta methods. The resulting system is
then block-triangular, and can be solved as a sequence of smaller problems. These
smaller problems have a similar structure as the one to be solved in the BE method,
hence efficient solvers for that method can be reused. Unfortunately, DIRK methods
have a lower order of accuracy and poorer stability properties than fully coupled IRK
methods of the same size [7, 10]. This order and stability reduction can be avoided
by using a DIRK method as a preconditioner for the fully coupled IRK system [15].
The algorithm developed in [15] allows the reuse of existing BE software components.

∗Department of Computer Science, Katholieke Universiteit Leuven,small Celestijnenlaan 200A, B-3001
Leuven, Belgium; email: {Tim.Boonen,Stefan.Vandewalle}@cs.kuleuven.be. Tim Boonen is research as-
sistant of the Fund for Scientific Research - Flanders (Belgium) (F.W.O.-Vlaanderen).

†Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK; email:
j.van.lent@maths.bath.ac.uk

1

Unfortunately, the number of iterations required for solving the preconditioned IRK-
system increases rapidly with the number of stages in the IRK method.

In [20], it is shown how geometric multigrid techniques can be used to solve ef-
ficiently fully coupled IRK and BVM time discretizations of finite difference spatial
discretizations of time-dependent parabolic problems

−∇ · (α ·∇V)+β ∂V
∂t = ρ, α > 0, β≥ 0. (1)

The key is the use of a blocksmoother updating all unknowns related to a grid point
simultaneously. In this paper, the approach of [20] will be extended to algebraic multi-
grid (AMG) for (1) and for the curl-curl equation

~∇× (α~∇×~A)+β ∂~A
∂t = ~J, α > 0, β≥ 0. (2)

Equation (2) arises in time-domain approaches for solving electromagnetic problems,
such as the eddy current problem [16, 4].

A theoretical estimate of the complexity of the AMG algorithm developed in this
paper would lead one to conclude that the number of floating point operations and the
memory requirements scale cubically and quadratically respectively as a function of
the number of stages in the IRK or BVM method. It will be shown, however, that
the algorithm offers several opportunities for implementation optimization, yielding a
significant increase of the floating point execution rate and a significant reduction of
the memory requirements. The timing results of the optimized implementation will be
shown to scale rather linearly as a function of the number of stages. Thanks to the
favorable timings and memory requirements and to the high order of accuracy of the
considered time discretization methods, the presented AMG algorithm is very useful
in practice.

This paper is organized as follows. In Section 2, the discretizations in time and
space of (1) and (2) used in this paper, are explained. In Section 3, the block AMG
algorithm is discussed, and in Section 4 a convergence analysis is presented. Section 5
deals with important implementation issues. In Section 6, some numerical results are
presented that illustrate the efficiency of the method.

2 Spatial and temporal discretization

For (1), we consider standard lowest order spatial discretizations using finite differ-
ences or finite elements conforming in H1(Ω). For (2), we consider spatial discretiza-
tions using the finite integration technique (FIT) [8] or using lowest order edge finite
elements conforming in H(curl;Ω) [11]. In that case, the degrees of freedom (DoF) are
associated with the edges of the mesh. For both problem types, the considered spatial
discretizations give rise to the following set of equations:

Ku+M
du
dt

= h. (3)

The system size, denoted as N, equals the number of nodes or edges for the div-grad
and the curl-curl problem respectively. The symmetric and positive definite matrices
K ∈ R

N×N and M ∈ R
N×N denote the stiffness matrix and the mass matrix. The vector

h ∈ R
N is the vector of excitations.

Several efficient AMG algorithms exist for solving the system arising from a BE
discretization of (3). For the case of the div-grad equation, we refer to [18, 19, 17, 5],

2

and for the case of the curl-curl equation to [13, 1, 2]. In this paper, IRK and BVM
time discretization (see [7, 9, 10, 6]) will be used. For the reader’s convenience, and in
order to introduce some essential notation, we shall recall some of the basic formulas
and properties of these methods.

Consider the system of N ODEs

du
dt

= f (t,u), with u(t0) = u0 ∈ R
N . (4)

An implicit Runge-Kutta (IRK) method (see [7, 9, 10]) approximates the solution
u(t0 +∆t) by u1, computed from

u1 = u0 +∆t
s

∑
j=1

b j f (t0 + c j∆t,x j). (5)

Here, s denotes the number of stages. The s vectors xi ∈ R
N satisfy the following

system of equations

xi = u0 +∆t
s

∑
j=1

ai j f (t0 + c j∆t,x j), i = 1 . . .s. (6)

With Airk = [ai j] ∈ R
N×N , birk = [b1 ... bs]

T ∈ R
N and f j = f (t0 + c j∆t,x j) ∈ R

N ,
and using the multivectors X = [x1 ... xs] ∈ R

N×s, U0 = [u0 ... u0] ∈ R
N×s and F =

[f1 ... fs] ∈ R
N×s, (5) and (6) can be rewritten compactly as

u1 = u0 +∆tFbirk (7)

X = U0 +∆tFAT
irk. (8)

Boundary value methods (BVM) can be considered a generalization of linear multi-
step methods (LMM) (see [6]). In each step of a BVM, the solution values at a series
of n points in time t1, t2, . . . , tn are approximated. Here, for simplicity of notation, we
shall only consider the equidistant case, where t j = t0 + j∆t. A k-step BVM for (4) has
for each i = k1, ..., n− k2, with k1 + k2 = k, an equation of the form

k2

∑
j=−k1

αk1+ jui+ j = ∆t
k2

∑
j=−k1

βk1+ j f (ti+ j,yi+ j). (9)

The main difference with traditional LMM time discretization is the use of future points
in time. As such, a BVM discretization cannot be solved in a time-marching way. An
additional k1−1 initial and k2 final equations are needed of the form

∑k
j=0 α(i)

j u j = ∆t ∑k
i=0 β(i)

j f (t j,u j) i = 1, ..., k1−1

∑k
j=0 α(i)

j un−k+ j = ∆t ∑k
j=0 β(i)

j f (tn−k+ j,un−k+ j) i = n− k2 +1, ..., n.
(10)

The coefficients α(i)
j and β(i)

j are chosen such that the truncation errors are of the same
order as for the basic method (9). When applied to (3), the BVM problem reads in
compact format:

[u0 U] [a0 Abvm]T = ∆t[f0 F] [b0 Bbvm]T . (11)

3

Here, u0 and f0 represent the initial condition and the corresponding right-hand side
value at time t0. The matrices Abvm, Bbvm ∈ R

n×n have a quasi-Toeplitz structure. For
instance, [a0 Abvm] is given by

[a0 Abvm] =





































α1
0 α1

1 . . . α1
k

...
...

αk1−1
0 αk1−1

1 . . . αk1−1
k

α0 . . . αk
. . .

. . .
α0 . . . αk

αn−k2+1
0 . . . αn−k2+1

k
...

...
αn

0 . . . αn
k





































(12)

Assuming that Abvm is invertible, (11) can be transformed into a system of the form (8):

U =
(

−u0aT
0 +∆t f0bT

0

)

A−T
bvm +∆tFBT

bvmA−T
bvm := Ũ0 +∆tFÃT . (13)

The computational cost for IRK and BVM methods is dominated by the solution of
(8) and (13) respectively. Thanks to the formal equivalence of these systems, the ana-
lysis in this paper can be restricted to IRK problems and the results will carry over
automatically to BVM problems when Airk is replaced by A−1

bvmBbvm/n. Note that the
scaling factor 1/n takes into account the specific meaning of the time step ∆t. For IRK
methods, it corresponds to the global time step; for BVM methods, it is the time step
between the intermediate steps.

We will now derive three formulations for the linear system that appears in every
time-step when an IRK method is applied to the semi-discretized PDE. The application
of (6) to (3) yields a system of the following form, with Is the unit matrix of size s:







M +∆tKa11 . . . ∆tKa1s
...

...
∆tKas1 . . . M +∆tKass













x̃1
...

x̃s






= b̃. (14)

With ⊗ the Kronecker matrix product symbol, (14) can be written in tensor form:

(Is⊗M +∆tAirk⊗K) x̃ = b̃. (15)

Here, the unknowns are ordered block-wise; the vectors x̃i ∈ R
N correspond to the un-

knowns of the ith IRK stage. If Airk is triangular, as for DIRK methods, (14) can be
solved efficiently with block back-substitution using solvers optimized for BE prob-
lems. This is because the diagonal blocks of (14) are formally equivalent to BE dis-
cretizations with a scaled time step ∆t̃ = aii∆t. In fully coupled IRK discretizations,
however, it is not possible any more to solve for the x̃i values sequentially.

Reordering the unknowns in (14) per node for div-grad problems and per edge for
curl-curl problems yields a system of the following form:







m11Is +∆tk11Airk · · · m1NIs +∆tk1NAirk
...

. . .
...

mN1Is +∆tkN1Airk · · · mNNIs +∆tkNNAirk













x1
...

xN






= b, (16)

4

which is equivalent to

(M⊗ Is +∆tK⊗Airk)x = b. (17)

Here, xi ∈R
s denotes the vector of the stage values related to the node respectively edge

i. Formulation (16) will be used to explain the block AMG method presented in this
paper. The third formulation, which will prove useful for implementation purposes,
stems from the application of (8) to (3). This yields:

MX +∆tKXAT
irk = B. (18)

Note that (15), (17) and (18) are mathematically equivalent. Once these systems have
been solved, (5) or (7) can be used to propagate the solution values from t0 to t1.

3 Block AMG algorithm

In this section, an algebraic multigrid algorithm is developed for problems of the form
(15)-(17)-(18), denoted in short as Lx = b. A standard multigrid cycle is considered,
which is the recursive application of the following 2-level scheme:

1. smoothing on Lx = b

2. restriction: bc = Rirk(b−Lx)

3. (approximate) solve of Lcxc = bc

4. prolongation: x← x+Pirkxc

5. smoothing on Lx = b

Here, the subscript c refers to the coarse level; the matrices Pirk and Rirk are the prolon-
gation and restriction matrices respectively. In order to characterize the algorithm, a
procedure to build Pirk and Rirk and the coarse system matrices Kc is needed. Also, the
smoothing operation is to be specified. For the solution of the system at the coarsest
level of the multigrid hierarchy, a direct solver or a preconditioned Krylov solver can
be used.

3.1 Prolongation and restriction

We suggest to derive the prolongation matrix Pirk from the prolongation matrix P built
for the stationary problem Kx = b, where K is the stiffness matrix from (3). The matrix
P can be built using any of the classical AMG heuristics, for instance [18, 19, 17, 5]
for the div-grad problem and [13, 1, 2] for the curl-curl problem. More precisely, for
formulation (17), the following construction is suggested for Pirk:

Pirk = P⊗ Is. (19)

Note that this amounts to stage decoupling for the prolongation operator. Following
the standard AMG practice, we set the restriction operator equal to the prolongator’s
transpose, that is

Rirk := PT
irk = PT ⊗ Is. (20)

5

Using the compact formulation of (18), the restriction of the residual and the prolonga-
tion of the coarse grid correction read:

Bc = PT (B−MX−∆tKXAT
irk

)

(21)

X ← X +PXc (22)

3.2 Construction of the coarse system

As for any AMG method, the coarse system matrices are built as the Galerkin product
of the fine system matrices and the prolongation matrices. For the formulation used in
(17), we have

Lc = PT
irk (M⊗ Is +∆tK⊗Airk)Pirk

=
(

PT MP
)

⊗ Is +∆t
(

PT KP
)

⊗Airk. (23)

Using the compact format of (18), the coarse system reads:
(

PT MP
)

Xc +∆t
(

PT KP
)

XcAT
irk = Bc. (24)

Note that (24) corresponds to the classical IRK time-discretization of the coarse grid
equivalent problem to (3), i.e.

Kcu+Mc
du
dt

= hc, with Kc = PT KP and Mc = PT MP.

3.3 Definition of the smoother

For the div-grad equation (1), the blocksmoother suggested in [20] for use with a geo-
metric multigrid method, will be used. This smoother consists of a sequence of local
solves, one corresponding to each node i, in which all stage values for that node are
updated simultaneously:

(miiIs +∆t kiiAirk)xi = bi−∑
j 6=i

(mi jIs +∆t ki jAirk)x j. (25)

This blocksmoother is a block Gauss-Seidel type matrix splitting iteration applied to
(16). Using the matrix splittings M = M+ + M− and K = K+ + K−, with M+ and
K+ denoting the lower triangular parts of M and K, (25) can be formulated in tensor
notation as:

(

M+⊗ Is +∆tK+⊗Airk
)

x[ν+1] = b−
(

M−⊗ Is +∆tK−⊗Airk
)

x[ν]. (26)

Here, superscript [ν] is used to denote the iteration index. The nonzero structure of
the lefthand side matrix is indicated in Figure 1. Note that the same matrix splittings,
applied to a backward Euler discretization of (3), correspond to a classical Gauss-Seidel
iteration for the problem (M +∆tK)x = b,

(

M+ +∆tK+
)

x[ν+1] = b−
(

M−+∆tK−
)

x[ν]. (27)

In multigrid for the curl-curl equation, more involved smoothers are needed. This is
because the smoothing properties of classical smoothers, such as Gauss-Seidel, are
insufficient in the gradient part of the discrete analogon of the Helmholtz splitting (see

6

Figure 1: Nonzero structure of M+⊗ Is +∆tK+⊗Airk.

[16]). The latter reads, with f denoting the number of mesh faces, and with G ∈ R
e×n

and C ∈ R
f×e respectively the discrete gradient and curl operators

R
e = ran(G)⊕ ran(CT). (28)

We refer the reader to [12] for an analysis of this phenomenon. In this paper, the so-
called hybrid smoother, presented in [12], will be used. This smoother performs an
additional smoothing step in ran(G) on an auxiliary system. The system matrix Laux

of this auxiliary system is usually constructed as the Galerkin product of the original
system matrix with the gradient matrix G.

For our purposes, a block version of the hybrid smoother is needed. The auxiliary
system matrix is constructed as the Galerkin product of the original system matrix with
the decoupled tensor version Girk = G⊗ Is of the gradient:

Laux = GT
irk (M⊗ Is +∆tK⊗Airk)Girk

=
(

GT MG
)

⊗ Is +∆t
(

GT KG
)

⊗Airk. (29)

Using the compact format of (18), the auxiliary system reads:
(

GT MG
)

Xaux +∆t
(

GT KG
)

XauxAT
irk = Baux. (30)

Note that GT KG is zero away from the Dirichlet boundaries. One step of the block
hybrid smoother is defined as follows:

1. smoothing on (18)

2. block restriction: Baux = GT (B−MX−∆tKXAT
irk)

3. smoothing on (30)

4. block prolongation: X ← X +GXaux

5. smoothing on (18)

Formally, this is equivalent to a 2-level multigrid cycle with prolongator Girk and coarse
system matrix (29). The smoother in steps (1), (3) and (5) is the block smoother of [20].

7

4 Convergence analysis

4.1 A formula for the asymptotic convergence factor

The convergence analysis for the AMG method presented in this paper is similar to the
convergence analysis for the geometric multigrid method in [20]. First, we analyze the
blocksmoother. To this end, we consider the matrix function

S(z) = −(zK+ +M+)−1(zK−+M−). (31)

Note that S(∆t) is the iteration matrix for the Gauss-Seidel iteration defined by (27)
for the BE discretization of (3) with a time step ∆t. The iteration matrix for the
blocksmoother (26) for the IRK discretization of the same problem can be written in
terms of the matrix function (31) as well. It is given by S(∆Airk), which equals

−
(

∆tAirk⊗K+ + Is⊗M+
)−1 (∆tAirk⊗K−+ Is⊗M−

)

. (32)

Using the eigenvalue decomposition Airk = V ΛV−1 and after applying the Butcher
transformation, which is the similarity transformation corresponding to IN ⊗V (see
[7]), (32) can be shown to be equivalent to

−
(

∆tΛ⊗K+ + Is⊗M+
)−1 (∆tΛ⊗K−+ Is⊗M−

)

.

This shows that (32) is spectrally equivalent to the following block diagonal matrix:

S(∆tAirk)∼







S(∆tλ1) · · · 0
...

. . .
...

0 · · · S(∆tλs)






, λi ∈ σ(Airk).

Here, σ(Airk) denotes the spectrum of Airk, which is complex for most fully coupled
IRK and BVM methods. So, the asymptotic convergence behavior of the blocksmoother
(26) for the IRK discretization can be analyzed using the convergence results for the
corresponding Gauss-Seidel smoother (27) for the BE discretization of the same prob-
lem. With ρ(A) denoting the spectral radius of A, the asymptotic convergence factor
for the blocksmoother is given by:

ρ(S(∆tAirk)) = max
λ∈σ(Airk)

ρ(S(∆tλ)) . (33)

A similar analysis can be done for a two level multigrid cycle using the matrix function

T (z) = S(z)ν2

(

Ie−P
(

PT (zK +M)P
)−1

PT (zK +M)
)

S(z)ν1 ,

where ν1 and ν2 are the number of pre- and post-smoothing iterations. Here, the invari-
ance of the prolongation matrix Pirk for the similarity transformation IN ⊗V is used:

(

IN ⊗V−1) · (P⊗ Is)(IN ⊗V) = (IN ·P · IN)⊗
(

V−1 · Is ·V
)

= P⊗ Is.

The results are analogous to (33), i.e.

ρ(T (∆tAirk)) = max
λ∈σ(Airk)

ρ(T (∆tλ)) . (34)

8

By recursion, the results for the two level cycle immediately carry over to a multilevel
cycle. The analysis for the block hybrid smoother is formally identical to the analysis
for the two level cycle, with P replaced by G.

To summarize, the asymptotic convergence of the presented IRK AMG algorithm
is related to the asymptotic convergence behavior of the corresponding AMG algorithm
applied to the BE discretization of the same problem, but with a scaled time step. That
is, the asymptotic multigrid convergence factor for the fully coupled IRK system (16)
corresponds to the worst case of the asymptotic multigrid convergence for the problems

(λi∆tK +M)x = b, with λi ∈ σ(Airk). (35)

The latter can be analyzed quantitatively by a so-called local Fourier mode analysis
[18, 21, 14, 3]. Note that (33) and (34) continue to hold for BVM time discretizations
if Airk is replaced by A−1

bvmBbvm/n, as mentioned in Section 2.

4.2 Discussion

The convergence speed of multigrid for the BE problem (∆tK + M)x = b depends on
the value of ∆t. Hence, in order to be able to interpret (35), knowledge of the location
of the eigenvalues λi is of great importance. The location in the complex plane of
the eigenvalues of Airk and A−1

bvmBbvm/n for some popular IRK and BVM methods is
indicated in Figure 2. The picture is very similar for the classical IRK families of type
RadauIA, RadauIIA, Gauss and LobattoIIIC and for the BVM family GAM. For the
IRK families LobattoIIIA and LobattoIIIB, Airk is singular and one eigenvalue is 0. For
the BVM family GBDF with more then 5 intermediate steps, some eigenvalues have
a (small) negative real part. Typically, the modulus of the eigenvalues decreases with
increasing number of stages for IRK or intermediate steps for BVM, and the decrease
becomes smaller with increasing number of stages or steps.

For a model problem on a regular grid, the asymptotic convergence factor of a
scalar multigrid algorithm applied to (zK + M)x = b for z ∈ C can be calculated by a
so-called local Fourier mode analysis. We refer to [18, 21, 14] for the div-grad problem
and to [3] for the curl-curl problem. Qualitatively, the results of the analysis for the
model problem carry over to a more general problem setting. By using the Fourier
analysis of [14, 3], we have computed ρ(T (z)). The results are depicted in Figure
3. The local Fourier mode analysis shows that typically, the asymptotic convergence
factor improves with decreasing real part of z. Hence, taking into account the typical
location of the eigenvalues of Airk, the convergence analysis presented in this section
allows to predict a faster multigrid convergence for IRK methods with more stages or
BVM methods with more intermediate steps. Also, as expected, the use of a smaller
time-step will typically lead to a faster multigrid convergence.

5 Implementation issues

The AMG algorithm presented in this paper offers several opportunities for optimiza-
tion, which will yield a significant increase of the floating point execution rate. This is
important, because the dense linear system to be solved in the basic operation (25) of
the blocksmoother causes the number of floating point operations to scale cubically as
a function of the number of stages s. In this section, several aspects of the implemen-
tation, which are crucial for its memory and CPU efficiency, will be explained.

9

0 0.1 0.2 0.3 0.4 0.5

−0.2

−0.1

0

0.1

0.2

eigenvalues of A
irk

 for RadauIIA IRK family

real(λ)

im
ag

(λ
)

0 0.1 0.2 0.3 0.4 0.5

−0.2

−0.1

0

0.1

0.2

eigenvalues of A
irk

 for LobattoIIIA IRK family

real(λ)

im
ag

(λ
)

0 0.1 0.2 0.3 0.4 0.5

−0.2

−0.1

0

0.1

0.2

eigenvalues of A
bvm
−1 B

bvm
 for GAM4 BVM family

real(λ)

im
ag

(λ
)

0 0.1 0.2 0.3 0.4 0.5

−0.2

−0.1

0

0.1

0.2

eigenvalues of A
bvm
−1 B

bvm
 for GBDF5 BVM family

real(λ)

im
ag

(λ
)

2 stages
3 stages
4 stages
5 stages
6 stages

2 stages
3 stages
4 stages
5 stages
6 stages

4 intermediate steps
5 intermediate steps
6 intermediate steps

5 intermediate steps
6 intermediate steps

Figure 2: Eigenvalues of Airk for the RadauIIA and LobattoIIIA IRK families and of A−1
bvmBbvm/n

for the GAM4 and GBDF5 BVM families. The 1-stage variant of the RadauIIA method corre-
sponds to backward Euler; its eigenvalue is located at (1,0). For the BVM methods, the smallest
possible number of intermediate steps n equals the number of steps k of the LMMs it is composed
of, which is 4 and 5 for the GAM4 and GBDF5 methods respectively.

5.1 Storage of the multivectors

A row-by-row storage of the multivectors offers opportunities for cache optimization
for the product Y = AX of a sparse matrix A ∈ R

N×N and a multivector X ∈ R
N×s. In

this case, optimal reuse of the cache is achieved if the inner of the three loops for the
calculation of Y = AX runs over the columns of the multivectors instead of over their
rows:

FOR all rows r of Y,

FOR all nonzeros locations i of A(r,:),

FOR all columns c of Y,

Y(r,c) = Y(r,c) + A(r,i)*X(i,c)

In this way, the data access patterns for X and Y match their storage layout. Note that in
a classical column-by-column calculation, this loop is the outer loop. This procedure
can be applied directly for the matrix-vector product (18), the block restriction (21)
and the block prolongation (22). A similar cache optimization can be done for the
blocksmoother in the calculation of the righthand sides of (25).

Note that a similar cache optimization is not possible if the multivectors are stored
column-by-column. This is because the loop over the rows r of the multivectors cannot
be moved to become the inner loop, as the values of i depend on r for sparse matrices.

10

0 0

0
0

0.2

0
.2

0.2

0.4

0
.4

0.4

0.6

0
.6

0
.6

0.6

0
.8

0
.8

0
.8

1

1

1

1
.2

1
.2

1.2

1
.4

1.4

1
.6

real(z)

im
a

g
(z

)

−10log(ρ
asympt

) for div−grad

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

0

0

0.2

0
.2

0.2

0.4

0
.4

0.4

0.6

0
.6

0
.6

0.6

0.8

0
.8

0
.8

0.8

1

1

1

1.
2

1.
2

1.2

1.4

1.4

1.6

1
.8

2

2.5

real(z)

im
a

g
(z

)

−10log(ρ
asympt

) for curl−curl

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3: Asymptotic convergence factors of a V(1,1) multigrid cycle for the finite element
discretization (zK + M)x = b of the 2D div-grad and curl-curl equations on a quadrilateral grid
as a function of z, calculated using local Fourier analysis.

5.2 Storage of the tensor system matrices

The compact format of (18) shows that only ∆t, Airk and the appropriate stiffness and
mass matrices K and M need to be stored to represent the tensor system matrices. Cor-
respondingly, the memory requirements are essentially independent of the number of
stages and amount to nnz(K)+nnz(M) matrix entries, with nnz(X) denoting the num-
ber of nonzero elements of X . Obviously, the system matrices are never expanded to
standard matrix form, as this would result in memory requirements scaling quadrati-
cally as nnz(K + M)s2 as a function of the number of stages. Note that the compact
format allows to change the time discretization scheme, which is represented by Airk,
without the need to rebuild the system matrix.

In finite element applications, Dirichlet boundary conditions are often introduced
by eliminating the columns of Dirichlet unknowns and by replacing their equations by
xi = vi, with vi the required solution value for the unknown xi. With d and d̄ denot-
ing the set of the indices of the Dirichlet unknowns and the non-Dirichlet unknowns
respectively, this is achieved as follows in the compact format:
[

I 0
0 Md̄d̄

][

Xd

Xd̄

]

+∆t

[

0 0
0 Kd̄d̄

][

Xd

Xd̄

]

AT
irk =

[

Vd

Bd̄−Md̄dVd−∆tKd̄dVdAT
irk

]

.

5.3 Blocksmoother

The basic operation (25) of the blocksmoother consists of three steps. First, the local
righthand side b = bi−∑ j 6=i (mi jIs +∆tki jAirk) and the local system matrix A = miiIs +
∆tkiiAirk are constructed. Next, the local s× s system denoted as Ax = b is solved.
In this procedure, several optimizations are possible to reduce the computational and
memory complexity and to increase the floating point execution rate.

All local matrices A can be inverted and stored in a setup phase. This allows Ax = b
to be implemented as a matrix-vector product x = A−1b, which causes the number of
floating point operations to scale only quadratically, instead of cubically, as a function

11

of the number of stages. The price to be paid is an additional memory requirement,
scaling quadratically as a function of the number of stages. This additional memory
requirement can be reduced by a factor 2 by storing all A−1 in single precision.

In this case, the accuracy of the blocksmoother and, consequently, of the AMG
cycle, is limited to single precision as well. This can be avoided by calculating the
increments of the stage values instead of the stage values themselves:

A∆xi =

(

bi−∑
j

(mi jIs +∆t ki jAirk)x j

)

(36)

xi ← xi +∆xi. (37)

For this purpose, x and b are to be stored in double precision and the calculation of the
righthand side of (36) and the update formula (37) are to be carried out using double
precision. Now, the precision of xi is limited by the lowest possible exponent of the
single precision floating point format instead of by the length of the single precision
mantissa, which allows to achieve double precision. Note that this precision reduction
does not occur if Krylov acceleration is used, since in this case, the preconditioner is
applied to the error equation with zero initial guess, which is equivalent to (36)-(37).

For the dense system solves and the dense matrix-vector products used to solve
(25) or (36), it is crucial not to use standard software components, such as LAPACK
or BLAS routines. This is because the local system sizes are typically rather small, too
small for the cache optimization strategies of BLAS and LAPACK to pay off. Instead,
it is more appropriate to use ad-hoc routines. This allows to avoid parameter checking,
which is typical for general purpose routines, and it allows to use cheap, highly tuned
algorithms. For instance, the linear solve needed in the blocksmoother can be based on
LU-factorization without pivoting.

5.4 Loop unrolling

Many important parts of AMG code contain small loops over the number of stages.
Consider for instance the inner loop of the product of a sparse matrix and a multivector
(see Section 5.1) and the routines for the linear solve and matrix-vector product used
in the blocksmoother (see Section 5.3). If the body of the loop is small, the loop over-
head, consisting of incrementing and checking the loop parameter, is not negligible.
Template programming allows the compiler to optimize such loops for each number of
stages separately by loop unrolling, resulting in the elimination of this overhead.

6 Numerical experiments

The presented algorithms have been implemented in C++. The underlying scalar AMG
algorithms are smoothed aggregation nodal multigrid [19] for the div-grad problem and
the algorithm of [2] for the curl-curl equation. All numerical results presented in this
paper are generated on a Pentium IV 2.4GHz machine using the g++ 3.3.5 compiler.
We will show two types of results. First, we illustrate the convergence of the AMG
solver for a variety of IRK and BVM discretizations. Second, we discuss the effect of
various implementation issues. We show, among other things, that for up to 6 stages,
the actual cost per iteration scales almost linearly with the number of stages and not
quadratically or cubically, as could be expected from a floating point operation count.

12

div-grad curl-curl
nbStages RadauIIA Gauss LobattoIIIA RadauIIA Gauss LobattoIIIA

1 50 (22) 41 (19) / 65 (29) 57 (27) /
2 41 (22) 38 (19) 42 (19) 55 (26) 52 (26) 56 (26)
3 37 (22) 36 (21) 38 (21) 52 (26) 50 (24) 52 (25)
4 35 (22) 34 (20) 35 (21) 49 (26) 51 (25) 51 (25)
5 35 (22) 34 (20) 36 (21) 51 (25) 49 (25) 52 (24)
6 35 (22) 34 (21) 35 (21) 49 (25) 50 (25) 51 (27)

Table 1: Number of iterations as a function of the number of stages for some fully coupled IRK
methods, needed for a V(2,2) AMG cycle as a standalone solver and with BiCGstab accelera-
tion (between brackets) to reach an accuracy ‖residual‖/‖rhs‖ < 10−14 for the finite element
discretization of the 2D div-grad and curl-curl equations with α = β = 1 and a time step of 0.01
on a triangular mesh containing 41624 nodes and 124075 edges on the unit square [0 1]2 with
homogeneous Dirichlet boundary conditions.

div-grad curl-curl
nbSteps gam4 gbdf5 gam4 gbdf5

5 36 (21) 37 (29) 50 (26) 54 (27)
10 34 (23) 38 (27) 50 (26) 53 (28)
15 35 (26) 36 (26) 48 (27) 52 (31)
20 34 (24) 36 (26) 49 (28) 55 (31)
25 34 (24) 36 (27) 48 (27) 53 (30)
30 34 (26) 36 (26) 50 (29) 54 (30)

Table 2: Number of iterations as a function of the number of intermediate steps of some BVM
methods, needed for a V(2,2) AMG cycle as a standalone solver and with BiCGstab accelera-
tion (between brackets) to reach an accuracy ‖residual‖/‖rhs‖ < 10−14 for the finite element
discretization of the 2D div-grad and curl-curl equations with α = β = 1 and a time step of 0.01
on a triangular mesh containing 41624 nodes and 124075 edges on the unit square [0 1]2 with
homogeneous Dirichlet boundary conditions.

div-grad curl-curl
nbStages \ ∆t 10−1 10−2 10−3 10−1 10−2 10−3

1 37 (16) 22 (12) 11 (7) 34 (17) 24 (13) 18 (11)
2 33 (14) 18 (12) 10 (7) 29 (15) 23 (13) 17 (10)
3 33 (16) 17 (11) 10 (7) 29 (17) 22 (12) 16 (10)
4 32 (17) 17 (11) 10 (7) 28 (15) 22 (13) 16 (10)
5 32 (17) 17 (10) 9 (7) 29 (15) 23 (13) 16 (10)
6 32 (19) 17 (11) 9 (7) 29 (16) 21 (12) 16 (10)

Table 3: Number of iterations as a function of the number of stages and the time step for a V(2,2)
AMG cycle as a standalone solver and with BiCGstab acceleration (between brackets) to reach
an accuracy ‖residual‖/‖rhs‖ < 10−8 for the finite element discretization of the 2D div-grad
and curl-curl equations with α = β = 1 using the RadauIIA IRK family on a triangular mesh
containing 41624 nodes and 124075 edges on the unit square [0 1]2 with homogeneous Dirichlet
boundary conditions.

13

Tables 1 and 2 show for some fully coupled IRK and BVM methods the number of
iterations as a function of the number of stages, needed to solve a 2-dimensional div-
grad and curl-curl problem to a high accuracy. The accuracy is chosen high to make
the differences in the results more clear. For standalone AMG, the number of itera-
tions typically decreases with increasing number of stages, and the decrease becomes
smaller with increasing number of stages. Table 3 shows for the RadauIIA family of
IRK methods that the AMG methods converge faster for a smaller time step. Both
observations confirm the results of the convergence analysis of Section 4. Similar as
for scalar AMG, Krylov acceleration results in a significant reduction of the number of
iterations. Note that the convergence results are similar or slightly better than for scalar
AMG for the BE problem, which is equivalent to the RadauIIA case with 1 stage.

Different possible implementations of the matrix-vector products or linear solves
in (25) are compared in Tables 4 and 5. The use of ad-hoc templated routines instead of
the corresponding BLAS or LAPACK routines will be responsible for the main part of
the reduction of the time per AMG cycle. The corresponding time reduction is of the
order of magnitude of 10. Additional time reductions, achieved by the optimizations
explained in Section 5, are illustrated in Figure 4.

The time needed for a fully-optimized block AMG cycle scales only quasi-linearly
as a function of the number of stages for up to 6 stages (see Figure 4). This is remark-
able, as the corresponding number of floating point operations scales quadratically, due
to the matrix-vector products x = A−1b used to solve (25). However, thanks to their
dense character, these matrix-vector products cause very little cache misses, contrary
to the construction of the righthand sides of (25), which is a sparse operation. Due
to these cache effects, the cost of the blocksmoother is dominated by the construction
of the local righthand sides (see the right picture of Figure 5). The cost of the local
dense linear solve Ax = b proves to be much higher then the cost of the correspond-
ing matrix-vector product x = A−1b, and has the same order of magnitude as the cost
of the construction of the righthand sides. Correspondingly, if the inverses of the lo-
cal system matrices are not constructed and stored in the setup phase, the cost of the
blocksmoother scales supralinearly (see the left picture of Figure 5).

Figure 4 shows the cost of s scalar AMG cycles as a reference. This amounts
essentially to the cost of a DIRK-based AMG solver. The figure shows that for the
same number of stages, the solution by AMG of the linear system arising in a fully
implicit Runge-Kutta discretization is not much more expensive (typically a factor of
2 or less) than solving the sequence of s linear systems appearing in a DIRK-based
time-discretization. Obviously, for the same number of stages, the order of accuracy
of DIRK time discretization is significantly lower. Hence, a DIRK method will require
many more (smaller) time steps than a carefully chosen fully coupled IRK method
to reach a similar accuracy. Note that a more precise and quantitative comparison of
DIRK versus fully implicit RK-methods would require taking into account the detailed
aspects of the time step control strategy, the cost of error estimation and many more
implementation heuristics. This is outside the scope of the present paper.

7 Conclusion

We have shown by a theoretical analysis and by numerical experiments that it is possi-
ble to develop efficient algebraic multigrid methods for fully coupled implicit Runge-
Kutta and Boundary Value Method time discretizations of the div-grad and curl-curl
equations. Both the analysis and the experiments showed that the convergence behav-

14

size templated non-templated BLAS
2 7.00e-09 2.90e-08 (+ 314 %) 3.66e-07 (+ 5129 %)
3 1.80e-08 6.20e-08 (+ 244 %) 4.42e-07 (+ 2356 %)
4 3.00e-08 5.60e-08 (+ 87 %) 5.40e-07 (+ 1700%)
5 4.70e-08 1.04e-07 (+ 121 %) 5.49e-07 (+ 1068 %)
6 6.80e-08 1.62e-07 (+ 138 %) 5.80e-07 (+ 753 %)

Table 4: Average time in seconds of dense matrix-vector products using an ad-hoc templated
implementation, an ad-hoc non-templated implementation and BLAS as a function of the matrix
size. The compiler optimization flags -O2 and -funroll-loops are used.

size templated non-templated LAPACK
2 8.00e-08 1.00e-07 (+ 25 %) 7.60e-07 (+ 850 %)
3 1.80e-07 2.40e-07 (+ 33 %) 1.78e-06 (+ 889 %)
4 3.70e-07 4.20e-07 (+ 14 %) 2.06e-06 (+ 457 %)
5 5.10e-07 5.90e-07 (+ 16 %) 3.18e-06 (+ 524 %)
6 7.10e-07 8.70e-07 (+ 23 %) 4.52e-06 (+ 537 %)

Table 5: Average time in seconds of dense system solves using an ad-hoc templated implemen-
tation, an ad-hoc non-templated implementation and LAPACK as a function of the matrix size.
The compiler optimization flags -O2 and -funroll-loops are used.

ior is similar to the convergence behavior of the underlying scalar multigrid method for
the backward Euler time discretization of the same problem. Also, we demonstrated
that these multigrid methods offer opportunities to achieve very high cache efficiency
and floating point execution rates. Considering the high order of accuracy of the time
discretization methods used and the favorable convergence and timings results, the pre-
sented algorithms show great promise.

References

[1] P. Bochev, C. Garasi, J. Hu, A. Robinson, and R. Tuminaro, “An improved al-
gebraic multigrid method for solving Maxwell’s equations,” SIAM Journal on
Scientific Computing, vol. 25, pp. 623–642, 2003.

[2] T. Boonen, G. Deliége, and Vandewalle, “On algebraic multigrid methods de-
rived from partition of unity nodal prolongators,” Numerical Linear Algebra with
Applications, vol. 13(2-3), no. 2-3, pp. 105–131, 2006.

[3] T. Boonen, J. Van lent, and S. Vandewalle, “Local Fourier analysis of multi-
grid for the curl-curl equation,” Technical Report TW484, Katholieke Universiteit
Leuven, Department of Computerscience, December 2006.

[4] A. Bossavit, Computational Electromagnetism. Boston: Academic Press, 1998.

[5] M. Brezina, A. Cleary, R. Falgout, V. Henson, J. Jones, T. Manteuffel, S. Mc-
Cormick, and J. Ruge, “Algebraic multigrid based on element interpolation
(AMGe),” SIAM Journal on Scientific Computing, vol. 22, pp. 1570–1592, 2001.

15

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

number of stages

tim
e /

 cy
cle

 (s
ec

)

div−grad

0 2 4 6
0

0.5

1

1.5

2

number of stages
tim

e /
 cy

cle
 (s

ec
)

curl−curl

s x scalar AMG
x=inv(A)b + row−by−row
Ax=b + row−by−row
x=inv(A)b + col−by−col
Ax=b + col−by−col

s x scalar AMG
x=inv(A)b + row−by−row
Ax=b + row−by−row
x=inv(A)b + col−by−col
Ax=b + col−by−col

Figure 4: Average time of an AMG cycle for a 2D div-grad and curl-curl problem discretized on
the same triangular mesh containing 41624 nodes and 124075 edges as a function of the number
of stages, using different optimizations. “Ax = b” and “x = inv(A)b” indicate whether x in (25)
is calculated by a linear solve or by a matrix-vector product (see Section 5.3). “row-by-row” and
“col-by-col” refer to the storage layout of the multivectors (see Section 5.1). The time needed
for s scalar AMG cycles is indicated for comparison.

0 2 4 6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
without inversion at setup

nbStages

tim
e /

 ite
ra

tio
n (

se
c)

0 2 4 6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
with inversion at setup

nbStages

tim
e /

 ite
ra

tio
n (

se
c)

total

constructing b

solving Ax=b

total

constructing b

matvec x=A−1b

Figure 5: Average time in seconds needed for the basic operation (25) of the blocksmoother
and for its dominating components with and without inversion and storage of the local system
matrices A in the setup phase. The problem is the discretization of the 2D div-grad equation on
a triangular mesh with 41624 nodes on the unit square [0 1]2.

16

[6] L. Brugnano and D. Trigiante, Solving Differential Problems by Multistep Initial
and Boundary Value Methods, ser. Stability and Control: Theory, Methods and
Application. Amsterdam: Gordon & Breach, 1998, vol. 6.

[7] J. Butcher, Numerical methods for ordinary differential equations. Chichester:
John Wiley & Sons Ltd., 2003.

[8] M. Clemens and T. Weiland, “Discrete electromagnetism with the finite integra-
tion technique,” Progress in Electromagnetics Research, vol. 32, pp. 65–87, 2001.

[9] E. Hairer, S. Norsett, and G. Wanner, Solving Ordinary Differential Equations
I. Nonstiff Problems., ser. Springer Series in Comput. Mathematics. Springer-
Verlag, 1993, vol. 8.

[10] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and
Differential-Algebraic Problems., ser. Springer Series in Comput. Mathematics.
Springer-Verlag, 1996, vol. 14.

[11] R. Hiptmair, “Finite elements in computational electromagnetism,” Acta Numer-
ica, vol. 11, pp. 237–340, 2002.

[12] R. Hiptmair, “Multigrid method for Maxwell’s equations,” SIAM Journal on Nu-
merical Analysis, vol. 36, no. 1, pp. 204–255, 1999.

[13] J. Hu, R. Tuminaro, P. Bochev, C. Garasi, and A. Robinson, “Toward an h-
independent algebraic multigrid method for Maxwell’s equations,” SIAM Journal
on Scientific Computing, vol. 27, no. 5, pp. 1669–1688, 2006.

[14] J. Janssen and S. Vandewalle, “Multigrid waveform relaxation on spatial finite
element meshes: the discrete-time case,” SIAM J. Sci. Comput., vol. 17, no. 1, pp.
133–155, 1996.

[15] K.-A. Mardal, T. Nilssen, and G. Staff, “Order optimal preconditioners for
implicit Runge-Kutta schemes applied to parabolic PDEs,” SIAM Journal on
Scientific Computing, to appear.

[16] P. Monk, Finite element methods for Maxwell’s equations. Oxford: Clarendon
Press, 2003.

[17] K. Stueben, “A review of algebraic multigrid,” Journal of Computational and
Applied Mathematics, vol. 128, pp. 281–309, 2001.

[18] U. Trottenberg, C. Oosterlee, and A. Schuller, Multigrid. London: Academic
Press, 2001.

[19] P. Vanek, J. Mandel, and M. Brezina, “Algebraic multigrid by smoothed aggrega-
tion for second and fourth order elliptic problems,” Computing, vol. 56, no. 3, pp.
179–196, 1996.

[20] J. Van lent and S. Vandewalle, “Multigrid methods for implicit Runge-Kutta and
boundary value method discretizations of parabolic PDEs,” SIAM Journal on
Scientific Computing, vol. 27, no. 1, pp. 67–92, 2005.

[21] R. Wienands and W. Joppich, Practical Fourier analysis for multigrid methods.
Chapman and Hall/CRC Press, 2005.

17

